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Abstract: With deep learning-based methods growing (even with scarce data in some fields), few-
shot remote sensing scene classification (FSRSSC) has received a lot of attention. One mainstream
approach uses base data to train a feature extractor (FE) in the pre-training phase and employs novel
data to design the classifier and complete the classification task in the meta-test phase. Due to the
scarcity of remote sensing data, obtaining a suitable feature extractor for remote sensing data and
designing a robust classifier have become two major challenges. In this paper, we propose a novel
dictionary learning (DL) algorithm for few-shot remote sensing scene classification to address these
two difficulties. First, we use natural image datasets with sufficient data to obtain a pre-trained
feature extractor. We fine-tune the parameters with the remote sensing dataset to make the feature
extractor suitable for remote sensing data. Second, we design the kernel space classifier to map the
features to a high-dimensional space and embed the label information into the dictionary learning
to improve the discrimination of features for classification. Extensive experiments on four popular
remote sensing scene classification datasets demonstrate the effectiveness of our proposed dictionary
learning method.

Keywords: remote sensing scene; dictionary learning; few-shot image classification

1. Introduction

Remote sensing is an advanced and practical comprehensive type of observation
technology. It obtains ground object information through observation at high altitudes and
systematically analyzes it. Remote sensing scene classification (RSSC) is widely used in
resource investigation [1], urban planning [2], land use and cover [3], and environmental
monitoring [4]. Deep learning techniques, particularly convolutional neural networks
(CNNs) [5], have gained popularity in recent years, and they are now the most advanced
remote sensing image classification solutions available [6–9]. However, deep learning-
based methods are unable to be incompetent without large-labeled data; the extreme lack
of data and the high cost of data acquisition limit the application of deep learning-based
models in remote sensing. Few-shot learning (FSL) [10–12], which has recently gained
popularity in place of conventional classification methods, attempts to develop a model
that can swiftly learn new concepts from a small number of labeled samples. In this paper,
few-shot learning was ’demonstrated’ to RSSC to solve the problem of insufficient labeled
data and improve classification efficiency.

Researchers usually study the few-shot remote sensing scene classification in the
decoupling mode. Specifically, the classification task includes two stages. (1) The pre-
training stage employs base data to generate a feature extractor based on CNN. (2) The
meta-test stage utilizes the trained feature extractor to extract the features of the novel data
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and then designs a classifier to recognize the unlabeled samples. Compared with traditional
few-shot image classification, remote sensing data are more scarce; thus, few-shot remote
sensing scene classification faces two severe challenges.

The first challenge we need to address is how to obtain a feature extractor suitable for
remote sensing images. To deal with the few-shot natural image classification task, researchers
propose using pre-training or fine-tuning strategies to improve the feature extraction ability
of the model, which requires the use of a large amount of base data in the pre-training stage
to generate a CNN-based feature extractor. However, due to the scarcity of data in remote
sensing datasets, using remote sensing data directly for model training leads to an overfitting
problem. To address this problem, we employ another few-shot natural image dataset with
many data (e.g., tiered-ImageNet) to generate a feature extractor during the pre-training stage.
However, due to the large data gap between the remote sensing dataset and the few-shot
natural image dataset, there is a large domain transfer, leading to the feature extractor based
on the dataset of few-shot images not adapting to remote sensing data. Therefore, we fine-tune
the parameters of some layers of the network with the remote sensing dataset of interest to
make the feature extractor suitable for remote sensing data classification. In addition, we
design a feature extractor by combining self-supervised rotation loss with classification loss to
enhance the generalization performance of extracted features.

The second challenge involves designing a robust classifier with a few labeled samples
in the meta-test stage. Since there is a domain transfer between the novel data and the base
data, the features of the novel data extracted from the feature extractor lack discriminative
information, which is called the “negative transfer“ problem. In addition, due to the
spatial resolution limitations of remote sensing images, there may be noise interference in
the features, which leads to the failure of traditional classifiers to effectively classify. We
illustrate the t-SNE visualization of features in Figure 1. As shown in Figure 1, different
categories are more dispersed, while feature embeddings within the same category are
more concentrated. However, a traditional linear classifier cannot adequately distinguish
among feature embeddings of test samples that cross each other in spatial distributions.
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Figure 1. The t-distributed stochastic neighbor embedding (t-SNE) visualization; (a,b) indicate the
training features and the test features of the NWPU-RESISC45 dataset, respectively; (c,d) represent the
training features and test features of the RSD46-WHU dataset, respectively.
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In this paper, we propose a novel dictionary-learning algorithm for few-shot remote
sensing scene classification to attack the existing challenges. First, we adopt a novel pre-
training combined with fine-tuning strategy. We first train a feature extractor with the few-shot
natural image dataset and then fine-tune the parameters of some layers of the network with
the remote sensing dataset of interest to make the feature extractor suitable for remote sensing
data classification. The pre-training model extracts the prior knowledge of the training set,
and this high-order model can be used for feature extraction of various tasks. In the process of
fine-tuning the model, the last layers are altered to encode specific features of remote sensing
data, while the earlier layers are kept since they encode more general features. In addition, to
enhance the generalization performance of extracted features, we design a feature extractor
by combining self-supervised rotation loss with classification loss. Then, we suggest using a
kernel space classifier instead of the traditional linear classifier to map the sample features
into high-dimensional kernel space to solve the problem of linear inseparability. To solve
the “negative transfer” problem, we propose a dual form of dictionary learning and embed
label information into dictionary learning, which improves the discrimination of features. The
framework of the method is shown in Figure 2.

Pre-training Stage

fine-tune

Support

Query

crossroadsairport

beach

?

weights 

sharing

airport

Kernel Space 

Classifier

Meta-test Stage

tiered-ImageNet 

dataset

remote sensing 
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Figure 2. The framework of the proposed DL method consists of two stages: (1) the pre-training
stage uses the tiered-ImageNet dataset to train a feature extractor, and then employs a remote sensing
dataset to fine-tune the extractor. (2) The meta-test stage inputs the support set and the query set
samples into the trained feature extractor to obtain the embedding features. We use the support
features to train the kernel space classifier and predict the category of the query sample.
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The main contributions of this paper are as follows.

• We designed a kernel space classifier for the few-shot remote sensing scene classifica-
tion task, which introduces the kernel space into dictionary learning and improves the
classification performance.

• We propose a dual form of dictionary learning and embed label information into
dictionary learning, improving feature discrimination. Further experiments show that
the proposed method can effectively solve the problem of “negative transfer”.

• The proposed method was evaluated on four remote sensing datasets—NWPU-
RESISC45, RSD46-WHU, UC Merced, and WHU-RS19. It demonstrated satisfactory
performance compared with the state-of-the-art methods.

2. Related Work
2.1. Remote Sensing Scene Classification

Remote sensing scene classification is a research hotspot. Existing RSSC methods
can be divided into three categories: (1) Low-level feature descriptors. These meth-
ods distinguish remote sensing scenes by low-level visual features, such as spectrum,
color, texture, and structure. Local descriptors, e.g., the histograms of oriented gra-
dients (HOG) [13], scale-invariant feature transform (SIFT) [14], and local binary pat-
terns (LBPs) [15], are widely used in modeling local changes of structures in remote
sensing images due to their invariability to geometric and photometric transformations.
(2) Mid-level visual representations. These methods combine extracted local visual features
with higher-order statistical patterns to develop a holistic scene representation. Because of
their simplicity and efficiency, the bag-of-visual-words (BovW) model [16] and its variants
have been widely used in RSSC. (3) High-level vision information. These methods rely
on deep neural networks. They adopt multi-stage global feature-learning structures to
learn image features adaptively and classify remote sensing scenes as end-to-end problems,
further improving the classification performance by multi-feature fusion, multi-model
fusion [17], and multi-decision fusion. Compared with low-level and mid-level methods,
the methods based on deep learning have become the most advanced solutions in the field
of RSSC because they can learn more abstract and discriminative semantic features [18–20].

2.2. Few-Shot Remote Sensing Scene Classification

In recent years, due to the widespread interest in few-shot learning, researchers have
applied few-shot learning to RSSC to deal with the problem of scarce remote sensing data.
Two main approaches to few-shot learning based on remote sensing are (1) optimization-
based methods. These methods consider the fact that it is challenging for ordinary gradient
descent methods to fit in few-shot scenarios, so the task of few-shot classification is ac-
complished by adjusting the optimization method. MAML [21], reptile [22], and LEO [23]
are all FSL methods based on optimization. Dalal, A. A. et al. [24] utilized MAML for the
RSSC task and achieved satisfactory results With little remote sensing data. (2) Metric-
based methods. The principle of these methods is to build task-specific distance metrology
functions independently through different tasks. The Siamese Network [25], matching
networks [26], prototypical networks [10], and relation networks [27] are all FSL methods
based on the metric. Li, L. et al. [28] suggested a matching network-based method for
FSRSSC. The prototypical network was used for RSSC by Alajaji, D., Zhang, P. et al. [29,30],
and achieved excellent performance.

2.3. Negative Transfer

Pre-trained feature extraction models are essential toward improving few-shot classifi-
cation performance. Due to the scarcity of remote sensing data, RSSC tasks usually utilize
pre-trained models for transfer learning [29]. However, the pre-trained models do not
adapt well to remote sensing data due to large data gaps. We call this a “negative transfer”
problem, which seriously affects classification performance. To address the problem, a
learning-based few-shot approach was proposed by Dvornik, N. et al. [31]. It integrates
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multiple pre-trained models and calculates the final result by voting or averaging based
on the output of the models. In order to eliminate the confounding, Yue, Z. et al. [32] pro-
vided a causality-based explanation of the causes of confounding introduced in pre-trained
knowledge and carried out feature-based and class-based modifications. Shao, S. et al. [33]
employed the subspace approach to project the multi-head features into a uniform space
to acquire low-dimensional representation. The negative transfer problem is somewhat
mitigated by integrating the derived principal component features to produce more dis-
criminative information.

3. Problem Setup
3.1. Problem Definition

In this paper, the few-shot remote sensing scene classification task contains two stages:
the pre-training stage and the meta-test stage.

In the pre-training stage, we employ base data Dbase = {(xi, yi)}N
i=1 to train a feature

extractor based on CNN, where xi indicates the ith sample, yi denotes the corresponding
label, and N represents the total number of base data. Then we fix the parameters of the
feature extractor.

In the meta-test stage, we use the trained feature extractor to extract the features of
the novel data, and then design a classifier to recognize the test samples. The novel
data Dnovel = {Ti}M

i=1 consists of a series of meta-tasks, where Ti represents the ith
meta-task and M is the sum of novel data. Notably, the set of categories in Dbase and
Dnovel are disjoint. Each meta-task contains support set S and query set Q. Specifically,
S = {(xi, yi)|i = 1, 2, · · ·, C× Ns} represents the support set, where C denotes the class num-
ber, Ns represents the number of samples for each class. Q =

{
(xi, yi)|i = 1, 2, · · ·, C× Nq

}
is the query set, where Nq denotes the sample number in each class. In this paper, we define
C as 5, and Ns as 1 or 5.

3.2. Kernel Space Classifier

In prior works, linear classifiers were used to complete classification tasks, such
as ICI [12] and MetaOptNet [34]. However, by analyzing meta-training and meta-test
data t-SNE visualizations, we found that the novel feature is not highly discriminative
and linearly indivisible due to the “negative transfer” problem. If we adopt the linear
classifier directly, the performance will not be well. We adopt two strategies to improve
existing problems. Firstly, in order to improve the discriminability of features, we introduce
feature reconstruction errors based on the linear classifier to map sample features to a
more discriminative space, which can alleviate the problem of “negative transfer”. At the
same time, the linear indivisible features of low dimensional space are often mapped to the
higher dimensional space, which will become linearly divisible. Therefore, we introduce
the dual form of dictionary learning to complete the classification of new class samples in
the kernel space, which can increase the linear separability of new class samples.

In this paper, we use a kernel space classifier; we map the sample feature space to
the high-dimensional kernel space, then carry out the classification task. Denote that the
training sample matrix X = [X1, X2, . . . , XC] ∈ RD×N , where N is the number of training
samples, D represents the dimension of sample features, C is the number of training
sample categories, and Xc denotes the training sample features of class c. Supposing that
Y ∈ RC×N is the corresponding one-hot label matrix. We define a feature mapping function
φ: RD → RE (D � E), which transforms the initial feature space into a high-dimensional
kernel space: X → φ(X).

We combine the reconstruction and classification errors to form a unified objective
function and introduce the `-norm regularization term to enhance the sparsity. The objective
function is defined as follows:
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arg min
W,V,S

‖φ(X)− φ(X)VS‖2
H + 2α‖S‖l1 + η‖Y−WS‖2

F

s.t.‖φ(X)V•k‖H ≤ 1, ‖W•k‖2 ≤ 1, ∀k = 1, 2, . . . , K.
(1)

where V ∈ RN×K and φ(X)V is the dual form of the dictionary. K is the size of the
dictionary. S ∈ RK×N is the corresponding sparse code. W is a classifier learned from the
given label matrix Y. (•)•k denotes the kth column vector of the matrix (•). α and η are the
regularization parameters to control the trade-off between fitting goodness and sparseness
and balance the classification contribution to the overall objective, respectively. Then we
optimize the objective function.

(1) When V and S are fixed, Equation (1) can be rewritten as:

f (W) = arg min
W
‖Y−WS‖2

F

s.t.‖W•k‖2 ≤ 1, ∀k = 1, 2, . . . , K.
(2)

We solve this problem by introducing Lagrangian, and the Equation (2) can be rewritten as:

L(W, γk) = ‖Y−WS‖2
H +

K

∑
k=1

λk(1− ‖W•k‖F) (3)

Let ∂L(W)
∂W•k

= 0, W•k can be obtained as:

W•k =
YST

k• − W̃kSST
k•∥∥YST

k• − W̃kSST
k•
∥∥

2

(4)

where W̃k =

{
W•p, p 6= k

0, p = k
, (•)k• is the kth row vector of matrix (•).

(2) When W and S are fixed, Equation (1) can be rewritten as:

f (V) = ‖φ(X)− φ(X)VS‖2
H

s.t.‖φ(X)V•k‖H ≤ 1, ∀k = 1, 2, . . . , K.
(5)

We solve this problem by introducing Lagrangian, and Equation (5) can be rewritten as:

L(V, λk) = ‖φ(X)− φ(X)VS‖2
H

+
K

∑
k=1

λk(1− ‖φ(X)V•k‖F)
(6)

Let ∂L(V,λk)
∂V•k

= 0, we obtain the solution of V•k as:

V•k =
ST

k• − [ṼkSST ]•k
[SST ]kk − λk

(7)

where Ṽk =

{
V•p, p 6= k

0, p = k
. Substituting V•k into Equation (6), and only keeping the

term, including V•k, we obtain:

L(V, λk) =
(ST

k• − [ṼkSST ]•k)
Tk(X, X)(ST

k• − [ṼkSST ]•k)

λk − [SST ]kk

+ λk

(8)
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where k(X, X) = φ(X)Tφ(X) represents the kernel function. Then, we obtain λk and substi-
tute it into V•k,

V•k =
ST

k• − [ṼkSST ]•k

±
√
(ST

k• − [ṼkSST ]•k)Tk(X, X)(ST
k• − [ṼkSST ]•k)

(9)

We obtain two solutions with ± signs from Equation (9). The sign of V•k is not vital
because it can be easily absorbed by converting between S•k and −S•k.

(3) When W and V are fixed, we introduce an auxiliary variable Z, and the Equation (1)
can be rewritten as:

f (S, Z, L) = ‖φ(X)− φ(X)VS‖2
H + η‖Y−WS‖2

F

+ 2α‖Z‖l1 + LT(S− Z) + ρ‖S− Z‖2
F

(10)

where ρ > 0 is the penalty parameter, and L = [l1, l2, ..., lN ] ∈ RK×N is the augmented La-
grange multiplier. After fixing W and V, we initialize the S0, Z0, and L0 to be zero matrices.

We fix L and Z and update S. Equation (10) can be rewritten as follows:

f (S) = ‖φ(X)− φ(X)VS‖2
H + η‖Y−WS‖2

F

+ LT(S− Z) + ρ‖S− Z‖2
F

(11)

Let ∂ f
∂S = 0, the closed-form solution of S is:

Sm+1 = [VTk(X, X)V + ηWT
mWm + ρI]−1

× [VTk(X, X) + ηWT
mY + ρZm − Lm]

(12)

where m(m = 0, 1, 2, . . . ) denotes the iteration number and (•)m means the value of matrix
(•) after mth iteration.

We fix S and L and update Z. Equation (10) can be rewritten as follows:

f (Z) = +2α‖Z‖l1 + LT(S− Z) + ρ‖S− Z‖2
F (13)

The closed-form solution of Z is:

Zm+1 = max{Sm+1 +
Lm

ρ
− α

ρ
I, 0}

+ min{Sm+1 +
Lm

ρ
+

α

ρ
I, 0}

(14)

where I is the identity matrix and 0 is the zero matrix.
We fix S and Z and update the Lagrange multiplier L by the gradient descent method:

Lm+1 = Lm − θ(Sm+1 − Zm+1) (15)

In the testing stage, the constraint terms are based on l1-norm sparse constraint. Given
the test sample feature xt ∈ RD×1. After mapping it to kernel space, we exploit the learned
dictionary for fitting to obtain the sparse codes st. Then, we use the trained classifier W to
predict the label of xt by calculating max{Wst}. The procedure of the proposed dictionary
learning method is shown in Algorithm 1.
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Algorithm 1 Dictionary learning

Input: X ∈ RD×N , Y ∈ RC×N , α, η, θ, K
Output: S ∈ RK×N , W ∈ RC×K, V ∈ RN×K

1: Mapping features X ∈ RD×N to the kernel space φ(X) ∈ RE×N

2: Initial Z0, L0, S0 ← zeros(K, N)
3: Initial W0 ← rand(C, K), V0 ← rand(N, K)
4: W•k =

W•k
‖W•k‖2

, V•k =
V•k
‖V•k‖2

, (k = 1, 2, ..., K)
5: for m = 0 to maxiter do
6: Using Equation (12) to update Sm+1
7: Using Equation (14) to update Zm+1
8: Using Equation (15) to update Lm+1
9: for k = 0 to K do

10: Using Equation (4) to update (W•k)m+1
11: Using Equation (9) to update (V•k)m+1
12: end for
13: end for
14: return S, W, V

4. Experiments and Results
4.1. Datasets

In this paper, we employ the tiered-ImageNet [35] dataset to obtain the pre-trained model,
and evaluate the proposed DL method on four datasets of remote sensing images, includ-
ing NWPU-RESISC45 [36], RSD46-WHU [37,38], UC Merced [16], and WHU-RS19 [39,40].
Figure 3 demonstrates some scenes of the few-shot remote sensing scene classification
datasets and the details of the datasets are as follows:

The tiered-ImageNet dataset is a subset of the ILSVRC-12 dataset, which contains
608 classes and each class has 600 images with a size of 84× 84. We divide tiered-ImageNet
into 3 sections. Specifically, the base set contains 351 classes for meta-training, the vali-
dation set contains 97 classes for meta-validation, and the novel set contains 160 classes
for meta-test.

The NWPU-RESISC45 dataset is proposed by Cheng et al. [36], and 45 classes with
700 remote sensing scene images in each class consist of it. The dimension of each of
these samples is 256× 256 pixels. We follow the split introduced in prior work [30], to
divide NWPU-RESISC45 into 25 classes for meta-training, 8 classes for meta-validation,
and 12 classes for meta-test.

The RSD46-WHU dataset comes from Tianditu and Google Earth and contains
46 classes with 428–3000 images per class, for a total of 117,000 images. The ground
resolution of most classes is 0.5 m, and the others are about 2 m. We split the 46 classes into
26, 8, and 12 classes for meta-training, meta-validation, and meta-test.

The UC Merced dataset includes a total of 2, 100 images from 21 scenarios, each
containing 100 images 256× 256 pixels in size. The original image was downloaded by
the USGS from national maps in various parts of the country. Based on the division of
previous work [28], the UC Merced dataset is divided into 10, 6, and 5 for meta-training,
meta-validation, and meta-test, respectively.

The WHU-RS19 is a dataset of satellite images exported from Google Earth, which
contains 1005 images divided into 19 classes of scenes in high-resolution satellite imagery.
Each class has about 50 images of 600-pixel size. Following the split setting introduced in
prior work [28], we divided it into 9 classes for meta-training, 6 classes for meta-validation,
and 5 classes for meta-test. The details of the datasets are shown in Table 1.
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Table 1. Category information of datasets.

Dataset Pre-Training Meta-Validation Meta-Test

tiered-ImageNet 351 97 160
NWPU-RESISC45 25 8 12

RSD46-WHU 26 8 12
UC Merced 10 6 5
WHU-RS19 9 6 5

(a)

chickadee greyhound telephone yawl airship

(b)

beach forest railway cloud island

(e)

park parking pond river viaduct

(d)

buildings freeway harbor overpass river

(c)

bare land building dock graff railway

Figure 3. Example samples of the five datasets used in this paper. (a) tiered-ImageNet, (b) NWPU-
RESISC45, (c) RSD46-WHU, (d) UC Merced, (e) WHU-RS19.

4.2. Implementation Details

The implementation details are presented in this section. We implemented our method
using the deep learning framework PyTorch 1.1.0 and completed the experiments with a
Tesla-V100 GPU (16G memory). In the pre-training stage, we combine the classification loss
with the self-supervised rotation loss to build a feature extractor based on the ResNet-12
network as shown in Figure 4. We used a few-shot natural image dataset (tiered-ImageNet)
to train a model as the pre-trained feature extractor. We employ stochastic gradient descent
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(SGD) as an optimizer, with a weight decay of 10−4 and a Nesterov momentum of 0.9. The
initial learning rate is set at 0.1, which is later reduced to 0.01 at the 30-epoch mark, 0.001 at
the 60-epoch mark, and 0.0001 at the 90-epoch mark. To fine-tune the pre-training model,
we select the remote sensing dataset corresponding to the classification task. We initialized
the learning rate to 0.1 and trained the model with 20 epochs. Additionally, standard data
augmentation techniques, such as color dithering, random clipping, and horizontal flipping
are applied during the pre-processing data stage.

In the meta-test stage, we use the kernel space classifier to complete the classification.
In Equation (1), we fix parameter α as 0.15 and η as 1.0. In Equation (15), the gradient
descent parameter θ is 0.5. We use three different kernels: linear kernel (k(x, y) = xTy),
poly kernel (k(x, y) = (1 + xTy)p), and RBF kernel (k(x, y) = exp(−γ‖x− y‖2)). Here, we
set p = 1 and γ = 2. Following the FSL experimental setting, the performance is evaluated
in the 5-way 5-shot case or 5-way 1-shot case with 15 query samples.

Block 1 

Block 2 

Residual Block 

Residual Block 

Residual Block 

Residual Block 

5×5 Aver Pooling

Fully Connected Layer

3×3 ConV

BatchNormal

LeakyReLU

3×3 ConV

BatchNormal

LeakyReLU

3×3 ConV

BatchNormal

2×2 Max Pooling

LeakyReLU

Block 1 

Block 2 

Figure 4. Schematic diagram of ResNet-12.

4.3. Experimental Results

The proposed method is compared with several state-of-the-art methods. The experi-
mental results, which are shown in Tables 2–5, demonstrate that our DL method performs
better than others on four remote sensing scene image datasets.
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Table 2. The few-shot classification accuracies with 95% confidence intervals over 600 episodes in the
NWPU-RESISC45.

Method Backbone 5-Way 5-Shot 5-Way 1-Shot

LLSR [41] ConV4 72.90 51.43
MatchingNet [26] ConV5 47.10 37.61

DLA-MatchNet [28] ConV5 81.63± 0.46 68.80± 0.70
Meta-SGD [42] ConV5 75.75± 0.65 60.63± 0.90
ProtoNet [10] ResNet12 80.19± 0.52 62.78± 0.85
MAML [21] ResNet12 72.94± 0.63 56.01± 0.87

TADAM [43] ResNet12 82.36± 0.54 62.25± 0.79
TAE-Net [44] ResNet12 82.37± 0.52 69.13± 0.83
D-CNN [45] ResNet12 53.60± 5.34 36.00± 6.31

DSN-MR [46] ResNet12 81.67± 0.49 66.93± 0.51
MetaOptNet [34] ResNet12 80.41± 0.41 62.72± 0.64

TPN [47] ResNet12 78.50± 0.56 66.51± 0.87
MetaLearning [30] ResNet12 84.66± 0.12 69.46± 0.22
RelationNet [27] ResNet12 75.78± 0.57 55.84± 0.88

RS-SSKD [48] ResNet12 86.26± 5.34 70.64± 0.22
FEAT [49] ResNet12 83.51± 0.11 68.27± 0.19

Ours ResNet12 88.32± 0.43 74.03± 0.76

Table 3. The few-shot classification accuracies with 95% confidence over 600 episode intervals in the
RSD46-WHU.

Method Backbone 5-Way 5-Shot 5-Way 1-Shot

RelationNet [27] ConV4 68.86± 0.71 55.18± 0.90
ProtoNet [10] ConV4 69.78± 0.73 52.73± 0.91
MAML [21] ConV4 71.95± 0.71 52.57± 0.89

RelationNet [27] ResNet12 69.98± 0.74 53.73± 0.95
MAML [21] ResNet12 69.28± 0.81 54.36± 1.04

ProtoNet [10] ResNet12 77.53± 0.73 60.53± 0.99
MetaOptNet [34] ResNet12 82.60± 0.46 62.05± 0.76

DSN-MR [46] ResNet12 82.74± 0.54 66.53± 0.70
D-CNN [45] ResNet12 58.93± 6.14 30.93± 7.49
TADAM [43] ResNet12 82.79± 0.54 65.84± 0.67

MetaLearning [30] ResNet12 84.10± 0.15 69.08± 0.25
RS-SSKD [48] ResNet12 85.90± 0.15 71.73± 0.25

FEAT [49] ResNet12 85.27± 0.13 71.04± 0.21

Ours ResNet12 88.19± 0.52 74.10± 0.88

Table 4. The few-shot classification accuracies with 95% confidence intervals over 600 episodes in the
WHU-RS19 dataset.

Method Backbone 5-Way 5-Shot 5-Way 1-Shot

LLSR [41] ConV-4 70.65 57.10
ProtoNet [10] ConV-5 80.70± 0.11 58.01± 0.16

MatchingNet [26] ConV-5 54.10 50.13
MAML [21] ConV-5 62.49± 0.51 49.13± 0.65

Meta-SGD [42] ConV-5 61.74± 2.02 51.54± 2.31
RelationNet [27] ConV-5 79.75± 1.19 60.92± 1.86

DLA-MatchNet [28] ConV-5 79.89± 0.33 68.27± 1.83
TPN [47] ResNet-12 71.20± 0.55 59.28± 0.72

TAE-Net [44] ResNet-12 88.95± 0.53 73.67± 0.74

Ours ResNet-12 93.33± 0.23 82.57± 0.58
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Table 5. The few-shot classification accuracies with 95% confidence over 600 episode intervals in the
UC Merced dataset.

Method Backbone 5-Way 5-Shot 5-Way 1-Shot

MAML [21] ConV-4 70.80± 0.03 51.90± 0.05
LLSR [41] ConV-4 57.40 39.47

RelationNet [27] ConV-5 61.88± 0.50 48.08± 1.67
MatchingNet [26] ConV-5 52.71 34.70

ProtoNet [10] ConV-5 69.86± 0.15 52.27± 0.20
DLA-MatchNet [28] ConV-5 63.01± 0.51 53.76± 0.62

Meta-SGD [42] ConV-5 60.82± 2.00 50.52± 2.61
ProtoNet [29] SqueezeNet 79.82± 0.07 50.45± 0.29

TPN [47] ResNet-12 68.23± 0.52 53.36± 0.77
MKN [50] ResNet-12 75.42± 0.31 57.29± 0.59

MA-deepEMD [51] ResNet-12 80.39± 0.71 61.16± 0.31
deepEMD [52] ResNet-12 77.82± 0.66 52.28± 0.25

RS-MetaNet [53] ResNet-12 76.08± 0.28 57.23± 0.56
TAE-Net [44] ResNet-12 77.44± 0.51 60.21± 0.72

Ours ResNet-12 82.63± 0.45 65.44± 0.72

In the NWPU-RESISC45 dataset, our method outperforms other methods by at least
3.27% and 2.6% in the cases of 5-way 1-shot and 5-way 5-shot, respectively. In the RSD46-
WHU dataset, our method improves by at least 0.77% and 0.47% over other methods in the
cases of 5-way 1-shot and 5-way 5-shot. In the UC Merced dataset, our method is at least
3.57% and 2.54% better than other methods in the cases of 5-way 1-shot and 5-way 5-shot.
In the WHU-RS19 dataset, our method improved by at least 8.65% and 4.91% in the cases
of 5-way 1-shot and 5-way 5-shot.

4.4. Ablation Studies
4.4.1. Analysis of Pre-Trained Feature Extractor

In this paper, we first train a feature extractor with a few-shot natural image dataset
(e.g., tiered-ImageNet) and then fine-tune the parameters of some layers of the network
with the remote sensing dataset of interest to make the feature extractor suitable for remote
sensing data classification. To verify the effectiveness of the pre-trained model with fine-
tuning strategy, we performed ablation experiments. Figure 5 reports the results in three
cases: (1) the pre-trained feature extractor in the tiered-ImageNet dataset; (2) the feature
extractor trained with corresponding remote sensing datasets; (3) the pre-trained feature
extractor with fine-tuning.

Experimental results show that the pre-trained feature extractor can perform better
when labeled remote sensing data are scarce. In the cases of 5-way 1-shot and 5-way
5-shot, the performance of the pre-trained feature extractor is inferior to those of the
NWPU-RESISC45 feature extractor and RSD46-WHU feature extractor. However, the
performances of the pre-trained feature extractor are 7.24% and 12.24% better than the UC
Merced feature extractor in the 1-shot and 5-shot cases, and 3.13% and 9.69% better than
the WHU-RS19 feature extractor in 1-shot and 5-shot cases, respectively. This is because the
UC Merced and WHU-RS19 datasets contain scarcer labeled samples, making it insufficient
to train a feature extractor with superior performance. In contrast, the pre-trained feature
extractor is trained with a data-rich tiered-ImageNet dataset, so it is able to extract more
generalized features.

In addition, there is significant improvement in using the pre-trained feature extractor
with fine-tuning. For the four remote sensing datasets, the results of the pre-trained feature
extractor with fine-tuning reach 74.03%, 74.10%, 65.44%, and 82.57% in the 1-shot case, and
88.32%, 88.19%, 82.63%, and 93.33% in the 5-shot case, respectively, performing better than
the other two types of feature extractor models. This is due to the corresponding remote
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sensing data being used to fine-tune the model parameters so that the feature extractor can
be suitable for remote sensing scene classification tasks.
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Figure 5. Influences of the pre-trained feature extractor.

4.4.2. Performance Analysis of Different Classifiers

To solve the problem of linear inseparability, we used the kernel space classifier instead
of the traditional linear classifier to map the sample features into a high-dimensional kernel
space. In this section, we perform ablation experiments to investigate the effects of different
kernel space classifiers on classification performance. We use three different kernels—the
linear kernel, the poly kernel, and the RBF kernel—and compare the results of the logistic
regression (LR) classifier and support vector machine (SVM) classifier. The experimental
results of four remote sensing datasets are listed in Tables 6–9.

It can be seen that the performance of the RBF and poly-kernel space classifier are better
than that of the linear kernel. Specifically, in the case of 5-way 5-shot, the performances
of the poly-kernel space classifier on NWPU-RESISC45 and WHU-RS19 datasets are the
best. Still, for the RSD46-WHU and UC Merced datasets, the performance of the RBF kernel
space classifier is the best. In the case of 5-way 1-shot, the RBF kernel space classifier
achieved satisfactory performance in all four datasets.

Moreover, the experimental results can prove that the classification performance of the
kernel space classifier is better than that of the traditional classifier (e.g., LR or SVM). To be
specific, for the four remote sensing datasets, the performance is improved by 0.35%∼2.71%
using the kernel space classifier in the case of 5-way 5-shot, and 1.75%∼6.47% in the case of
5-way 1-shot.
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Table 6. Comparison results of the different methods in the NWPU-RESISC dataset.

Method Backbone 5-Way 1-Shot 5-Way 5-Shot

LR ResNet-12 69.68± 0.78 87.18± 0.44
SVM ResNet-12 67.56± 0.80 86.20± 0.45

Linear ResNet-12 73.82± 0.77 87.95± 0.43
Poly ResNet-12 73.84± 0.76 88.36± 0.43
RBF ResNet-12 74.03± 0.76 88.32± 0.43

Table 7. Comparison results of different methods in the RSD46-WHU dataset.

Method Backbone 5-Way 1-Shot 5-Way 5-Shot

LR ResNet-12 70.95± 0.90 86.98± 0.53
SVM ResNet-12 68.28± 0.93 85.92± 0.55

Linear ResNet-12 73.92± 0.88 87.60± 0.51
Poly ResNet-12 73.38± 0.89 88.07± 0.50
RBF ResNet-12 74.10± 0.88 88.19± 0.52

Table 8. Comparison results of different methods in the UC Merced dataset.

Method Backbone 5-Way 1-Shot 5-Way 5-Shot

LR ResNet-12 63.69± 0.77 80.58± 0.50
SVM ResNet-12 64.00± 0.76 80.07± 0.51

Linear ResNet-12 64.70± 0.73 80.78± 0.47
Poly ResNet-12 64.88± 0.73 82.38± 0.46
RBF ResNet-12 65.44± 0.72 82.78± 0.45

Table 9. Comparison results of different methods in the WHU-RS19 dataset.

Method Backbone 5-Way 1-Shot 5-Way 5-Shot

LR ResNet-12 80.74± 0.60 93.27± 0.30
SVM ResNet-12 79.56± 0.62 92.88± 0.30

Linear ResNet-12 82.43± 0.58 92.18± 0.24
Poly ResNet-12 82.51± 0.59 93.62± 0.24
RBF ResNet-12 82.57± 0.58 93.33± 0.23

4.4.3. Influences of Different Fine-Tuning Strategies

To make the pre-trained feature extractor suitable for the remote sensing scene classifi-
cation task, we used the corresponding remote sensing dataset to fine-tune the parameters
of the pre-trained feature extractor. We believe that the pre-trained model extracts prior
knowledge from the training set, and this high-order model can be used for the feature
extraction of various tasks. In the process of fine-tuning the model, The last layers are
altered to encode specific features of remote sensing data, while the earlier layers are kept
since they encode more general features.

The ablation experiments determine the number of residual blocks with fixed pa-
rameters. Figure 6 shows the comparison of the results in four cases: (1) fine-tuning the
parameters of four residual blocks; (2) fixing the parameters of the first residual block and
fine-tuning the parameters of the remaining residual blocks; (3) fixing the parameters of the
first two residual blocks and fine-tuning the parameters of the remaining residual blocks;
(4) fixing the parameters of the first three residual blocks and fine-tuning the parameters
of the last residual block only. The experimental results in the NWPU-RESISC45 and
RSD46-WHU datasets show that the feature extractor achieves the best performance by
only fine-tuning the last residual block.
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Figure 6. Influence of different fine-tuning strategies.

4.4.4. Influence of the Objective Function Reconstruction Error

In Formula (1), the objective function includes two parts: reconstruction error and
classification error. We performed ablation experiments to explore the benefits of the
reconstruction part of the classification task. When the reconstruction error part of the
objective function is removed, and only the classification error is used to complete the
classification task, it is equivalent to a linear regression classifier (LC). The experimental
results are shown in Figure 7.

For the four remote sensing datasets, the results of our proposed method LC reach
69.68%, 70.95%, 63.69%, and 80.72% in the 1-shot case, and 87.18%, 86.98%, 80.58%, and
93.27% in the 5-shot case, respectively, achieving worse performances than the LC. The
experimental results show that the classification performance will be reduced to different
degrees when only the classification error is used, and the reconstruction error is helpful in
improving the classification performance further.
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Figure 7. The influence of objective function reconstruction error.
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4.4.5. Influence of Meta-Test Shot

To explore the influences of different shots on the performance, we fix ’the way’ as
5 and conduct experiments on four datasets in the cases of 1-shot, 2-shot, 5-shot, 10-shot,
and 15-shot, respectively. The results are shown in Figure 8. It can be seen that with the
increase of the shot, the performance of our method gradually improves, but the speed
of improvement gradually slows down, and the optimal performance is achieved at the
15-shot.
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Figure 8. Comparison of different shots for the meta-test on four datasets: (a) NWPU-RESISC45
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5. Discussion

The proposed method achieves competitive performance through experiments on
multiple benchmark datasets compared with the state-of-the-art few-shot remote sensing
scene classification methods. Although the proposed method improves the few-shot remote
sensing scene classification performance, it has the following limitation. The proposed
method has three parameters that need to be adjusted manually in the meta-test stage, and
different parameters correspond to various performances, limiting the availability of the
method. In the future, we plan to adopt the self-training method to expand and improve the
proposed method, extending the generalized few-shot remote sensing scene classification
task to the transductive few-shot remote sensing scene classification task. Moreover, we
will explore nonlinear base learners for future work, such as kernel methods.

6. Conclusions

In this paper, we propose dictionary learning for the few-shot remote sensing scene
classification method, which adopts the kernel space classifier to map the features to a high-
dimensional space and embed the label information into the dictionary learning to improve
the discrimination of features for classification. In addition, we suggest using the pre-
trained feature extractor with fine-tuning to make the feature extractor suitable for remote
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sensing data. Extensive experiments on four popular remote sensing scene classification
datasets demonstrate the effectiveness of our proposed dictionary learning method.
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