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Abstract: The geolocation accuracy of spaceborne LiDAR (Light Detection And Ranging) data is
important for quantitative forest inventory. Geolocation errors in Global Ecosystem Dynamics In-
vestigation (GEDI) footprints are almost unavoidable because of the instability of orbital parameter
estimation and GNSS (Global Navigation Satellite Systems) positioning accuracy. This study cal-
culates the horizontal geolocation error of multiple temporal GEDI footprints using a waveform
matching method, which compares original GEDI waveforms with the corresponding simulated
waveforms from airborne LiDAR point clouds. The results show that the GEDI footprint geolocation
error varies from 3.04 m to 65.03 m. In particular, the footprints from good orbit data perform better
than those from weak orbit data, while the nighttime and daytime footprints perform similarly. After
removing the system error, the average waveform similarity coefficient of multi-temporal footprints
increases obviously in low-waveform-similarity footprints, especially in weak orbit footprints. When
the waveform matching effect is measured using the threshold of the waveform similarity coefficient,
the waveform matching method can significantly improve up to 32% of the temporal GEDI footprint
datasets from a poor matching effect to a good matching effect. In the improvement of the ratio of
individual footprint waveform similarity, the mean value of the training set and test set is about two
thirds, but the variance in the test set is large. Our study first quantifies the geolocation error of the
newest version of GEDI footprints (Version 2). Future research should focus on the improvement of
the detail of the waveform matching method and the combination of the terrain matching method
with GEDI waveform LiDAR.

Keywords: GEDI; spaceborne full-waveform LiDAR; geolocation error; airborne LiDAR; wave-
form matching

1. Introduction

Light Detection and Ranging (LiDAR), also referred to as laser scanning, is a widely
used three-dimensional information-acquisition technology and provides high-accuracy
and -quality data [1]. LiDAR can directly provide centimeter-level-accuracy data for
measuring and characterizing the structure of land surface objects, particularly in forest
inventory management and urban surveying [2–4].

Spaceborne LiDAR technology can penetrate the atmosphere and obtain accurate
measurements of Earth’s surface [5]. Full-waveform LiDAR records the complete echo
waveform with multiple peaks in the ground sample range and collects discrete points
distributed spatially adjacent to each other. The Global Ecosystem Dynamics Investigation
(GEDI) instrument is the latest spaceborne full-waveform LiDAR system with three lasers
and eight sample tracks [6]. After launching in December 2018, the Global Ecosystem
Dynamics Investigation (GEDI) mission was deployed to the International Space Station
(ISS) and has been acquiring Earth surface height continuously since April 2019. One of
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the most important scientific objectives of the GEDI mission is to obtain three-dimensional
vertical forest structure parameters for land carbon cycle modeling [6]. Much previous
research assessed the performance of the initial version of the GEDI product. As the second
version was published, the geolocation error of GEDI footprints was improved from ≈20 m
to≈10 m, and most studies focused on the assessment and application of the GEDI product.

Spaceborne LiDAR data should be properly corrected before application due to com-
plex environmental factors such as atmospheric scattering and spacecraft platform instabil-
ity [7,8]. According to the GEDI team, the spatial geolocation accuracy of the second version
of GEDI footprints is 10.2 m, resulting in an elevation error of 17.8 cm over a slope with one
degree [9]. This causes the footprint of GEDI to deviate from the real location and to only
partially cover the real surface objects. To precisely locate the whole object, the geolocation
error of GEDI spots should be corrected with high accuracy. The geolocation error of the
laser footprint consists of system errors and random errors. The system error is mainly
caused by sensors’ electronic features, platform attitude, orbit parameters, atmospheric
delay, and GNSS positioning accuracy [10]. Due to the complexity of the satellite operating
environment and ground conditions, slight measurement errors in the footprint positioning
model parameters will lead to random errors in the position of the laser footprints [11].

The geolocation error correction of GEDI footprints usually includes the on-orbit
positioning error correction method and the ground-data-based correction method. The on-
orbit positioning error correction method needs a lot of satellite information and spacecraft
orbital parameters, and can be calculated by satellite orbit parameters, the information
of the spacecraft (attitude, pitch, yaw, and roll), GNSS positioning, and object target
distance [5]. As a satellite orbit with a high flight altitude, ICESat has more stable orbital
parameters with centimeter-level on-orbit geolocation accuracy [12], while GEDI’s orbit
error is 60 m [13]. There are two main reasons for the low orbit-location accuracy. One is
the lower orbital altitude (about 400 km), which tends to cause instability in the estimation
of orbital parameters. Second, the positioning accuracy of GNSS is low, mainly due to
the reflection of the GNSS signal and the low visibility of the GNSS satellite. These two
shortages make the ISS orbital position less accurate [14–16]. In terms of ISS sensors,
Montenbruck et al. [17] realized the short-term prediction and improved position accuracy
of the ISS orbit from 10 m to 1 m based on GNSS receiver data. Dou et al. [18] utilized a
quaternion-based algorithm based on orbit state, the observation vector of the International
Space Station Agriculture Camera (ISSAC), and natural topographic data to improve
the geolocation accuracy from 800 m to 500 m. Subsequently, the influence of ISS self-
rotation was overcome and the residual geolocation error was improved from 1000 m to
500 m [19]. The on-orbit positioning error correction method is applicable to all GEDI
footprints, but it has a lot of technical specifications and measurement parameters with
high requirements. Additionally, it cannot solve other types of error, for example, laser
pointing errors; moreover, the on-orbit positioning error correction accuracy of ISS tends to
be at the meter level, or even the ten-meter level.

The correction method based on ground data can reduce the geolocation error and
achieve geolocation accuracy at the meter level and even the centimeter level. It can be
divided into the field site geolocation error correction method and the non-field geolocation
error correction method according to whether there is a calibration field site. In the field
site geolocation error correction method, Luthcke et al. [20] proposed a residual range
calibration method to correct aiming and range biases based on spacecraft trim maneuvers
and the residual over-ocean range. Magruder et al. [5] deployed the placement of an
electro-optical detector that captured the signal of GLAS laser and correcting laser pointing
and timing errors. Sirota et al. [21] improved the laser pointing angle by analyzing the mass
center coordinate changes in GLAS footprints. The field site geolocation error correction
method can achieve at centimeter-level geolocation accuracy but is hard to realize because
of spatial and timing restrictions. The non-field geolocation error correction method is
divided into two categories. The first category, the terrain matching method, only uses
topographic data to correct the system error. Filin [22] compared the ground vertical profile
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of reference ground elevation and GLAS laser track observations to correct the system error
of GLAS footprints. Schleich et al. [23] corrected the GEDI footprint location by minimizing
the difference between the DTM (Digital Terrain Model) and ground elevation of a single
GEDI footprint, improving the RMSE (root-mean-square error)/MAE (mean absolute error)
of canopy height from 2.50 m/1.45 m to 2.10 m/1.07 m. The terrain matching method only
uses the ground elevation of footprints, and the corrected accuracy is meter-level. The
other category, called the waveform matching method, makes full use of waveform shape
to remove the geolocation error by comparing real waveforms with reference waveforms.
Harding [24] generated reference waveforms using a Digital Surface Model (DSM) and
matched GLAS waveforms pixel-by-pixel to determine the real position of the footprint.
Yue et al. [25] matched the DSM and the waveform based on statistical characteristics; later,
the waveform-matching method was extended to different spatial areas and land cover
types [26]. Traditionally, the waveform matching method’s correction accuracy was meter-
level because of the meter-level resolution of ground reference data, while point-cloud
data describes the three-dimensional object with centimeter-level ranging resolution. The
waveform matching method based on point-cloud data would improve the geolocation
accuracy at the centimeter level.

The waveform simulation and the ground reference data are key parts in the ap-
plication of the waveform matching method. The GEDI Simulator [27] was designed for
pre-launch testing and algorithm development by the GEDI science team. The GEDI Simula-
tor can simulate the reference waveform using point-cloud data and assess the performance
of the GEDI product [28]. In the past, geolocation error correction for GLAS individual
footprints was common due to the lack of point-cloud data [25]. However, with the ubiquity
of laser devices and publicly available point-cloud data [29], systematic error correction
based on multiple laser footprints is becoming more common and easier to apply [7].

The main objective of this study is to correct the geolocation error of GEDI footprints
based on point-cloud data over multiple study areas. Firstly, the best-matched position is
determined based on multiple waveform matching between the real waveform and the
reference waveform. Then, the positions of all the GEDI footprints are corrected according
to the relative distance of the best-matched position and the original footprint position. We
mainly aim to solve the following two questions:

1. Is there a geolocation error in the current GEDI footprint? If one exists, how serious is
the geolocation error?

2. Is it possible to correct the geolocation error for GEDI footprints?

2. Materials and Methods

In the study, we used airborne LiDAR (ALS) data from the National Ecological Ob-
servatory Network (NEON) at 8 sites between 2019 and 2021 in the forest region. Taking
these sites as research areas, we collected all the qualified GEDI footprints. Based on the
ALS data, we calculated the geolocation accuracy of the GEDI footprints and verified the
effectiveness of the error-corrected position.

We first calculated the geolocation error of the GEDI footprints based on the ALS
waveform matching method and obtained the error values of different temporal GEDI
footprints. Then, we analyzed the relationships between GEDI labels (“degrade_flag” and
“solar_elevation”) and geolocation error from a statistical point of view. Next, we evaluated
the effect of the waveform matching method by comparing the waveforms before and after
the correction. The work flowchart of this study is shown in Figure 1.
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Figure 1. The work flowchart of single temporal GEDI footprint position correction based on the
waveform matching method.

2.1. Study Area

The study area included eight ALS collection areas with a total area of approximately
1461 km2, covering latitudes of 30◦ to 45◦, longitudes of −122◦ to −81◦, and elevations of
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14–3776 m. The surface covering in the area mainly includes forests, shrubs, and grasslands
without watershed and plant areas. The distribution of the study area is shown in Figure 2
and details are given in Table 1.
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Figure 2. The study sites’ (marked with black stars) distribution in this study. The background in the
pictures is the 2019 land cover product from the National Land Cover Database (NLCD) [30] with a
12-class legend.

Table 1. Airborne laser scanning (ALS) sites in the study.

ALS Site ALS ID Area (km2) Year-Month Average Point Density
(pts/m2) Location (◦) Elevation (m)

Site 1 ABBY21 143.92 2021-07 20 45.76, −122.33 170–1330

Site 2
DSNY19 174.68 2019-04 9

28.13, −81.44 14–51DSNY21 147.74 2021-09 60
Site 3 LIRO20 13.96 2020-08 21 46.00, −89.70 491–552
Site 4 MCRA21 13.36 2021-07 14 44.26, −122.17 775–1634

Site 5
SOAP19 169.89 2019-06 8

37.03, −119.26 543–2386SOAP21 177.26 2021-07 22
Site 6 TEAK19 184.99 2019-06 8 37.01, −119.01 1439–3140
Site 7 WLOU19 26.69 2019-08 20 39.89, −105.92 2773–3776

Site 8
WREF19 182.95 2019-07 29

45.82, −121.95 274–1369WREF21 225.58 2021-07 12

2.2. Data Collection
2.2.1. GEDI Version 2 Product

GEDI collects global waveform LiDAR between 50◦N and 50◦S. The GEDI laser system
contains three lasers and eight observation sample beams. GEDI scanning beams can be
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divided into strong and weak beams depending on the intensity of the laser energy. Depend-
ing on the requirements, GEDI offers different types of product, including raw transmitting
and receiving waveforms (L1 product), ground height and canopy height at the footprint
level (L2 product), and height and biomass data in grid form (L3 and L4 products). The
available GEDI footprints within the study area can be obtained via GEDI Finder (https://
git.earthdata.nasa.gov/projects/LPDUR/repos/GEDI-finder-tutorial-python/browse, ac-
cessed on 31 August 2022). The GEDI L1B [31] and L2B [32] products were used in this
study, mainly for the real receiving waveforms and geographic location extraction, respec-
tively. As each orbit has a unique orbit identifier (orbit number) in the GEDI footprint,
GEDI temporal footprint IDs were determined using the ALS site name and orbit number
in this study. The number of multi-temporal GEDI footprints used in this study is listed in
Table 2 and shown in Figure 2.

Table 2. Multi-temporal GEDI footprints with related attributes.

ALS Site

Temporal
GEDI

Footprint
IDs

Date Total
Footprints

Orbit
Quality 1

Acquisition
Time

Site 1 ABBY14342 2021.06.24 220 weak day
Site 1 ABBY14403 2021.06.28 1376 weak night
Site 2 DSNY15747 2021.09.23 1153 good night
Site 2 DSNY3179 2019.07.05 1613 weak day
Site 2 DSNY4105 2019.09.03 404 good night
Site 3 LIRO9049 2020.07.18 323 good night
Site 4 MCRA12561 2021.03.01 321 weak day
Site 4 MCRA14845 2021.07.27 383 weak day
Site 4 MCRA16888 2021.12.05 291 weak night
Site 5 SOAP13533 2021.05.03 1722 weak night
Site 5 SOAP13594 2021.05.07 1872 good night
Site 5 SOAP13655 2021.05.11 731 good night
Site 5 SOAP2076 2019.04.25 2141 good day
Site 5 SOAP4336 2019.09.18 281 good night
Site 6 TEAK2279 2019.05.08 923 good day
Site 6 TEAK3756 2019.08.11 2155 weak day
Site 6 TEAK4046 2019.08.30 2088 weak night
Site 6 TEAK4264 2019.09.13 2102 good night
Site 7 WLOU3271 2019.07.11 469 weak day
Site 8 WREF14403 2021.06.28 456 weak night
Site 8 WREF3482 2019.07.25 2463 good day
Site 8 WREF4065 2019.08.31 542 weak day

1 Orbit quality is determined by whether the GEDI footprints are all undegraded.

The value of the label “degrade_flag” was most relevant to the geolocation accuracy
among all the attributes of GEDI footprints. The values of “degrade_flag” included non-zero
and zero. The non-zero value had a corresponding orbital degradation situation of platform
stability and GNSS position precision during operation. The “degrade_flag” label equaled
zero, which means low probability with a certain two-degradation situation. The location
accuracy may be better or worse in the surrounding periods near the beginning and end of
the “degrade_flag” flagged intervals. Additionally, we considered the effects of different
footprint acquisition times on geolocation error. The daytime/nighttime information was
extracted from the attribute of “solar_elevation”. Additionally, we took the “sensitivity”
label into account in the data pre-processing flow.

2.2.2. Airborne LiDAR Data

NEON is an ecological observation project (https://data.neonscience.org/data-products/
explore, accessed on 31 August 2022). Among airborne data, airborne LiDAR data play an important
role in quantitative information collection on land cover and changes in ecological structure.

https://git.earthdata.nasa.gov/projects/LPDUR/repos/GEDI-finder-tutorial-python/browse
https://git.earthdata.nasa.gov/projects/LPDUR/repos/GEDI-finder-tutorial-python/browse
https://data.neonscience.org/data-products/explore
https://data.neonscience.org/data-products/explore


Remote Sens. 2023, 15, 776 7 of 18

The airborne laser scanning (ALS) data show centimeter-level ranging accuracy of 3D
point-cloud data around the GEDI footprints. The ALS acquisition years were restricted
to 2019, 2020, and 2021, with the average point densities across the sites varying from 8
to 60 points/m2, as determined using the scanner instrument Optech Gemini. The use
of ALS and GEDI footprints from different years together was avoided in this study to
prevent the influence of year-to-year physical variability in the experimental results. Table 1
presents all the ALS datasets used in this study, including spatial location, acquisition time
(year-month), and elevation range [29].

Because the NEON onboard LiDAR platform is calibrated every winter, including
horizontal and vertical positioning accuracy, the ALS data can be considered to be without
geolocation error and can be used as a reference source for GEDI geolocation error correc-
tion. According to the data quality report, the vertical geolocation precision is generally
less than 10 cm, and the horizontal geolocation precision is higher. ALS data were used for
waveform simulation and correcting the footprint location by comparing the real waveform
with the reference waveform, corresponding to part1 and part2 in the data processing
flowchart (Figure 1).

2.3. Calculation of GEDI Footprints Geolocation Error using the Waveform Matching Method

The purpose of this study is to calculate the geolocation system error of temporal GEDI
footprints and validate the correction result. Additionally, the main part of the evaluation
of geolocation error was conducted using the GEDI Simulator.

The evaluation of GEDI footprint geolocation accuracy mainly included two main parts:
reference waveform generation and error factor calculation. In the data pre-processing stage
(Figure 1 part1), we selected the high-quality GEDI waveforms, mainly using the attributes
of “sensitivity” and “quality” as the training set, for calculating the geolocation error.

The objective of reference waveform generation is to unify the form of reference data
and GEDI observation data to facilitate data comparison. This process requires the real
laser spot spatial position and ALS point-cloud data and converts the point-cloud data of
the corresponding range of the ALS subset data into waveforms. The waveform simulation
process has two main steps. The first step assigns the laser pulse energy within the footprint
range according to a Gaussian distribution, and the weight of the horizontal position is
assigned using the distance of each point in the point-cloud data relative to the center of the
footprint. The parameters of the laser pulse are the same as those of the GEDI system. The
second step is then convolved vertically to form a continuous waveform. Different land
cover and longitudinal changes are often reflected in 3D point-cloud data with different
point densities. In the different point density results in the formation of different waveform
data, the waveform of the flat terrain area is monotonous with a single peak, while the area
with complex terrain tends to generate a differently shaped waveform with multiple peaks.
Additionally, greater changes in the point cloud cause greater changes in the waveform
amplitude value, which tends to occur between the ground and above-ground objects.

The geolocation error is calculated by maximizing the average correlation coefficient
between the GEDI waveforms and the reference waveforms as the waveform similarity
coefficient (SimiCoef). SimiCoef is calculated from the denoised GEDI waveform G(t) and
the reference waveform R(t), as in the following Equation (1):

SimiCoe f =
cov(G(t), R(t))

σG(t)σR(t)
(1)

where cov is the covariance of two curves, and σ is the standard deviation.
The calculation of the best-matched position is based on the criteria for maximizing

the average SimiCoef value (Figure 3). The error calculation strategy used in this study was
to carry out global matching first, and then, local matching. Firstly, we moved multiple
GEDI footprints’ locations by a certain step and calculated the average SimiCoef matrix
from the multiple SimiCoef matrixes of the footprints. In global matching, the moving
step is an important factor affecting the matching result. On the one hand, too large a step
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will lead to low accuracy of the global matching result, thereby affecting the subsequent
local matching accuracy result; on the other hand, too small a step calculation process is
redundant and may cause program calculation failure due to limited computer resources.
For a GLAS footprint with a ∼50 m diameter, the recommended step is 4 m [26]. In this
study, the moving step was chosen to be 1 m, considering that the GEDI footprint diameter
was 25 m.
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Then, the best position (i, j) of the globe matching serves as the initial position of
the local matching. In the process of local optimization, the footprints’ positions are
dynamically adjusted using the simplex optimization method [33]. The main idea of the
simplex algorithm is to calculate the objective function to maximize SimiCoef, calculate
the corresponding function value of the objective function at certain position, then sort
the function value, and continuously iteratively replace the element with the smallest
function value until the simplex converges near the maximum value of the function [34].
The algorithm calculation process is as follows:

(1) Initialization: Determine the initial feasible basis and the initial feasible solution, and
construct the initial simplex.

(2) Optimality test: The coefficient of the non-basis variable is σ of the test number.
If one of the following two conditions is met, the calculation is stopped and the
current feasible solution is output as the optimal solution. Condition 1 is in the row
corresponding to the objective function of the current table, all the σj values are non-
positive, and Condition 2 is the number of iterations exceeding the pre-set threshold.
Otherwise, go to the next step.

(3) Convert from one feasible solution to another feasible solution with a larger target
value and form a new simplex:

i. Determine the variables that are swapped into the basis. Select σj > 0, the
corresponding variable xj, as the substitution variable when there is more
than one test number greater than 0 (generally, one should select the largest
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test number, that is, σk = max{σ j |σ j > 0
}

and its corresponding xk as the
substitution variable.

ii. Identify swapped-out variables. Calculate and select θ according to Equation (2),
and select the smallest corresponding basis variable as the swapped-out variable.

θL = min
{

bi
aik
| aik > 0

}
(2)

where bi is the right-hand system item in the current table, and aik is the
coefficient of the variable k in the ith constraint.

iii. Replace the swapped-out variable in the base variable with the swapped-in
variable xk to obtain a new base. A new basis can be found for a new feasible
solution, and a new simplex can be obtained accordingly.

(4) Repeat steps 2 and 3 until the calculation is complete.

The best-matched footprint position is generated in two situations. Case 1 is where
we obtain the optimal solution based on the judgment criteria of the simplex algorithm,
while Case 2 is where the number of program iterations reaches the maximum and the last
solution is considered the output [35]. In brief, globe matching tends to find the optimal
result area and the best footprint location after local matching. Finally, we obtain the best-
matched position through the system error coefficient in the x and y directions. The distance
between the original and final positions is the geolocation error. Due to the characteristics
of both brute-force search and local optimization, this experimental procedure can achieve
centimeter-level positioning accuracy of horizontal geolocation.

2.4. The Validation of the Geolocation Error Position Correction

After evaluating the geolocation error of the GEDI footprints, we can correct the
geolocation error using the system error coefficient. Additionally, we need to validate
the correction result. We calculate and compare the average SimiCoef of the original and
corrected locations.

The validation part consists of 4 steps. In Step 1, we filter complex GEDI waveforms by
“mode” values greater than two considering that the waveform matching method is suitable
for areas with complex terrain distribution. In Step 2, these complex waveforms are divided
into a training set and a test set according to whether they are involved in the calculation of
the geolocation or not. In Step 3, after converting the footprint’s spatial coordinates from the
WGS84 geographic coordinate system to the local projection coordinate system, we apply the
error distance in the x and y directions from Section 2.3. In the final step, we calculate the
waveform similarity coefficients at the original position and the ideal position, respectively.

3. Results
3.1. Footprint Geolocation Accuracy of Multi-Temporal GEDI Footprints

To evaluate the geolocation deviation of the GEDI footprints, we calculated the ge-
olocation error of different temporal GEDI footprints. The results of the geolocation error
assessment of the GEDI (Table 3) explain the geolocation error calculated by the waveform
matching method for the GEDI footprints. The error table includes the distance of the
horizontal position system error, mainly in the X/Y direction. There are 22 Temporal
GEDI footprints in total. The error distribution range is large (3.04–65.03 m) and relatively
discrete, and about 72% (16/22) of the errors are concentrated between 3 m and 19 m. The
difference between the median value (13.43 m) and the average value (20.91 m) of the error
is 7.48 m.
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Table 3. The geolocation error distances of multi-temporal GEDI footprints.

Temporal GEDI
Footprints ID

Error in X
Direction (m)

Error in Y
Direction (m)

Error Distance
(m)

ABBY14342 −20.00 11.00 22.83
ABBY14403 58.41 −28.58 65.03
DSNY15747 3.30 −0.86 3.41
DSNY3179 8.06 −16.41 18.28
DSNY4105 2.18 2.12 3.04
LIRO9049 −7.73 12.27 14.50

MCRA12561 5.56 −17.70 18.55
MCRA14845 15.42 −0.65 15.43
MCRA16888 4.57 −2.75 5.34
SOAP13533 −3.77 2.11 4.32
SOAP13594 −0.73 9.04 9.06
SOAP13655 4.31 6.36 7.68
SOAP2076 −4.51 13.19 13.94
SOAP4336 12.47 3.39 12.93
TEAK2279 3.91 10.96 11.64
TEAK3756 −2.41 −12.48 12.71
TEAK4046 −49.27 5.64 49.59
TEAK4264 −6.88 −3.88 7.89
WLOU3271 58.02 28.96 64.85
WREF14403 35.70 35.55 50.38
WREF3482 −0.83 10.51 10.55
WREF4065 −24.68 28.96 38.05

The results of all the GEDI footprint corrections are stratified according to the GEDI
footprint attribute “degrade_flag” value, separately for the good orbit and weak orbit
parts, as shown in Table 4 (the good orbit means the temporal GEDI footprints are full
of footprints with “degrade_flag” equal to 0; otherwise, the weak/degradation orbit is
given). From Table 4 and Figure 4, the good orbit has a smaller error distance and a more
concentrated distribution (9.46 m ± 3.83 m) than the weak orbit (30.45 m ± 21.22 m). By
stratifying the GEDI footprint error results according to data time (night/day), the daytime
GEDI footprint error distance tends to be larger, but both have a ratio of 3/12 (night)
and 2/10 (day) with a large error (>30 m) in the temporal data. The error of nighttime
footprints is more unstable, but the mean value is slightly less (night: 19.46 m ± 21.10 m,
day: 22.68 m ± 15.98 m). Additionally, we find that the night and good orbit types account
for 80% and 67% of the GEDI footprints with errors less than 13.43 m (the median value of
multi-temporal GEDI footprints), while 20% and 33% of the large-error (error > 13.43 m)
part respectively from Figure 4a. From Figure 4b, we find that the average values of the
good orbit and nighttime GEDI footprint geolocation errors are smaller than the weak orbit
and daytime errors, respectively.

Table 4. The statistical geolocation error distance.

All Good Orbit Weak Orbit Night Day

Mean (m) 20.91 9.46 30.45 19.43 22.68
Median (m) 13.43 9.81 20.69 8.48 16.86

Std (m) 19.01 3.83 21.22 21.10 15.96
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3.2. The Correction of GEDI Footprint Geolocation Error

We use the best position from the waveform matching method to improve the geo-
graphic location of GEDI footprints. “SimiCoef” is the waveform similarity coefficient.
“Ori_SimiCoef “ and “Cor_SimiCoef” represent the average of SimiCoef at the original and
error-corrected positions, respectively, and “Perc_SimiCoef” is equal to
(Cor_ SimiCoef−Ori_SimiCoef)/Ori_SimiCoef. Figure 3 shows a typical example of
the error correction with SimiCoef increasing.

The results show that Cor_SimiCoef is bigger than Ori_SimiCoef in all temporal GEDI
footprints. To better discuss the improvement of the waveform matching correction effect,
we divided all temporal GEDI datasets into two categories by Ori_SimiCoef. According
to the Ori_SimiCoef value, C1 (<0.80) and C2 (>0.80) are generated with a threshold of
0.80. As shown in Figure 5, regardless of the Ori_SimiCoef value, the Cor_SimiCoef value
increases. The improvement in the C1 dataset is greater than that in the C2 dataset, whether
it is the Delta value (mean value: 0.10 > 0.02) or the ratio (mean value: 21.52 > 2.30). We
believe the reason why there is a significant difference between these two types of data is
mainly related to the Ori_SimiCoef. For GEDI footprints with high Ori_SimiCoef values,
the waveform matching effect is good and the geolocation accuracy is relatively high, so it
is difficult to greatly improve the SimiCoef. However, for footprints with a poor SimiCoef
of the original position waveform, the waveform matching method can achieve a better
matching effect.

Table 5 shows the matching effects of different acquisition times and orbit qualities,
respectively. For the GEDI footprints of weak orbit quality, the mean and median values
(0.77 and 0.81, respectively) of the Cor_SimiCoef are lower than those of the GEDI footprints
with all good orbit footprints (0.87 and 0.86), and the standard deviation of the weak orbit
is larger than that of the good one (0.09 > 0.03) (Table 5). These indicate that the good
orbit footprints have better accuracy of waveform matching at the original position and the
correction method has better performance over weak orbit footprints. The Perc_SimiCoef
values and standard deviations of the weak orbit are larger than the other, which means
that the SimiCoef of the weak orbit rises higher than the other. Similarly, the waveform
similarity of daytime GEDI footprints rises higher than the nighttime ones (mean value:
20.78 > 6.32), and its performance is more stable (std value: 8.75 < 40.55). Additionally,
the Cor_SimiCoef of nighttime and daytime footprints is similar (0.82 and 0.81), but the
ratio of SimiCoef increasing is different, indicating that the waveform matching method
can improve the poor footprints to a better effect.
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Table 5. Waveform similarity coefficient (R) around orbit quality and data time.

Good Orbit
Ori_SimiCoef Cor_SimiCoef Perc_

SimiCoef 1 (%)
Weak Orbit

Ori_SimiCoef Cor_SimiCoef Perc_
SimiCoef (%)

Mean 0.84 0.87 4.01 0.68 0.77 20.09
Median 0.84 0.86 2.06 0.68 0.81 7.76

Std 0.05 0.03 4.10 0.15 0.09 37.41

Night
Ori_SimiCoef Cor_SimiCoef Perc_

SimiCoef (%)
Day

Ori_SimiCoef Cor_SimiCoef Perc_
SimiCoef (%)

Mean 0.78 0.82 6.32 0.72 0.81 20.78
Median 0.78 0.85 1.69 0.79 0.84 5.63

Std 0.11 0.10 8.75 0.17 0.07 40.55
1 The mean, median, and std value of Perc_SimiCoef are the statistical characteristics of the Perc_SimiCoef of all
footprints, since each footprint has a Perc_SimiCoef.

The waveform matching effect cannot be guaranteed by simply increasing the SimiCoef
value, and the waveform matching effect should also be defined by the SimiCoef value. We
believe that when the average SimiCoef of the temporal GEDI footprints dataset is greater
than a certain value, its matching works well. Otherwise, it is a poor match. We recorded
the number of temporal GEDI footprints datasets that meet the threshold at the original
and error-corrected position, respectively.

Different thresholds are shown in Table 6. The higher the SimiCoef threshold, the
fewer the temporal GEDI footprint datasets with good waveform matching effects, both in
the original position and the error-corrected position. Our waveform matching method can
improve up to 32% (7/22) of all the temporal GEDI footprint datasets from poor matching
results, corresponding to thresholds of 0.80 and 0.84. Coincidentally, the average GLAS
SimiCoef value for the best-matched position in the forest scene is 0.801 [26], which is very
close to the ‘optimal threshold’ mentioned above.
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Table 6. The different thresholds of waveform similarity coefficient (R) and the number of temporal
GEDI footprint datasets that meet the threshold.

Filtered Multi-Temporal GEDI Footprint Datasets

Original
Position

Best-Matched
Position Difference 1

No threshold 22 22 0

SimiCoef
threshold

0.50 21 22 1
0.60 20 21 1
0.65 18 21 3
0.75 15 18 3
0.80 10 17 7
0.84 6 13 7
0.85 5 11 6
0.86 4 6 2
0.87 2 4 2
0.90 2 2 0

1 ‘Difference’ = ‘Best-matched Position’ − ‘Original Position’.

4. Discussion
4.1. The Correction Effect on Individual Footprints

Ideally, the correction result will make all footprints’ SimiCoef values increase after
error correction. However, the average SimiCoef rising does not mean that the SimiCoef
increases in every footprint. Therefore, we evaluated the correction effect on individual
footprints by calculating the ratio of the increasing SimiCoef of individual waveforms as
the credibility of the error correction result.

Table 7 describes all the used waveforms in the section. The geolocation error was
calculated using the training set (part of the waveforms with high quality based on the
“sensitivity” attribute), so the test set (the part of the waveforms not involved in the
geolocation error calculation) could be used to validate the method. The number of sample
complex waveforms involved in the calculation of the geolocation error was about 90% of
the overall number of the region. All_valid_ratio, train_valid_ratio, and test_valid_ratio
were used to represent the ratio of the increasing SimiCoef of individual waveforms
after position correction. For all the GEDI footprints, the mean value and median of
all_valid_ratio are 0.65 and 0.67, respectively. We consider the corrected position to be
effective for 66% (the average of the mean value of 0.65 and the median of 0.67) of individual
GEDI footprints.

Table 7. The number of temporal GEDI footprints used in training and validation.

Temporal GEDI
Footprints ID

Total Complex Waveform Training Set Test Set

All Valid Ratio All Valid Ratio All Valid Ratio

ABBY14342 166 131 0.79 154 122 0.79 12 9 0.75
ABBY14403 810 420 0.52 795 412 0.52 15 8 0.53
DSNY15747 458 245 0.53 454 243 0.54 4 2 0.50
DSNY3179 499 338 0.68 489 330 0.67 10 8 0.80
DSNY4105 93 60 0.65 89 56 0.63 4 4 1.00
LIRO9049 210 162 0.77 192 148 0.77 18 14 0.78

MCRA12561 130 89 0.68 115 76 0.66 15 13 0.87
MCRA14845 292 207 0.71 284 201 0.71 8 6 0.75
MCRA16888 106 57 0.54 99 54 0.55 7 3 0.43
SOAP13533 1058 786 0.74 1010 751 0.74 48 35 0.73
SOAP13594 1146 686 0.60 1085 642 0.59 61 44 0.72
SOAP13655 373 289 0.77 361 279 0.77 12 10 0.83
SOAP2076 1317 906 0.69 1311 903 0.69 6 3 0.50
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Table 7. Cont.

Temporal GEDI
Footprints ID

Total Complex Waveform Training Set Test Set

All Valid Ratio All Valid Ratio All Valid Ratio

SOAP4336 74 38 0.51 62 34 0.55 12 4 0.33
TEAK2279 475 316 0.67 471 314 0.67 4 2 0.50
TEAK3756 1307 835 0.64 1217 771 0.63 90 64 0.71
TEAK4046 1397 714 0.51 547 290 0.53 850 424 0.50
TEAK4264 1391 807 0.58 517 314 0.61 874 493 0.56
WLOU3271 220 125 0.57 200 112 0.56 20 13 0.65
WREF14403 331 257 0.78 324 254 0.78 7 3 0.43
WREF3482 1733 1181 0.68 1700 1163 0.68 33 18 0.55
WREF4065 478 370 0.77 396 308 0.78 82 62 0.76

Figure 6 shows the distribution of three ratio values. It is important to know that
the line at 50% is the split line for whether the waveform matching method works; when
50% of the individual footprints with Ori_SimiCoef are greater than Cor_SimiCoef, this
means most individual waveform similarities are not improved, and the error-corrected
positions are neither better nor worse. The median and mean values of all_valid_ratio,
train_valid_ratio, and test_valid_ratio are similar, and the performance of the total set is
close to that of the training set (Figure 6). However, the test set shows poor performance
against the bigger variance of test_valid_ratio (the standard deviation of train_valid_ratio
and test_valid_ratio is 0.09 and 0.17).
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Therefore, the correct position can make the SimiCoef values of 66% of all laser
waveforms increase, indicating effective improvement. Due to the large proportion (≈90%)
of training sets used in this experiment, the poor performance of some test sets did not
greatly affect the overall data performance.

The waveform matching method uses multiple waveforms to calculate the system
error, but the effect on improving individual footprints’ waveform similarity in this study
is effective for 66%. One reason for this situation is that the random error is not solved. One
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way to calculate the random error is to move one waveform at a time [23]. Future research
can correct random errors after the system error is corrected.

4.2. The Limitations of the Waveform Matching Method

The waveform matching method is based on comparing the real receiving waveform
with the reference waveform of spaceborne footprints and determining the best position us-
ing the maximum waveform similarity coefficient. As mentioned in the previous study, the
“best-matched position” may not be the actual position due to factors such as the accuracy
of the reference data, the waveform simulation method, etc. [26] The waveform simulation
method has been widely used in the calibration of waveform processing algorithms for the
GEDI mission and the quality assessment of the real receiving full waveform. This study
used centimeter-level point-cloud data for reference waveform simulation, which greatly
increases the credibility of the study findings.

However, some limitation factors should be addressed in future research.
Firstly, the waveform matching method is a statistical method in essence. The accuracy

of the correct position is related to the training waveform selected and the point-cloud
data point density. When selecting the training set, we only use a single threshold value
in this study. Theoretically, the selected waveforms need to be representative, whether
in waveform complexity or background noise, and follow a certain waveform sample
selection ratio; a ratio too large or too small may lead to the calculation result not being
ideal. Due to the difference in land cover type and flight altitude, the point density of
reference point-cloud data varies from 9 to 60 points/m2. Low point density (<2 pts) may
result in low ground elevation accuracy [28], but the influence on the waveform simulation
is still unknown. How the two factors change the shape of the reference waveform requires
further investigation.

Secondly, the method only considers the waveform of LiDAR without addressing the
specific components of system error, which makes the correction result less convincing. In
the process of spaceborne laser ground positioning, the accuracy of the laser pointing and
the range error have a great influence on horizontal geolocation accuracy, and it is also
an important part of the system error [11]. The terrain matching method has been used
for ICESat-1/GLAS [22] and ICESat-2/ATLAS [7,36] system error correction, albeitwith
rough accuracy. Additionally, the two-step geolocation error correction method of terrain
waveform matching has been applied to a full-waveform laser altimeter GF-7 [37], and this
new method corrects the 10 m system error. The combination of terrain and waveform
matching on the GEDI footprint has great potential.

Thirdly, the acquisition time difference between GEDI and the reference data is one
of the factors that causes non-matching results. In this study, the acquisition time of all
the ALS datasets and multi-GEDI footprints is during a non-deciduous season, except
at the MCRA site. At the MCRA site, we obtained ALS data in summer (2021-07) and
MCRA16888 GEDI footprints in winter (2021-12). However, for the MCRA area of evergreen
coniferous forest, seasonal differences do not cause a large difference in tree shape, and
discrete-return LiDAR and waveform LiDAR have similar three-dimensional performance
in winter coniferous forest mapping [38]. Even in snowy scenes, the different wavelengths
of the two data sources (GEDI 532 nm and ALS 1064 nm) can only cause a 5% difference
in receiving echo energy, and cannot change the matching effect to a large extent [39].
However, the waveform matching effect of broadleaf forest area has not been discussed in
detail, especially the differences between deciduous and non-deciduous seasons.

5. Conclusions

The high geolocation quality of GEDI is a basic and important requirement for good
data application, including forest height inversion and aboveground biomass estima-
tion [40]. This study assesses the geolocation error of multi-temporal GEDI footprints using
the method of waveform matching and validates the results of error correction. Overall, we
mainly find some interesting results in the study. Firstly, the geolocation error of different
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temporal GEDI footprints ranges from 3.04 m to 65.03 m. The maximum is close to the
GEDI orbit positioning accuracy of 60 m. Next, the good orbit quality performs better
than the weak orbit, with an average value of 9.46 m, and the nighttime and daytime foot-
prints perform similarly. Moreover, using 0.80 (or 0.84) as the threshold for measuring the
matching effect, the waveform matching method can improve 32% of the temporal GEDI
footprint datasets from poor matching. Additionally, in the validation part, waveform
matching has a greater effect on low waveform similarity (waveform similarity coefficient
value < 0.80) than high waveform similarity (>0.80). After system error correction of the
individual footprints, about two-thirds of the waveform similarity improved, and the other
third decreased.

We suggest that good-orbit-quality GEDI footprints should be preferred in future
studies. As for acquisition time, nighttime GEDI data have been repeatedly proven to
exhibit higher performance in height information extraction [41,42]. This mainly results
from the low background noise of the waveform algorithm but it does not show a great
effect on geolocation error. In a future study of geolocation error correction, we hope
to study the influence of waveform sample selection and point-cloud point density on
simulated waveforms; combine the terrain matching and waveform matching methods
to improve the physical interpretation of system errors; increase the solutions to random
errors; and explore the seasonal differences in matching effect in broadleaf forests.
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