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Abstract: One of the United Nations (UN) Sustainable Development Goals is climate action (SDG-13),
and wildfire is among the catastrophic events that both impact climate change and are aggravated
by it. In Australia and other countries, large-scale wildfires have dramatically grown in frequency
and size in recent years. These fires threaten the world’s forests and urban woods, cause enormous
environmental and property damage, and quite often result in fatalities. As a result of their increasing
frequency, there is an ongoing debate over how to handle catastrophic wildfires and mitigate their
social, economic, and environmental repercussions. Effective prevention, early warning, and response
strategies must be well-planned and carefully coordinated to minimise harmful consequences to
people and the environment. Rapid advancements in remote sensing technologies such as ground-
based, aerial surveillance vehicle-based, and satellite-based systems have been used for efficient
wildfire surveillance. This study focuses on the application of space-borne technology for very
accurate fire detection under challenging conditions. Due to the significant advances in artificial
intelligence (AI) techniques in recent years, numerous studies have previously been conducted to
examine how AI might be applied in various situations. As a result of its special physical and
operational requirements, spaceflight has emerged as one of the most challenging application fields.
This work contains a feasibility study as well as a model and scenario prototype for a satellite
Al system. With the intention of swiftly generating alerts and enabling immediate actions, the
detection of wildfires has been studied with reference to the Australian events that occurred in
December 2019. Convolutional neural networks (CNNs) were developed, trained, and used from the
ground up to detect wildfires while also adjusting their complexity to meet onboard implementation
requirements for trusted autonomous satellite operations (TASO). The capability of a 1-dimensional
convolution neural network (1-DCNN) to classify wildfires is demonstrated in this research and
the results are assessed against those reported in the literature. In order to enable autonomous
onboard data processing, various hardware accelerators were considered and evaluated for onboard
implementation. The trained model was then implemented in the following: Intel Movidius NCS-2
and Nvidia Jetson Nano and Nvidia Jetson TX2. Using the selected onboard hardware, the developed
model was then put into practice and analysis was carried out. The results were positive and in
favour of using the technology that has been proposed for onboard data processing to enable TASO
on future missions. The findings indicate that data processing onboard can be very beneficial in
disaster management and climate change mitigation by facilitating the generation of timely alerts for
users and by enabling rapid and appropriate responses.
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1. Introduction

In recent years, climate change and other environmental issues associated with human
activities have received much attention in the scientific literature [1]. Such issues include
extreme weather events [2], droughts [3], sandstorms [4], rising sea levels [5], tornados [6],
volcanic eruption [7], and wildfires [8]. Wildfires decimate global and regional ecosystems
and cause a lot of damage to structures, injuries, and deaths [9,10]. Due to this, it is becoming
more and more important to find fires and keep track of their type, size, and effects over
large areas [11]. To try to avoid or lessen these effects, early fire detection and fire risk
mapping are used [12]. In the past, wildfires were mostly found by people monitoring
wide areas from fire observation towers and using simple devices like the Osborne fire
finder [13]. Nevertheless, such methods were not very accurate, and their effectiveness could
be affected by human fatigue accumulated during long observation periods. On the other
hand, alternative sensors designed to detect gasses, flame, smoke, and heat emissions usually
need extended measurement times for molecules to approach the sensors. Additionally, since
the range of these sensors is small, wide areas can only be covered using a large number of
sensors [14]. Rapid advancements in object recognition, deep learning, and remote sensing
have given us new ways to find and track wildfire. New materials and microelectronics have
also made it easier for sensors to find active wildfires [15,16].

There are three primary classifications of the extensively used technologies that can
identify or observe active fire or smoke conditions in real or near-real-time, namely, ter-
restrial, aerial, and satellite systems. These technologies are typically incorporated with
visible, infrared, multispectral, or hyperspectral sensors; once the data have been collected,
they can be processed by applicable artificial intelligence (Al) algorithms, usually a ma-
chine learning (ML) methodology. These techniques rely on either extracting hand-crafted
features or on robust Al methods in order to detect wildfires in their earliest stages and
to simulate how smoke and fires behave [15,17,18]. The different types of fire detection
methods are shown in Figure 1.

Fire detection
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Figure 1. Fire detection methods.
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This research work focuses on satellite-based fire detection by including appropriate
Al approaches for onboard computation and analysis. Before introducing our proposed
solution, a detailed discussion of the satellite-based wildfire detection approach is provided.
There have been numerous research efforts to identify wildfires from satellite imagery in
recent years, mostly as a result of the vast number of satellites that have been launched and
the drop in the associated costs. Specifically, a constellation of satellites (e.g., Planet Lab)
was developed for Earth observation (EO) [19]. Satellites can generally be grouped into
different categories based on their orbit, each of which has its own set of advantages and
disadvantages. Table 1 shows the most significant categories.

Table 1. Satellite categories, Adapted from [20].

Orbit Altitude Advantages
e  The satellite does not move at all
. L. . relative to the ground,
Geostationary Earth Orbit (GEO) Cireular orbit with an alt.1 tud.e of e  Providing a constant view of the
35,786 km and zero inclination
same surface area,
e  High temporal resolution.
e  Requires the lowest amount of
Low Earth Orbit (LEO) Altitude of 2000 km or less energy for satellite placement;

Sun-Synchronous Orbit (SSO)

Provides high bandwidth,
Low communication latency.

Nearly polar orbit that passes the equator e  Satellite will always observe the

at the same local time on every pass. same scene with the same angle of
Typical Sun-synchronous Earth orbits are illumination coming from the Sun,
600-800 km. e  Has high spatial resolution.

Currently, remote sensing satellites take photos of the Earth, and the images are
downlinked to the ground as soon as the satellite makes contact with the ground station
network. From here, images can be loaded into machines that extract various forms of
actionable knowledge such as wildfire. Downloading imagery is an O(n?) problem, which
usually provides significant latency when considering critical operations for extreme events
management. If time is of the essence for detecting ignitions and thus speeding up the
suppression response, it would be much quicker to have the fire mapping analytics right
onboard the satellite and only download the vector data (either point or polygon) of the fire
with the data already flagged to be forwarded to the appropriate wildland fire dispatcher
(based on location). Having the coordinates of the event would allow for satellite managers,
or even the satellite itself, to prioritize the transmission of the imagery associated with the
Al-generated wildland fire event. The mission architecture would be even more effective
when considering a constellation of satellites properly designed for the management of
extreme events. Having artificial intelligence onboard the satellites, we would be able
to process the data in real-time, and when a wildfire is spotted from one satellite, it will
communicate this information to the other satellites in the constellation, thereby enabling
trusted autonomous satellite operation (TASO). The most important part of this is to show
that the data can be processed and shared with the help of the Al that is onboard, and that
only the information that can be used is downlinked rather than all of the data. Preliminary
analyses and the results of a mission concept based on a distributed satellite system for
wildfire management are reported in [21].

The majority of low Earth polar SSO orbits of EO satellites have precise altitude and
inclination estimations to guarantee that the spacecraft observes the very same scenario
every time with same angle of light from the Sun, and that on each pass, the shadows
appear the same [22]. The spatial resolution of Sun-synchronous satellite data is high, but
the temporal resolution is low (LandSat-7/8 [23] has an eight-day repeat cycle, whereas
Sentinel 2A /2B [24] has a two-to-three-day repeat cycle at mid-latitudes), while GEO
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satellites have lower spatial resolution contrasts with their high temporal resolution. As
a result, they are ineffective for detecting active wildfires in real-time; rather, they are
better suited for much less time-sensitive tasks such as estimating the burnt area [25]. EO
satellite systems have been able to find wildfires because they can see a large area. Most
satellites that take pictures of the Earth use multispectral imaging sensors and are either in
a geostationary orbit or a Sun-synchronous orbit near the polar regions.

Improvements in nanomaterials and microelectronics have made it possible to use
CubeSats, which are small spacecraft that orbit close to the Earth. PhiSat-1 (®-Sat-1),
launched on 3 September 2020 [26-28], is a six-unit (6U) European satellite and is the
first to show how transmitting down EO data can be made more efficient using onboard
intelligence using AL It is part of the Federated Satellite System (FSSCat), which is made up
of two CubeSats [29-32] carrying Al technologies. The two CubeSats collect data utilising
hyperspectral optical equipment and state-of-the-art dual microwaves. They also test inter-
satellite communications. One of the CubeSats” hyperspectral cameras takes many pictures
of Earth, some of which are cloudy. The ®-Sat Al chip filters out erroneous cloudy photos
before transmitting them to Earth, sending only the usable data. CubeSats are more cost-
effective, are smaller than regular satellites, and require less time to launch than traditional
satellites. The detailed classification and their parameters are listed in Table 2. Currently,
most of the data processes are performed on the ground, but there is significant interest in
bringing at least some of the computing efforts onboard satellites. The employment of Al
algorithms onboard satellites for analysis and segmentation, classification, cloud masking,
and potential risk detection shows the potential of satellite remote sensing.

The European Space Agency (ESA) has been a leader in taking the first steps in this
direction with the PhiSat-1 satellite. CNNs for detecting volcanic eruptions using satellite
optical/multispectral imaging were proposed in [26], with the main goal of presenting a
feasible CNN architecture for onboard computing. P. Xu et al. [33] presented an onboard
real-time ship detection based on deep learning and utilising SAR data. Predicting, detect-
ing, and monitoring the occurrence of wildfires obviously benefits officials, civilians, and
the ecosystem, with advantages in preparedness, reaction times, and damage control. Oro-
raTech which was created in 2018, already has a range of international customers for its own
wildfire service, notably SOPFEU Quebec, Forestry Corporation NSW in Australia, and
Arauco in Chile. To offer intelligence to contribute to environmental protection and other
properties, the system uses sensor data from a range of existing satellites. OroraTech has
launched a thermal infrared (TIR) imager on a Spire 6U CubeSat featuring TIR and optical
imaging equipment and Edge Al processing in a first step toward vertical integration.

The goal of our study was to see whether Al approaches and onboard computing
resources can be used to monitor hazardous events such as wildfire detections by utilising
optical/multispectral /hyperspectral satellite imagery. This kind of analyses could be useful
to inform Design, Development, Test and Evaluation (DDT&E) activities of future satellite
missions such as the ESA Phisat 2 program. In this study, hyperspectral images taken from
the PRISMA (PRecursore IperSpettrale della Missione Applicativa) satellite and the following
contributions were made:

1. A one-dimensional (1D) CNN for detecting wildfires using PRISMA hyperspectral
imagery was considered, and promising results are shown for the edge implementa-
tion on three different hardware accelerators (i.e., computer hardware designed to
perform specific functions more efficiently when compared to software running on a
general-purpose central processing unit).

2. We demonstrate that Al-on-the-edge paradigms are feasible for future mission con-
cepts using appropriate CNN architectures and mature astrionics technologies to
perform time- and power-efficient inferences.

The proposed CNN is described in terms of the constraints imposed by the onboard
implementation, meaning that the initial network has been streamlined and adjusted
to comply with the intended hardware designs. It is worth noting that the detection of
wildfires should be considered as the example test case, and that the proposed methodology
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(or similar ones) can be successfully applied to other scenarios or tasks, as already discussed

and demonstrated in other works [26].

Table 2. List of some reference remote sensing satellite systems and their characteristics. Adapted

from [15].

Terra/Aqua-
MODIS

Himawari-
8/9—AHI-8

MSG—
SEVIRI

GOES-16
and 18

Huan]Jing
(HJ))-1B—
WVC (Wide
View CCD
Cam-
era)/IRMSS
(Infrared
Multispec-
tral
Scanner)

POES/MetOp
—AVHRR

S-NPP/
NOAA-
20/NOAA—
VIIRS-375 m

CubeSats
(data refer to
a specific
design
from [25])

36
(0.4-14.4 pm)

16
(0.4-13.4 pm)

12
(0.4-13.4 um)

16
(0.4-13.4 pm)

WVC: 4
(0.43-0.9 pum)

IRMSS: 4
(0.75-12.5 pum)

6
(0.58-12.5 pm)

16 M-bands
(0.4-12.5 pm)
5 I-bands
(0.6-12.4 pm)
1 DNB
(0.5-0.9 um)

2: MWIR
(3-5 um) and
LWIR
(8-12 pm)

Registration
Required
(NASA)

Registration
Required/
(Himawari
Cloud)

Registration
Required
(EUMETSAT)

Registration
Required
(NOAA)

Registration
Required

Registration
Required
(NOAA)

Registration
Required
(NASA)

Commercial
access planned

Global

Regional

Regional

Regional

Regional

Global

Global

Global

0.25 km
(bands 1-2)
0.5 km
(bands 3-7)
1 km
(bands 8-36)

0.5 km or 1 km
for visible and
near-infrared
bands and
2 km for
infrared bands

1 km for the
high-
resolution
visible channel,
3 km for the
infrared and
the 3 other
visible
channels

0.5 km for the
0.64 pm visible
channel 1 km
for other
visible/near-
IR 2 km for
bands > 2 um

WVC: 30 m
IRMSS:
150-300 m

1.1 km by 4 km
at nadir

0.75 km
(M-bands)
0.375 km
(I-bands)
0.75 km (DNB)

0.2 km

Easily accessible,
limited spatial
resolution, revisit
time: 1-2 days

Imaging sensors with
high radiometric,
spectral, and
temporal resolution.
10 min (Full disk),
revisit time: 5 min for
areas in
Japan/Australia)
Low noise in the
long-wave IR
channels, tracking of
dust storms in
near-real-time,
susceptibility of the
larger field of view to
contamination by
cloud and lack of
dual-view capability,
revisit time: 5-15 min
Infrared resolutions
allow the detection of
much smaller
wildland fires with
high temporal
resolution but
relatively low spatial
resolution, and
delays in data
delivery, revisit time:
5-15 min

Lack of an onboard
calibration system to
track HJ-1 sensors’
on-orbit behaviour
throughout the life of
the mission, revisit
time: 4 days

Coarse spatial
resolution, revisit
time: 6 h

Increased spatial
resolution, improved
mapping of large fire

perimeters, revisit
time: 12 h

Small physical size,
reduced cost,
improved temporal
resolution/response
time, Revisit time:
less than 1 h.

Earth

East Asia and
Western Pacific

Atlantic Ocean,
Europe and
Africa

Western
Hemisphere
(North and
South
America)

Asian and
Pacific Region

Earth

Earth

Wide coverage
in orbit

92.75-98.32%

75-99.5%

71.1-98%

94-98%

94.45%

99.6%

89-98.8%
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The rest of this article is organised as follows: after the Introduction, Section 2 dis-
cusses the methods and analysis, beginning with an overview of the wildfires, followed
by information that is more in-depth regarding the description of the study area, and
subsequently, information regarding the PRISMA data and the definition of the dataset.
The onboard implementation and a description of hardware accelerators are covered in
Section 3. The results are covered in Section 4, and the findings and their applicability are
covered in depth in Section 5, which is followed by our conclusions in Section 6.

2. Current Detection Methods

A wildfire is a dynamic phenomenon that changes its behaviour over time. The spread
of fire is aided by the presence of forest fuel and is carried out by a series of intricate heat
transmission and thermochemical processes that control fire behaviour [34]. There are
several mathematical models created to characterise wildfire behaviour; each model was
built based on the diverse wildfire experiences in various nations. According to the input
and environmental parameters, each model differs from the others (fuel indexing [35,36]).
Some researchers have been able to incorporate some of these models into simulation
programs, or even develop their own ways for mapping the terrain and fire behaviour
on monitoring screens for the study and prediction of fire behaviour [37]. The form of a
wildfire burning in a steady environment is an ellipse [38]. The environment can change
over time, and different portions of a fire may burn in different environments such as
humidity levels, wind speed, wind direction, slope, and so on. The heterogeneity of the
environment could result in a very complicated fire form [35,39].

F. Tedim et al. [38] made an initial attempt to develop a gravity scale for wildfires that
was comparable to the scales used for hurricanes (Saffir-Simpson scale) and tornadoes
(Fujita scale). The first four categories are labelled as “normal fires,” or incidents that can
generally be put out within the bounds of technology and physical limits. Based on the
assessments of recent extreme wildfire incidents and a consolidation of the literature, the
three remaining categories are grouped as extreme wildfire events (EWEs; see Table 3) [38].
Table 4 shows a list with the most recent and significant wildfire incidents in Australia
from 2007 until today. Some of the fires may have been caused by natural disasters or
may have been caused directly or indirectly by human recklessness and environmental
misuse (particularly the rise in temperature linked to global warming). One of the worst
wildfires (Black Saturday wildfires) in Australian history ravaged Victoria. Many people
were killed or injured in the wildfire, which ravaged many towns and cities, destroying
homes, businesses, schools, and kindergartens [40,41]. From Table 4, it is evident that
wildfire events are happening regularly. Since wildfires occur on a regular basis, there is
a clear need for wildfire detection. To address this, the recent Australian wildfires were
investigated, and an analysis was carried out. The designated area of interest (AOI) is
located around 250 km north of Sydney in Ben Halls Gap National Park (BHGNP), which
comprises 2500 hectares and is 60 kilometres south of Tamworth and 10 kilometres from
Nundle. Because the park is located at a high elevation, it receives a lot of rain and has
cool temperatures. However, in late 2019, a combination of high temperatures and wind
speeds as well as low relative humidity created the conditions for high-intensity wildfire
behaviour to develop. There are different levels of data available, and the differences are
reported in Figure 2. As can be observed in the PRISMA image (Figure 3) acquired on
27 December 2019, active wildfires can be spotted across this AOL
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Table 3. Classification of wildfires based on fire behaviour and the capacity of control. Adapted from [38].

Real-Time Measurable Real-Time Observable
Behaviour Parameters Manifestations of Extreme Fire Behaviour ((EFB)
Fire Category In teilsl;iilgsliFLI) Rate Of Spread | Flame Length | Pyrocumulonin Downdrafts Spotting Spotting Type of Fire and Capacity of Control
(KWm-1) (ROS) (m/min) (FL) (m) (PyroCb) Activity Distance (m)
! <500 <5 ab <1.5 Absent Absent Absent 0 Su.rface fire
<15 Fairly easy
A ;
2 5002000 :;05 b <25 Absent Absent Low <100 ;‘giﬁfﬁ; diffieut
Normal Fires 3 2000-4000 <20dC 2535 Absent Absent High >100 Surfac? f.ire, torching possible
<50 Very difficult
<50 ¢ In some Surface fire, crowning likely depending
4000-10,000 3.5-10 Unlikely . Prolific 500-1000 on vegetation type and stand structure
<100 4 localised cases .
Extremely difficult
Crown fire, either wind- or plume-driven
Spotting plays a relevant role in fire
<150 growth
10,000-30,000 <2504 10-50 Possible Present Prolific >1000 Possible fire breaching across an
extended obstacle to local spread
Chaotic and unpredictable fire spread
Virtually impossible
Plume-driven, highly turbulent fire
Extreme Chaotic and unpredictable fire spread
Wildfire Events Massive Spotting, including long distance, plays a
30,000-100,000 <300 50-100 Probable Present S . >2000 relevant role in fire growth
potting Possible fire b .
ossible fire breaching across an
extended obstacle to local spread
Impossible
Plume-driven, highly turbulent fire
Area-wide ignition and firestorm
>100,000 . >100 Massive development non-organised flame fronts
(possible) >300 (possible) (possible) Present Present Spotting >5000 becaus}ej of extreme tgrbulence /vorticity
and massive spotting
Impossible

Note: @ Forest and shrubland; ® Grassland; ¢ Forest; 4 Shrubland and grassland.
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Table 4. Mos relevant wildfires that took place in Australia from 2007 to 2021 [42-45].

Burned Area

Year Event Name Affected Area (Approx. Actes)
1 June 2020-1 June 2021 2020-2021 Australian wildfire seasons Nationwide 617,763
5 September 2019-2 March 2020 2019-2020 g;fggﬁ;ﬁggﬁre season Nationwide 46,030,000
February 2019 Tingha wildfire New South Wales 57,870
11-14 February 2017 2017 New South Wales wildfires New South Wales 130,000
January 2016 2016 Murrayal;ga;llav:‘i,lec;f)ire (Waroona Western Australia 170,910
25 November—2 December 2015 2015 Pinery wildfire South Australia 210,000
15-24 November 2015 C:;gﬂgggﬁgfgﬁp Western Australia 24,750
October-November 2015 2015 Esperance wildfires Western Australia 490,000
29 January—20 February 2015 (N(Z)Stllfcii)f,fsel—l %;Ir?gywl-illgl?:ur) Western Australia 244,440
2-9 January 2015 2015 Sampson Flat wildfires South Australia 49,000
January 2015 2015 Loz]\;e(z;il(;li(;t;\f;l)wildﬁre Western Australia 129,420
1 August-9 August 2015 2015 Wentworth Falls Winter Fire New South Wales 2,000
17-28 October 2013 2013 New South Wales wildfires New South Wales 250,000
18 January 2013 Warrumbungle wildfire New South Wales 130,000
4 January 2013 Tasmanian wildfires Tasmania 49,000
27 December 2011-3 February 2012 Carnarvon wildfire complex Western Australia 2,000,000
7 February-14 March 2009 Black Saturday wildfires Victoria 1,100,000
30 December 2007 Boorabbin National Park Western Australia 99,000

Basic preprocessing: from raw data to
georeferenced (‘computing ready”):

Data for scientific or military users only

Advanced preprocessing:
Geocorrected
Vertically oriented product (“user-
L.2b- ready”):
Level3

VAS
VAS
ANALYTICS

CORRECTIONS

Data and derived products:
commercial usages

Change detection, classification,
image-derived product, intelligence
report:

Product without any imagery, etc.

Figure 2. Levels of processing from data to services [46].
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Fire

Burned areas {|
Vegetation
Smoke

Bare soil

Figure 3. The RGB PRISMA composite image with labelled points defined for the five classes. Pixels
within the white rectangles are used for the test, the others for training and validation.

3. PRISMA Mission

A scientific and demonstration mission called PRISMA was launched aboard the
VEGA rocket on 22 March 2019. The research based on the HyperSpectral Earth Observer
(HypSEO) project [47], which was a product of a partnership between ASI and the Canadian
Space Agency, served as the foundation for the early conceptual studies. Due to its ability to
capture data globally with a very high spectral resolution and in a wide variety of spectral
wavelengths, PRISMA plays an important role in the current and future international
setting of EO for both the scientific community and for end users. PRISMA offers the ability
to collect, downlink, and preserve the imagery of all panchromatic/hyperspectral channels
totalling 200,000 km? daily practically on the entire global region, obtaining 30 km by 30 km
square Earth tiles. There are two operational modes for the PRISMA mission: a primary
mode as well as a secondary mode. The main method of operation is the gathering of
panchromatic and hyperspectral data from specified individual targets as demanded by the
end users. The mission will have a setup of continual “background” work in the auxiliary
mode of operation that will collect imagery to fully utilise the system’s resources.

One modest class spacecraft makes up the PRISMA space segment. A hyperspec-
tral/panchromatic camera featuring VNIR and SWIR detectors is part of the PRISMA
payload. It consists of a medium resolution panchromatic camera (PAN, from 400 nm to
700 nm) with a 5 m resolution and an imaging spectrometer with a 30 m spatial resolution
that can acquire in a continuum of spectral bands from 400 nm to 2505 nm (i.e., from 400 nm
to 700 nm in VNIR and from 920 nm to 2505 nm in SWIR). The PRISMA hyperspectral
sensor makes use of the prism to measure the incoming radiation’s dispersion on 2-D
matrix detectors in order to collect many spectral bands from the same ground strip. The
2-D detectors immediately provide the “instantaneous” spectral and spatial dimensions
(across track) of the spectral cube, while the satellite motion (pushbroom scanning concept)
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provides the “temporal” dimension (along track). The following references [48-50] contain
some works on wildfires using PRISMA.

PRISMA data are made freely accessible for research purposes by the Italian Space
Agency (ASI) [51]. In Hierarchical Data Format version 5 (HDF5), the 30 m and 5 m
resolution hyperspectral and panchromatic data are given with four choices:

Level 1, radiometrically corrected and calibrated top of atmosphere (TOA) data.
Level 2B, Geolocated at-ground spectral radiance product.

Level 2C, Geolocated at-surface reflectance product.

Level 2D, Geocoded version of the Level 2C product.

The analysis in this paper was conducted with Level 2D data. Preliminary, direct
information can be retrieved by looking at single bands. For instance, smoke can be
recognized by looking at the very near infrared (VNIR) bands of the L2D data, while active
wildfires can be retrieved by looking at saturated pixels in the short-wave infrared (SWIR)
bands. Indeed, in the interval of 2000-2400 nm, the signal easily saturates when looking at
active wildfires, as the signal captured from Earth is greater than the signal coming from
the Sun (since the wildfires behave as active power emitters). However, analysing the entire
spectral signature by means of the convolutional neural network allows us to avoid errors
and increase the reliability of the classification.

3.1. Dataset Definition

The AI approach was used to implement automatic segmentation from the obtained
image. From Figure 3, three active wildfires can be observed. The southern and the north-
east wildfires are the bigger ones, whereas the north-west wildfire is quite small. For the
training and validation, the reference pixels must first be labelled. The reference pixels
used in this investigation were manually labelled and are shown in Figure 3. The number
of labelled pixels selected from the PRISMA image (after investigation of the spectra and
looking at the false colour composites) is reported in Table 5. The north-east wildfire was
used as the training and validation dataset, while the south and north-west datasets were
used as the test datasets. The training set accounted for 70% of the labelled data of the
north-east wildfire, while the remaining 30% was chosen for validation. In this research,
the training was carried out by utilising the computational