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Abstract: One of the United Nations (UN) Sustainable Development Goals is climate action (SDG-13),
and wildfire is among the catastrophic events that both impact climate change and are aggravated
by it. In Australia and other countries, large-scale wildfires have dramatically grown in frequency
and size in recent years. These fires threaten the world’s forests and urban woods, cause enormous
environmental and property damage, and quite often result in fatalities. As a result of their increasing
frequency, there is an ongoing debate over how to handle catastrophic wildfires and mitigate their
social, economic, and environmental repercussions. Effective prevention, early warning, and response
strategies must be well-planned and carefully coordinated to minimise harmful consequences to
people and the environment. Rapid advancements in remote sensing technologies such as ground-
based, aerial surveillance vehicle-based, and satellite-based systems have been used for efficient
wildfire surveillance. This study focuses on the application of space-borne technology for very
accurate fire detection under challenging conditions. Due to the significant advances in artificial
intelligence (AI) techniques in recent years, numerous studies have previously been conducted to
examine how AI might be applied in various situations. As a result of its special physical and
operational requirements, spaceflight has emerged as one of the most challenging application fields.
This work contains a feasibility study as well as a model and scenario prototype for a satellite
AI system. With the intention of swiftly generating alerts and enabling immediate actions, the
detection of wildfires has been studied with reference to the Australian events that occurred in
December 2019. Convolutional neural networks (CNNs) were developed, trained, and used from the
ground up to detect wildfires while also adjusting their complexity to meet onboard implementation
requirements for trusted autonomous satellite operations (TASO). The capability of a 1-dimensional
convolution neural network (1-DCNN) to classify wildfires is demonstrated in this research and
the results are assessed against those reported in the literature. In order to enable autonomous
onboard data processing, various hardware accelerators were considered and evaluated for onboard
implementation. The trained model was then implemented in the following: Intel Movidius NCS-2
and Nvidia Jetson Nano and Nvidia Jetson TX2. Using the selected onboard hardware, the developed
model was then put into practice and analysis was carried out. The results were positive and in
favour of using the technology that has been proposed for onboard data processing to enable TASO
on future missions. The findings indicate that data processing onboard can be very beneficial in
disaster management and climate change mitigation by facilitating the generation of timely alerts for
users and by enabling rapid and appropriate responses.
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1. Introduction

In recent years, climate change and other environmental issues associated with human
activities have received much attention in the scientific literature [1]. Such issues include
extreme weather events [2], droughts [3], sandstorms [4], rising sea levels [5], tornados [6],
volcanic eruption [7], and wildfires [8]. Wildfires decimate global and regional ecosystems
and cause a lot of damage to structures, injuries, and deaths [9,10]. Due to this, it is becoming
more and more important to find fires and keep track of their type, size, and effects over
large areas [11]. To try to avoid or lessen these effects, early fire detection and fire risk
mapping are used [12]. In the past, wildfires were mostly found by people monitoring
wide areas from fire observation towers and using simple devices like the Osborne fire
finder [13]. Nevertheless, such methods were not very accurate, and their effectiveness could
be affected by human fatigue accumulated during long observation periods. On the other
hand, alternative sensors designed to detect gasses, flame, smoke, and heat emissions usually
need extended measurement times for molecules to approach the sensors. Additionally, since
the range of these sensors is small, wide areas can only be covered using a large number of
sensors [14]. Rapid advancements in object recognition, deep learning, and remote sensing
have given us new ways to find and track wildfire. New materials and microelectronics have
also made it easier for sensors to find active wildfires [15,16].

There are three primary classifications of the extensively used technologies that can
identify or observe active fire or smoke conditions in real or near-real-time, namely, ter-
restrial, aerial, and satellite systems. These technologies are typically incorporated with
visible, infrared, multispectral, or hyperspectral sensors; once the data have been collected,
they can be processed by applicable artificial intelligence (AI) algorithms, usually a ma-
chine learning (ML) methodology. These techniques rely on either extracting hand-crafted
features or on robust AI methods in order to detect wildfires in their earliest stages and
to simulate how smoke and fires behave [15,17,18]. The different types of fire detection
methods are shown in Figure 1.
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This research work focuses on satellite-based fire detection by including appropriate
AI approaches for onboard computation and analysis. Before introducing our proposed
solution, a detailed discussion of the satellite-based wildfire detection approach is provided.
There have been numerous research efforts to identify wildfires from satellite imagery in
recent years, mostly as a result of the vast number of satellites that have been launched and
the drop in the associated costs. Specifically, a constellation of satellites (e.g., Planet Lab)
was developed for Earth observation (EO) [19]. Satellites can generally be grouped into
different categories based on their orbit, each of which has its own set of advantages and
disadvantages. Table 1 shows the most significant categories.

Table 1. Satellite categories, Adapted from [20].

Orbit Altitude Advantages

Geostationary Earth Orbit (GEO) Circular orbit with an altitude of
35,786 km and zero inclination

• The satellite does not move at all
relative to the ground,

• Providing a constant view of the
same surface area,

• High temporal resolution.

Low Earth Orbit (LEO) Altitude of 2000 km or less

• Requires the lowest amount of
energy for satellite placement;

• Provides high bandwidth,
• Low communication latency.

Sun-Synchronous Orbit (SSO)

Nearly polar orbit that passes the equator
at the same local time on every pass.

Typical Sun-synchronous Earth orbits are
600–800 km.

• Satellite will always observe the
same scene with the same angle of
illumination coming from the Sun,

• Has high spatial resolution.

Currently, remote sensing satellites take photos of the Earth, and the images are
downlinked to the ground as soon as the satellite makes contact with the ground station
network. From here, images can be loaded into machines that extract various forms of
actionable knowledge such as wildfire. Downloading imagery is an O

(
n2) problem, which

usually provides significant latency when considering critical operations for extreme events
management. If time is of the essence for detecting ignitions and thus speeding up the
suppression response, it would be much quicker to have the fire mapping analytics right
onboard the satellite and only download the vector data (either point or polygon) of the fire
with the data already flagged to be forwarded to the appropriate wildland fire dispatcher
(based on location). Having the coordinates of the event would allow for satellite managers,
or even the satellite itself, to prioritize the transmission of the imagery associated with the
AI-generated wildland fire event. The mission architecture would be even more effective
when considering a constellation of satellites properly designed for the management of
extreme events. Having artificial intelligence onboard the satellites, we would be able
to process the data in real-time, and when a wildfire is spotted from one satellite, it will
communicate this information to the other satellites in the constellation, thereby enabling
trusted autonomous satellite operation (TASO). The most important part of this is to show
that the data can be processed and shared with the help of the AI that is onboard, and that
only the information that can be used is downlinked rather than all of the data. Preliminary
analyses and the results of a mission concept based on a distributed satellite system for
wildfire management are reported in [21].

The majority of low Earth polar SSO orbits of EO satellites have precise altitude and
inclination estimations to guarantee that the spacecraft observes the very same scenario
every time with same angle of light from the Sun, and that on each pass, the shadows
appear the same [22]. The spatial resolution of Sun-synchronous satellite data is high, but
the temporal resolution is low (LandSat-7/8 [23] has an eight-day repeat cycle, whereas
Sentinel 2A/2B [24] has a two-to-three-day repeat cycle at mid-latitudes), while GEO
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satellites have lower spatial resolution contrasts with their high temporal resolution. As
a result, they are ineffective for detecting active wildfires in real-time; rather, they are
better suited for much less time-sensitive tasks such as estimating the burnt area [25]. EO
satellite systems have been able to find wildfires because they can see a large area. Most
satellites that take pictures of the Earth use multispectral imaging sensors and are either in
a geostationary orbit or a Sun-synchronous orbit near the polar regions.

Improvements in nanomaterials and microelectronics have made it possible to use
CubeSats, which are small spacecraft that orbit close to the Earth. PhiSat-1 (Φ-Sat-1),
launched on 3 September 2020 [26–28], is a six-unit (6U) European satellite and is the
first to show how transmitting down EO data can be made more efficient using onboard
intelligence using AI. It is part of the Federated Satellite System (FSSCat), which is made up
of two CubeSats [29–32] carrying AI technologies. The two CubeSats collect data utilising
hyperspectral optical equipment and state-of-the-art dual microwaves. They also test inter-
satellite communications. One of the CubeSats’ hyperspectral cameras takes many pictures
of Earth, some of which are cloudy. The Φ-Sat AI chip filters out erroneous cloudy photos
before transmitting them to Earth, sending only the usable data. CubeSats are more cost-
effective, are smaller than regular satellites, and require less time to launch than traditional
satellites. The detailed classification and their parameters are listed in Table 2. Currently,
most of the data processes are performed on the ground, but there is significant interest in
bringing at least some of the computing efforts onboard satellites. The employment of AI
algorithms onboard satellites for analysis and segmentation, classification, cloud masking,
and potential risk detection shows the potential of satellite remote sensing.

The European Space Agency (ESA) has been a leader in taking the first steps in this
direction with the PhiSat-1 satellite. CNNs for detecting volcanic eruptions using satellite
optical/multispectral imaging were proposed in [26], with the main goal of presenting a
feasible CNN architecture for onboard computing. P. Xu et al. [33] presented an onboard
real-time ship detection based on deep learning and utilising SAR data. Predicting, detect-
ing, and monitoring the occurrence of wildfires obviously benefits officials, civilians, and
the ecosystem, with advantages in preparedness, reaction times, and damage control. Oro-
raTech which was created in 2018, already has a range of international customers for its own
wildfire service, notably SOPFEU Quebec, Forestry Corporation NSW in Australia, and
Arauco in Chile. To offer intelligence to contribute to environmental protection and other
properties, the system uses sensor data from a range of existing satellites. OroraTech has
launched a thermal infrared (TIR) imager on a Spire 6U CubeSat featuring TIR and optical
imaging equipment and Edge AI processing in a first step toward vertical integration.

The goal of our study was to see whether AI approaches and onboard computing
resources can be used to monitor hazardous events such as wildfire detections by utilising
optical/multispectral/hyperspectral satellite imagery. This kind of analyses could be useful
to inform Design, Development, Test and Evaluation (DDT&E) activities of future satellite
missions such as the ESA Phisat 2 program. In this study, hyperspectral images taken from
the PRISMA (PRecursore IperSpettrale della Missione Applicativa) satellite and the following
contributions were made:

1. A one-dimensional (1D) CNN for detecting wildfires using PRISMA hyperspectral
imagery was considered, and promising results are shown for the edge implementa-
tion on three different hardware accelerators (i.e., computer hardware designed to
perform specific functions more efficiently when compared to software running on a
general-purpose central processing unit).

2. We demonstrate that AI-on-the-edge paradigms are feasible for future mission con-
cepts using appropriate CNN architectures and mature astrionics technologies to
perform time- and power-efficient inferences.

The proposed CNN is described in terms of the constraints imposed by the onboard
implementation, meaning that the initial network has been streamlined and adjusted
to comply with the intended hardware designs. It is worth noting that the detection of
wildfires should be considered as the example test case, and that the proposed methodology
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(or similar ones) can be successfully applied to other scenarios or tasks, as already discussed
and demonstrated in other works [26].

Table 2. List of some reference remote sensing satellite systems and their characteristics. Adapted
from [15].

(Satellite)-
Sensor

Spectral
Bands

Access to
the Data

Spatial
Scale

Spatial
Resolution Specs/Advantages/LimitationsData Coverage Accuracy

Range

Terra/Aqua-
MODIS

36
(0.4–14.4 µm)

Registration
Required
(NASA)

Global

0.25 km
(bands 1–2)

0.5 km
(bands 3–7)

1 km
(bands 8–36)

Easily accessible,
limited spatial

resolution, revisit
time: 1–2 days

Earth 92.75–98.32%

Himawari-
8/9—AHI-8

16
(0.4–13.4 µm)

Registration
Required/
(Himawari

Cloud)

Regional

0.5 km or 1 km
for visible and
near-infrared

bands and
2 km for

infrared bands

Imaging sensors with
high radiometric,

spectral, and
temporal resolution.
10 min (Full disk),

revisit time: 5 min for
areas in

Japan/Australia)

East Asia and
Western Pacific 75–99.5%

MSG—
SEVIRI

12
(0.4–13.4 µm)

Registration
Required

(EUMETSAT)
Regional

1 km for the
high-

resolution
visible channel,

3 km for the
infrared and
the 3 other

visible
channels

Low noise in the
long-wave IR

channels, tracking of
dust storms in
near-real-time,

susceptibility of the
larger field of view to

contamination by
cloud and lack of

dual-view capability,
revisit time: 5–15 min

Atlantic Ocean,
Europe and

Africa
71.1–98%

GOES-16
and 18

16
(0.4–13.4 µm)

Registration
Required
(NOAA)

Regional

0.5 km for the
0.64 µm visible
channel 1 km

for other
visible/near-
IR 2 km for

bands > 2 µm

Infrared resolutions
allow the detection of

much smaller
wildland fires with

high temporal
resolution but

relatively low spatial
resolution, and
delays in data

delivery, revisit time:
5–15 min

Western
Hemisphere
(North and

South
America)

94–98%

HuanJing
(HJ)-1B—

WVC (Wide
View CCD

Cam-
era)/IRMSS

(Infrared
Multispec-

tral
Scanner)

WVC: 4
(0.43–0.9 µm)

IRMSS: 4
(0.75–12.5 µm)

Registration
Required Regional

WVC: 30 m
IRMSS:

150–300 m

Lack of an onboard
calibration system to

track HJ-1 sensors’
on-orbit behaviour

throughout the life of
the mission, revisit

time: 4 days

Asian and
Pacific Region 94.45%

POES/MetOp
—AVHRR

6
(0.58–12.5 µm)

Registration
Required
(NOAA)

Global 1.1 km by 4 km
at nadir

Coarse spatial
resolution, revisit

time: 6 h
Earth 99.6%

S-NPP/
NOAA-

20/NOAA—
VIIRS-375 m

16 M-bands
(0.4–12.5 µm)

5 I-bands
(0.6–12.4 µm)

1 DNB
(0.5–0.9 µm)

Registration
Required
(NASA)

Global

0.75 km
(M-bands)
0.375 km
(I-bands)

0.75 km (DNB)

Increased spatial
resolution, improved
mapping of large fire

perimeters, revisit
time: 12 h

Earth 89–98.8%

CubeSats
(data refer to

a specific
design

from [25])

2: MWIR
(3–5 µm) and

LWIR
(8–12 µm)

Commercial
access planned Global 0.2 km

Small physical size,
reduced cost,

improved temporal
resolution/response

time, Revisit time:
less than 1 h.

Wide coverage
in orbit -
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The rest of this article is organised as follows: after the Introduction, Section 2 dis-
cusses the methods and analysis, beginning with an overview of the wildfires, followed
by information that is more in-depth regarding the description of the study area, and
subsequently, information regarding the PRISMA data and the definition of the dataset.
The onboard implementation and a description of hardware accelerators are covered in
Section 3. The results are covered in Section 4, and the findings and their applicability are
covered in depth in Section 5, which is followed by our conclusions in Section 6.

2. Current Detection Methods

A wildfire is a dynamic phenomenon that changes its behaviour over time. The spread
of fire is aided by the presence of forest fuel and is carried out by a series of intricate heat
transmission and thermochemical processes that control fire behaviour [34]. There are
several mathematical models created to characterise wildfire behaviour; each model was
built based on the diverse wildfire experiences in various nations. According to the input
and environmental parameters, each model differs from the others (fuel indexing [35,36]).
Some researchers have been able to incorporate some of these models into simulation
programs, or even develop their own ways for mapping the terrain and fire behaviour
on monitoring screens for the study and prediction of fire behaviour [37]. The form of a
wildfire burning in a steady environment is an ellipse [38]. The environment can change
over time, and different portions of a fire may burn in different environments such as
humidity levels, wind speed, wind direction, slope, and so on. The heterogeneity of the
environment could result in a very complicated fire form [35,39].

F. Tedim et al. [38] made an initial attempt to develop a gravity scale for wildfires that
was comparable to the scales used for hurricanes (Saffir–Simpson scale) and tornadoes
(Fujita scale). The first four categories are labelled as “normal fires,” or incidents that can
generally be put out within the bounds of technology and physical limits. Based on the
assessments of recent extreme wildfire incidents and a consolidation of the literature, the
three remaining categories are grouped as extreme wildfire events (EWEs; see Table 3) [38].
Table 4 shows a list with the most recent and significant wildfire incidents in Australia
from 2007 until today. Some of the fires may have been caused by natural disasters or
may have been caused directly or indirectly by human recklessness and environmental
misuse (particularly the rise in temperature linked to global warming). One of the worst
wildfires (Black Saturday wildfires) in Australian history ravaged Victoria. Many people
were killed or injured in the wildfire, which ravaged many towns and cities, destroying
homes, businesses, schools, and kindergartens [40,41]. From Table 4, it is evident that
wildfire events are happening regularly. Since wildfires occur on a regular basis, there is
a clear need for wildfire detection. To address this, the recent Australian wildfires were
investigated, and an analysis was carried out. The designated area of interest (AOI) is
located around 250 km north of Sydney in Ben Halls Gap National Park (BHGNP), which
comprises 2500 hectares and is 60 kilometres south of Tamworth and 10 kilometres from
Nundle. Because the park is located at a high elevation, it receives a lot of rain and has
cool temperatures. However, in late 2019, a combination of high temperatures and wind
speeds as well as low relative humidity created the conditions for high-intensity wildfire
behaviour to develop. There are different levels of data available, and the differences are
reported in Figure 2. As can be observed in the PRISMA image (Figure 3) acquired on
27 December 2019, active wildfires can be spotted across this AOI.
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Table 3. Classification of wildfires based on fire behaviour and the capacity of control. Adapted from [38].

Fire Category

Real-Time Measurable
Behaviour Parameters

Real-Time Observable
Manifestations of Extreme Fire Behaviour ((EFB)

Type of Fire and Capacity of ControlFireline
Intensities (FLI)

(kWm−1)

Rate Of Spread
(ROS) (m/min)

Flame Length
(FL) (m)

Pyrocumulonimbus
(PyroCb) Downdrafts Spotting

Activity
Spotting

Distance (m)

Normal Fires

1 <500 <5 a

<15 b <1.5 Absent Absent Absent 0 Surface fire
Fairly easy

2 500–2000 <15 a

<30 b <2.5 Absent Absent Low <100 Surface fire
Moderately difficult

3 2000–4000 <20 c

<50 d 2.5–3.5 Absent Absent High ≥100 Surface fire, torching possible
Very difficult

4 4000–10,000 <50 c

<100 d
3.5–10 Unlikely In some

localised cases Prolific 500–1000
Surface fire, crowning likely depending
on vegetation type and stand structure
Extremely difficult

Extreme
Wildfire Events

5 10,000–30,000 <150 c

<250 d 10–50 Possible Present Prolific >1000

Crown fire, either wind- or plume-driven
Spotting plays a relevant role in fire
growth
Possible fire breaching across an
extended obstacle to local spread
Chaotic and unpredictable fire spread
Virtually impossible

6 30,000–100,000 <300 50–100 Probable Present Massive
Spotting >2000

Plume-driven, highly turbulent fire
Chaotic and unpredictable fire spread
Spotting, including long distance, plays a
relevant role in fire growth
Possible fire breaching across an
extended obstacle to local spread
Impossible

7 >100,000
(possible) >300 (possible) >100

(possible) Present Present Massive
Spotting >5000

Plume-driven, highly turbulent fire
Area-wide ignition and firestorm
development non-organised flame fronts
because of extreme turbulence/vorticity
and massive spotting
Impossible

Note: a Forest and shrubland; b Grassland; c Forest; d Shrubland and grassland.
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Table 4. Mos relevant wildfires that took place in Australia from 2007 to 2021 [42–45].

Year Event Name Affected Area Burned Area
(Approx. Acres)

1 June 2020–1 June 2021 2020–2021 Australian wildfire seasons Nationwide 617,763

5 September 2019–2 March 2020 2019–2020 Australian wildfire season
(Black Summer) Nationwide 46,030,000

February 2019 Tingha wildfire New South Wales 57,870

11–14 February 2017 2017 New South Wales wildfires New South Wales 130,000

January 2016 2016 Murray Road wildfire (Waroona
and Harvey) Western Australia 170,910

25 November–2 December 2015 2015 Pinery wildfire South Australia 210,000

15–24 November 2015 Perth Hills wildfire
complex–Solus Group Western Australia 24,750

October–November 2015 2015 Esperance wildfires Western Australia 490,000

29 January–20 February 2015 2015 O’Sullivan wildfire
(Northcliffe–Windy Harbour) Western Australia 244,440

2–9 January 2015 2015 Sampson Flat wildfires South Australia 49,000

January 2015 2015 Lower Hotham wildfire
(Boddington) Western Australia 129,420

1 August–9 August 2015 2015 Wentworth Falls Winter Fire New South Wales 2,000

17–28 October 2013 2013 New South Wales wildfires New South Wales 250,000

18 January 2013 Warrumbungle wildfire New South Wales 130,000

4 January 2013 Tasmanian wildfires Tasmania 49,000

27 December 2011–3 February 2012 Carnarvon wildfire complex Western Australia 2,000,000

7 February–14 March 2009 Black Saturday wildfires Victoria 1,100,000

30 December 2007 Boorabbin National Park Western Australia 99,000

Remote Sens. 2023, 15, x FOR PEER REVIEW 10 of 23 
 

 

Table 4. Mos relevant wildfires that took place in Australia from 2007 to 2021 [42–45]. 

Year Event Name Affected Area 
Burned Area  

(Approx. Acres) 

1 June 2020–1 June 2021 
2020–2021 Australian wildfire sea-

sons 
Nationwide 617,763 

5 September 2019–2 March 2020 
2019–2020 Australian wildfire season 

(Black Summer) 
Nationwide 46,030,000 

February 2019 Tingha wildfire New South Wales 57,870 

11–14 February 2017 2017 New South Wales wildfires New South Wales 130,000 

January 2016 
2016 Murray Road wildfire (Waroona 

and Harvey) 
Western Australia 170,910 

25 November–2 December 2015 2015 Pinery wildfire South Australia 210,000 

15–24 November 2015 
Perth Hills wildfire complex–Solus 

Group 
Western Australia 24,750 

October–November 2015 2015 Esperance wildfires Western Australia 490,000 

29 January–20 February 2015 
2015 O’Sullivan wildfire (Northcliffe–

Windy Harbour) 
Western Australia 244,440 

2–9 January 2015 2015 Sampson Flat wildfires South Australia 49,000 

January 2015 
2015 Lower Hotham wildfire (Bod-

dington) 
Western Australia 129,420 

1 August–9 August 2015 2015 Wentworth Falls Winter Fire New South Wales 2,000 

17–28 October 2013 2013 New South Wales wildfires New South Wales 250,000 

18 January 2013 Warrumbungle wildfire New South Wales 130,000 

4 January 2013 Tasmanian wildfires Tasmania 49,000 

27 December 2011–3 February 2012 Carnarvon wildfire complex Western Australia 2,000,000 

7 February–14 March 2009 Black Saturday wildfires Victoria 1,100,000 

30 December 2007 Boorabbin National Park Western Australia 99,000 

 

Figure 2. Levels of processing from data to services [46].
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3. PRISMA Mission

A scientific and demonstration mission called PRISMA was launched aboard the
VEGA rocket on 22 March 2019. The research based on the HyperSpectral Earth Observer
(HypSEO) project [47], which was a product of a partnership between ASI and the Canadian
Space Agency, served as the foundation for the early conceptual studies. Due to its ability to
capture data globally with a very high spectral resolution and in a wide variety of spectral
wavelengths, PRISMA plays an important role in the current and future international
setting of EO for both the scientific community and for end users. PRISMA offers the ability
to collect, downlink, and preserve the imagery of all panchromatic/hyperspectral channels
totalling 200,000 km2 daily practically on the entire global region, obtaining 30 km by 30 km
square Earth tiles. There are two operational modes for the PRISMA mission: a primary
mode as well as a secondary mode. The main method of operation is the gathering of
panchromatic and hyperspectral data from specified individual targets as demanded by the
end users. The mission will have a setup of continual “background” work in the auxiliary
mode of operation that will collect imagery to fully utilise the system’s resources.

One modest class spacecraft makes up the PRISMA space segment. A hyperspec-
tral/panchromatic camera featuring VNIR and SWIR detectors is part of the PRISMA
payload. It consists of a medium resolution panchromatic camera (PAN, from 400 nm to
700 nm) with a 5 m resolution and an imaging spectrometer with a 30 m spatial resolution
that can acquire in a continuum of spectral bands from 400 nm to 2505 nm (i.e., from 400 nm
to 700 nm in VNIR and from 920 nm to 2505 nm in SWIR). The PRISMA hyperspectral
sensor makes use of the prism to measure the incoming radiation’s dispersion on 2-D
matrix detectors in order to collect many spectral bands from the same ground strip. The
2-D detectors immediately provide the “instantaneous” spectral and spatial dimensions
(across track) of the spectral cube, while the satellite motion (pushbroom scanning concept)
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provides the “temporal” dimension (along track). The following references [48–50] contain
some works on wildfires using PRISMA.

PRISMA data are made freely accessible for research purposes by the Italian Space
Agency (ASI) [51]. In Hierarchical Data Format version 5 (HDF5), the 30 m and 5 m
resolution hyperspectral and panchromatic data are given with four choices:

• Level 1, radiometrically corrected and calibrated top of atmosphere (TOA) data.
• Level 2B, Geolocated at-ground spectral radiance product.
• Level 2C, Geolocated at-surface reflectance product.
• Level 2D, Geocoded version of the Level 2C product.

The analysis in this paper was conducted with Level 2D data. Preliminary, direct
information can be retrieved by looking at single bands. For instance, smoke can be
recognized by looking at the very near infrared (VNIR) bands of the L2D data, while active
wildfires can be retrieved by looking at saturated pixels in the short-wave infrared (SWIR)
bands. Indeed, in the interval of 2000–2400 nm, the signal easily saturates when looking at
active wildfires, as the signal captured from Earth is greater than the signal coming from
the Sun (since the wildfires behave as active power emitters). However, analysing the entire
spectral signature by means of the convolutional neural network allows us to avoid errors
and increase the reliability of the classification.

3.1. Dataset Definition

The AI approach was used to implement automatic segmentation from the obtained
image. From Figure 3, three active wildfires can be observed. The southern and the north-
east wildfires are the bigger ones, whereas the north-west wildfire is quite small. For the
training and validation, the reference pixels must first be labelled. The reference pixels
used in this investigation were manually labelled and are shown in Figure 3. The number
of labelled pixels selected from the PRISMA image (after investigation of the spectra and
looking at the false colour composites) is reported in Table 5. The north-east wildfire was
used as the training and validation dataset, while the south and north-west datasets were
used as the test datasets. The training set accounted for 70% of the labelled data of the
north-east wildfire, while the remaining 30% was chosen for validation. In this research,
the training was carried out by utilising the computational capabilities of the ground (i.e., a
personal computer equipped with Nvidia RTX2060).

Table 5. Number of labelled reference pixels in Australia used for training and testing the CNN [52].

Pixels per Classes

Wildfire
Location Usage 0

Fire
1

Smoke
2

Burned Areas
3

Vegetation
4

Bare Soil Total

North-East Train & Val 58 10 30 50 40 188
South Test 11 11 9 10 10 51

North-West Test 5 0 5 5 5 20

3.2. Automatic Classification with a 1D CNN Approach

The categorisation model utilised in this study was inspired by the model by Hu et al. [53],
which is depicted in Figure 4. The input pixel spectrum of the PRISMA data includes the
SWIR and VNIR channels. Thus, it is an array with C = 234 elements (after removal of some
useless original data in the input hyper-cube). A 1-D convolutional layer with a kernel of 3,
n1 = 112 filter, the same padding, ReLU activation function, and l2 kernel regulariser is the
first hidden layer. After the convolutional layer, there is a max pooling layer with a pool
size of 2 and a stride of 2 (notice that n2 = n1 in Figure 4). The result of this max pooling
is then sent through a flattening layer before being connected to a 128-unit fully connected
layer with ReLU activation. The last layer is a dense unit with the SoftMax activation function
for multiclass classification. It is worth noting that the values of C1 and C2 in the diagram
are easily evaluable and rely on the network’s architecture. The Adam optimiser and the
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categorical cross-entropy loss function were used to train the model. Python and Keras were
used to build the entire network [17,18,54].
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Figure 4. Multi-class classification CNN model [18].

4. Astrionics Implementation

The ultimate aim is to build a model that can be uploaded to an onboard astrionics
system, so the network complexity, parameter count, and inference execution time must all
be optimised. Due to the chip’s restricted elaboration power, the utilisation of a small chip
limits the ability to execute the specific classification model, necessitating the development
of an accurate model. A prototype for executing the analysis was created in order to
evaluate the proposed methodology. To begin, the model was modified to work with the
chosen hardware and to detect wildfires onboard.

A significant component of the architecture of many current AI solutions is cloud
computing or storage. Several sectors are finding it challenging to apply the technology
for real-world use cases due to worries regarding confidentiality, latency, dependability,
and bandwidth. Despite its resource restrictions, edge computing can somewhat help
to ease these difficulties. The claim that edge and cloud computing are incompatible is
untrue; edge computing actually enhances cloud computing. Inflated expectations for edge
AI and edge analytics have peaked, according to the Gartner hype cycles for 2019 and
2018 [55]. Although the sector is still in its infancy, software frameworks and hardware
platforms will advance with time to deliver value at a reasonable price. Three important AI
industry leaders—Intel, Google, and Nvidia—are supporting edge AI by offering hardware
platforms and accelerators with compact form dimensions. Although each of the three has
benefits and drawbacks, it all depends on the application, budget, and amount of experience
that is available. Table 6 presents the comparison of the hardware accelerators [55].

Table 6. Edge AI hardware comparison [55].

Parameters Nvidia Jetson Nano Google Coral USB Intel Movidius NCS
Inference time ~38 ms ~ 70–92.32 ms ~ 225–227 ms

fps ~25 ~9–7 ~4.43–4.39
CPU usage 47–50% 135% 87–90%

Memory usage 32% 8.7% ~7%
OS Ubuntu 18.04 aarch64 Raspbian GNU/License 10 (Buster) Raspbian GNU/License 9 (Stretch)
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The Intel Movidius Neural Compute Stick (NCS) is a high-performance, affordable
USB stick that may be used to implement deep learning inference applications, according
to the comparison above. Great AI solutions are provided by the Google Edge TPU. The
NVIDIA Jetson Nano, in conclusion, crams a lot of AI power into a little package. We used
the Intel Movidius stick and two Nvidia variants, the Jetson and TX2, for our research [56].

4.1. Description of the hardware accelerators

In this section, we provide a description of the three selected astrionics hardware
components, with specific reference to the accelerators (i.e., the Movidius Stick in section b,
the Jetson Nano in section c, and Jetson TX2 in section d).

4.2. Movidius Stick

The Intel Movidius NCS is a compact fanless deep learning USB drive that is intended
to be used for learning AI programming techniques. The Movidius Visual Processing Unit,
which is minimal in power but high in performance, drives the stick. It is equipped with
an Intel Movidius Myriad 2 Vision Processing Unit. These are the main specifications [26]:

• Supporting CNN profiling, prototyping and tuning workflow;
• Real-time on-device inference (Cloud connectivity not required);
• Features the Movidius Vision Processing Unit with energy-efficient CNN processing;
• All data and power provided over a single USB type-A port;
• Run multiple devices on the same platform to scale performance.

The workflow for executing the software modules on the hardware system is depicted
in Figure 5. Prior to running the experiments on the Movidius Stick, the CNN must be
translated from its original format (for example, the Keras model) to an OpenVino format,
which may be accomplished through the use of the OpenVino library. Because of the
Movidius Stick, deep learning coprocessors that are inserted into the USB socket can be
inferred more quickly than before. Before transferring the CNN onto the Movidius, it is
necessary to optimise the network, which may be accomplished by utilising the OpenVino
Intel’s hardware-optimised computer vision library. Intel Distribution, the OpenVino
toolkit, is extremely easy to use and is included with the Intel processors. Indeed, once
the target CPU has been determined, the OpenCV optimised for OpenVino can handle the
rest of the setup. The toolkit supports heterogeneous execution across computer vision
accelerators (such as GPU, CPU, and FPGA) using a standard API, in addition to enabling
deep learning inference at the edge. It also decreases the time to market by utilising a
library of functions and preoptimised kernels, and it includes optimised calls for OpenCV.
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Following the model’s implementation on Movidius, it was tested against the PRISMA
hyperspectral images. Using the same settings used for the training and validation datasets,
the image was processed. Figure 6 depicts the high-level block diagram for the installation and
optimisation of OpenVino. The internal data structure or program that a compiler or virtual
machine uses to represent source code is known as an intermediate representation (IR).

An IR is made to facilitate additional processing such as optimisation and translation.
The model is fed to the Model Optimiser before being delivered to IR, from which we
can obtain the .xml and .bin files required to execute OpenVino. The weight and biases
are saved in binary form in a .bin file, while the standardised architectural arrangement
(and other metadata) is stored in a .xml file, as shown in Figure 7. Model optimisation was
performed on a Windows machine and the IR model was implemented on a Windows
system with NCS2, as depicted in Figure 8.
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Figure 8. Deployment procedure on NCS2 where the pre-processed data and IR model is fed to the
inference engine and the results are acquired.

4.3. Jetson Nano

The recently released JetPack offers a complete desktop Linux environment for Jetson
Nano that is built on Ubuntu. Major open-source frameworks such as TensorFlow, MXNet,
Keras, Caffe, PyTorch, and the SDK enable the native installation of frameworks for robotics
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and computer vision development like OpenCV. Thanks to complete interoperability with
all of these frameworks and NVIDIA’s high Calibre platform, it has become simpler than
ever before to deploy AI-based inference applications to Jetson. The Jetson Nano makes
real-time computer vision and inference possible for a wide range of intricate deep neural
network (DNN) models. Advanced AI systems, IoT devices with intelligent edge analytics,
and multi-sensor autonomous robots are made possible by these capabilities. Using the
ML frameworks, it is even possible to carry out transfer learning while retraining networks
locally on the Jetson Nano [55,57–60]. This procedure is shown in Figure 9, and the
implementation procedure is the same as the Intel Movidius Stick.
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4.4. Jetson TX2

The Nvidia Jetson series of embedded platforms provides edge devices with server-
class AI computation capabilities. When it comes to deep learning inference, Jetson TX2
is twice as energy efficient as its precursor, Jetson TX1, and it performs better than the
Xenon server CPU built by Intel. This increase in productivity reframes the potential for
moving advanced AI from the cloud to the edge. With support from long short-term
memory networks (LSTMs), recurrent neural networks (RNNs), TensorRT libraries, and
the NVIDIACUDA Deep Neural Network library (cuDNN), Jetson TX2 accelerates cutting-
edge deep neural network (DNN) designs. The conversion of the Keras model to the
TensorFlow model is represented in the deployment process in Figure 10, which illustrates
this by simply using TensorFlow and TensorFlow TFT integration to show the important
distinction. To run NN inferences on their hardware, Nvidia developed the TensorRT NN
framework, and the implementation procedure is the same as the Intel Movidius Stick.
TensorRT is highly performance-optimised on NVIDIA GPUs. Currently, it is probably the
quickest method for running models. NVIDIA’s TensorRT inference acceleration library
enables the utilisation of NVIDIA GPU resources to the fullest extent possible at the cutting
edge [60–62].
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5. Results

The results of the classification are shown by means of the segmentation map reported
in Figure 11. The classified areas look pretty well-defined, with a very low level of noise.
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Figure 11. Segmentation map obtained from the trained model.

Table 7 summarises the outcomes of the training section conducted over the southern
wildfire. Using the validation dataset, the final overall accuracy of the model was 97.83 per-
cent, which was marginally higher than the 96.87 percent reported in Amici et al. [63],
where a support vector machine (SVM) was employed to achieve the accuracy.

Table 7. Validation dataset accuracy.

Precision Recall F1 Score

0—Fire 1.00 1.00 1.00
1—Smoke 1.00 1.00 1.00
2—Burned 1.00 1.00 1.00

3—Vegetation 0.92 1.00 0.96
4—Bare soil 1.00 0.92 0.96

Accuracy 0.98
Macro average 0.98 0.98 0.98

Weighted average 0.98 0.98 0.98

Only the inference problem is considered when evaluating machine learning imple-
mentation on hardware accelerators. This indicates that the training is carried out on a
computer with advanced capabilities capable of handling the large amount of data needed
for the training. As a result, the training in this paper was in the ground with sophisticated
computing capabilities (i.e., a computer with an Nvidia RTX2060), and we describe the
findings acquired from the authors’ earlier work [18] in Table 8.
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Table 8. In the three areas indicated, the precision, recall, and F1 scores were calculated. The dataset
from north-east Australia was utilised for training, while the others were used for testing.

Wildfire Location Precision Recall F1 Score

Australia, North-East 0.98 0.98 0.98
Australia, South 0.98 0.98 0.98

Australia, North-West 1.00 0.95 0.97

The results that were obtained by deploying the CNN into the three hardware acceler-
ators revealed that the performances that were stated in Table 8 were not affected by the
deployment of the CNN. As a result, this section describes the deployment performance in
terms of the inference time and the amount of power consumed.

a. Results on the Movidius: The results of the deployment on the Movidius indicate
that the accuracy did not vary in comparison to the values that were presented in
Table 9. At the same time, the inference time was approximately 5.8 milliseconds,
and the computing power was 1.4 watts on average.

Table 9. Inference time and power consumption on the three hardware accelerators.

HW Accelerator Inference Time (ms) Power Consumption (W)

Movidius 5.8 1.4

Jetson TX2 3.0 4.8 (2.1 GPU only)

Jetson Nano 3.4 2.6 (2.0 GPU only)

b. Results on the Jetson TX2: The results of the deployment on the Jetson TX2 revealed
that the accuracy did not change in comparison to the values that were reported in
Table 9. On the other hand, the inference time was approximately 3.0 milliseconds,
and the computational power was 4.8 W on average (2.1 W if considering the power
consumed by the GPU only). It is important to note that these results are related
to the TX2 setup that provided the least inference time and the maximum power
consumption. Other configurations can be set up to lower the amount of power that
is consumed, so it is important to keep this in mind (and increase the inference time).

c. Results on the Jetson Nano: The findings of the deployment on the Jetson Nano
demonstrate that the accuracy did not change compared to the values reported in
Table 9. On the other hand, the inference time was approximately 3.4 milliseconds,
and the computational power was 2.6 watts on average (2.0 W if considering the
power consumed by the GPU only). Concerning the Jetson TX2, these findings are
associated with the configuration that offers the quickest possible inference time at
the expense of the highest possible power consumption.

6. Discussion

In light of the findings discussed above, the following is worth further investigation.
The deployment of the hardware accelerators in all of the reported studies used final models
with weights given in float 32. As a result, the precision, recall, and F1 results remained
unchanged from those achieved during the PC training and testing method. On one hand,
this result was possible due to the small dimension of the CNN model, and further weight
quantisation was not required (i.e., results in inference time and power consumption were
already consistent with the expected and/or required values without additional weights
quantisation). Nevertheless, it should be noted that if the model needs to be improved
further in terms of weight compression, embedding, or quantisation, the classification
performance may suffer. In any case, this investigation’s findings show that the weights’
data format does not need to be changed for the proposed application, and the classification
performances were nearly identical while using a PC or a hardware accelerator.
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Table 9 shows that the inference timings are perfectly consistent with a real-time early
detection service. It should be noted that this time only pertains to the CNN model’s
inference time and does not include the pre-processing of the image or the extraction
of the spectral signature for the pixel of interest. The inference time reported in Table 9
refers to the analysis of a single pixel. However, it is noteworthy that there is no need
to run the classification for all pixels of all detected images. Indeed, a pre-processing
based on the saturation of SWIR channels or the usage of specialized indices such as the
hyperspectral fire detection index (HFDI) already discussed in [64] can provide a list of
candidate pixels where an active fire could be present. Then, the inference can be run
on a small neighbourhood of those pixels, so that the analysis can be performed in a few
seconds, at most (the reader should note that the acquisition of a scene, considering a multi-
or hyper-spectral payload, generally requires few seconds—for PRISMA, it is 4 s). However,
these kinds of analyses should be performed along with several other considerations
impacting the whole design of the satellite platform. The contribution of this paper is the
demonstration of the feasibility of the design of these new mission concepts.

Table 9 also reports the power usage that is generally in line with space missions.
When it comes to large platforms like PRISMA, all of the reported solutions are in line with
the platform’s total power budget; however, when it comes to CubeSats or small satellites,
the Movidius Stick and the Jetson Nano appear to be the most promising options. The
maximum power budgets for 1U, 2U, and 3U CubeSats typically fall within the following
ranges: 1 to 2.5 Watts, 2 to 5 Watts, and 7 to 20 Watts, accordingly [65]. Therefore, the Jetson
Nano and the Intel Movidius are more appropriate for the performance of a CubeSat when
taking into consideration the power budget. It is worthy to note that in other works such as
in [17], the authors investigated the preliminary generalization performances of the model
on other areas of the world with promising outcomes.

As a review of the preceding arguments, this study highlights the potential for future
missions to include onboard hardware accelerators to provide early-warning services [66].
We established that this is possible when considering the wildfire analysis that was in-
vestigated in this study. Even though we did not take into consideration other important
elements impacting on time and power (such as image pre-processing), our results demon-
strate the feasibility of the proposed approach. Moreover, if the input data and model
complexity are consistent with the ones mentioned here, these conclusions could be applied
to other image processing jobs. The comparison of the three hardware solutions revealed
that the Jetson Nano is the most promising technology as it offers the best combination of
power consumption and inference time (even though the final choice may be influenced by
other factors such as the hardware accelerator’s compatibility with the onboard computer,
mechanical, and/or electrical interfaces, overall platform dimensions and characteristics,
and so on). Furthermore, it is important to remind the reader that this comparison of
accelerator technologies is far from complete, as additional boards exist that were not
examined in this work for the sake of simplicity (for instance, the Google Coral TPU or
FPGA system-on-chips). This work, on the other hand, answers the question of whether or
not AI can be used to handle complex data like in hyper-spectral photography, indicating
that the current technology is ready and efficient.

DSSs are a relatively new entrant in the realm of small satellite missions. This innova-
tion boosts the value of the mission and paves the way for a variety of new applications.
DSSs, or distributed satellite systems, are mission-oriented systems that consist of two
or more satellites or modules cooperating with one another to fulfil goals that cannot
be accomplished with a single satellite. In recent years, the application of DSS mission
architecture has become increasingly widespread. Due to recent advancements in satellite
technology and the ability to mass create low-cost small satellites in huge quantities, there
has been a resurgence of interest in DSSs such as LEO satellite constellations. The results of
the research show that edge computing in space is plausible. Furthermore the findings are
promising to enable the TASO in space with a single satellite. Additionally, the same can be
implemented and tested for distributed satellite systems. With the use of the Inter Satellite
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Link (ISL), which connects the satellites that make up the DSS, the system transforms into
an intelligent-DSS (i-DSS), which allows for the data to be shared, analysed, and can be
employed to provide real-time or near-real-time wildfire management [21,67].

7. Conclusions

The goal of this paper was to examine the performance of hardware accelerators for the
edge computing of wildfires for real-time alerts using convolutional neural network models
and hyperspectral data analysis. The analysis of the wildfires that occurred in Australia
served as a practical example, and the data from PRISMA was utilised in the investiga-
tion. Considering three distinct hard-ware accelerators—the Intel Movidius Myriad 2, the
Nvidia Jetson Nano, and the Nvidia Jetson TX2—showed that the onboard application is
possible in terms of both the inference time and power consumption. These accelerators
were employed to show that the onboard application is practicable. In line with other
earlier works in the literature, this paper suggests the opportunity to investigate hardware
accelerators for onboard edge computing in upcoming space missions in order to improve
the services, better manage the entire space-to-ground data-flow, start providing real-time
information, and enabling the trusted autonomous satellite operation (TASO), which could
be really important in the event of disasters and extreme event management. Other ac-
celerators will be evaluated in future research including field programmable gate arrays
(FPGA) and the Google Coral Tensor Processing Unit (TPU). The proposed method will be
evaluated in the distributed satellite system (DSS) for real-time disaster management and
will increase the area of interest (AOI) coverage and decrease the revisit time. In the future,
the methodology will be examined for its applicability to other types of Earth observation
(EO) missions, and hardware-in-the-loop experiments will be conducted to demonstrate
its effectiveness. Furthermore, transfer learning will be introduced in order to generalise
the proposed model for the detection of wildfires and to study its possible applicability to
other EO/disaster-relief missions.
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