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Abstract: Regional quantification of energy and water balance fluxes depends inevitably on the
estimation of surface and rootzone soil moisture. The simulation of soil moisture depends on the soil
retention characteristics, which are difficult to estimate at a regional scale. Thus, the present study
proposes a new method to estimate high-resolution Soil Hydraulic Parameters (SHPs) which in turn
help to provide high-resolution (spatial and temporal) rootzone soil moisture (RZSM) products. The
study is divided into three phases—(I) involves the estimation of finer surface soil moisture (1 km)
from the coarse resolution satellite soil moisture. The algorithm utilizes MODIS 1 km Land Surface
Temperature (LST) and 1 km Normalized difference vegetation Index (NDVI) for downscaling 25 km
C-band derived soil moisture from AMSR-2 to 1 km surface soil moisture product. At one of the test
sites, soil moisture is continuously monitored at 5, 20, and 50 cm depth, while at 44 test sites data
were collected randomly for validation. The temporal and spatial correlation for the downscaled
product was 70% and 83%, respectively. (II) In the second phase, downscaled soil moisture product is
utilized to inversely estimate the SHPs for the van Genuchten model (1980) at 1 km resolution. The
numerical experiments were conducted to understand the impact of homogeneous SHPs as compared
to the three-layered parameterization of the soil profile. It was seen that the SHPs estimated using the
downscaled soil moisture (I-d experiment) performed with similar efficiency as compared to SHPs
estimated from the in-situ soil moisture data (I-b experiment) in simulating the soil moisture. The
normalized root mean square error (nRMSE) for the two treatments was 0.37 and 0.34, respectively. It
was also noted that nRMSE for the treatment with the utilization of default SHPs (I-a) and AMSR-2
soil moisture (I-c) were found to be 0.50 and 0.43, respectively. (III) Finally, the derived SHPs were
used to simulate both surface soil moisture and RZSM. The final product, RZSM which is the daily
1 km product also showed a nearly 80% correlation at the test site. The estimated SHPs are seen to
improve the mean NSE from 0.10 (I-a experiment) to 0.50 (I-d experiment) for the surface soil moisture
simulation. The mean nRMSE for the same was found to improve from 0.50 to 0.31.

Keywords: soil moisture downscaling; root zone soil moisture; soil hydraulic parameters; HYDRUS-
1D; AMSR-2; MODIS

1. Introduction

Soil moisture is one of the most critical environmental variables for understanding
energy and water balance, both regionally and locally [1]. It controls the interchange
of energy and water fluxes at the interface of the atmosphere and land surface [2]. Soil
moisture plays a pivotal role in various earth system processes such as precipitation’s
partitioning into surface runoff and infiltration and partitioning of solar radiation into
latent heat, sensible heat, and ground heat fluxes [3]. In the current scenario of increased
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number of extreme climatic events, acquiring high-resolution surface and root zone soil
moisture (RZSM) data is crucial for quantifying energy, water and mass exchange [4].
Additionally, it has a direct role in the domain of agriculture, irrigation, biodiversity, terrain
management and trafficability, and weather and climate forecasting [5–8]. Being a causative
factor, it has a further role in adverse events such as drought, floods, and geohazards such
as landslides and debris flows [9–14].

Although, soil moisture is an important state variable that varies horizontally and
vertically over time, estimating the same still remains challenging primarily because of
terrain heterogeneity [15], inaccessibility of the terrain, huge cost of establishing and
maintaining closely spaced soil moisture observational networks [16,17]. A number of
ground-based, in-situ, techniques have been developed to measure soil moisture at a point
scale [2]. However, the in-situ measured soil moisture cannot be utilized in estimating the
same at a regional or global scale due to high variability [2].

Remotely sensed data are the most appropriate solution to acquire soil moisture data at
a large areal extent. Satellite remote sensing with the help of passive and active microwave
sensors can provide soil moisture data covering the entire globe [18]. Since microwave
wavelengths can penetrate clouds, microwave sensors can obtain data throughout the day,
regardless of the lighting conditions. A number of passive as well as active microwave
sensors/missions are being recently utilized for collecting soil moisture globally, including
Advanced Microwave Scanning Radiometer-2 (AMSR-2), Advanced Microwave Scanning
Radiometer E (AMSR-E), Soil Moisture and Ocean Salinity (SMOS), and Soil Moisture
Active Passive (SMAP) mission, and Advanced Scatterometer (ASCAT). Even though
active microwave sensors provide data at a high resolution, it is achieved at the expense
of low temporal resolution because of the narrow swath. On the other hand, passive
microwave sensors (radiometers) require a very large aperture to detect low levels of
naturally emitted microwave radiation from the objects or surface of the earth [18]. Most of
the passive microwave radiometer sensors have a spatial resolution varying between 25
and 40 km, which is considered coarse, especially for agricultural studies [19]. Thus, due to
the instrument’s coarse spatial resolution, the retrieved satellite soil moisture also has a
coarser spatial resolution. However, with data fusion techniques, the merging of SMAP
and Sentinel-1 provides surface soil moisture data at a spatial resolution of 3 km [20]. These
satellite sensors retrieve data for a depth of 0–5 cm only [21].

The present study puts forward a method to simulate the daily 1 km RZSM and
is carried out in three phases. The soil moisture simulation depends on soil retention
characteristics, which are difficult to estimate on a regional scale. Most of the studies
utilize literature-based values that are dependent on the soil texture of the study area or
are estimated using the pedotransfer functions [22]. However, one needs to be careful in
utilizing these values as the retention characteristics of soil may change with time depend-
ing on the process the soil may undergo such as agricultural activities and weathering.
These processes tend to change the porosity of the soil. Thus, to improve the soil moisture
simulation, it is necessary to first estimate these retention characteristics of the soil. In the
current, study, a method is presented to first derive these properties. It is hypothesized
that the soil moisture-based Earth observations provide information that can be inversely
utilized to estimate the soil properties. However, as mentioned earlier the microwave
data are coarse resolution; we first downscale the microwave soil moisture, to include the
spatial heterogeneity of the region. So, the new algorithm utilizes the Earth observations
with a numerical model to estimate the soil properties that are the effective Soil Hydraulic
Parameters (SHPs). Thus, the first phase uses a modified algorithm to downscale 25 km
AMSR-2 soil moisture to 1 km resolution. Here, the AMSR-2 C-band data have been used
as long-term data are available with AMSR-E data starting in 2002. This dataset gives an
opportunity to develop a long-term soil moisture dataset compared to L-Band data such as
SMAP, which is a recent dataset. Additionally, in another study, the performance of the
AMSR-2 C-band and LPRM datasets was found to be similar to the SMAP dataset in the
Central Ganges plain [23]. A number of approaches have been used by various researchers
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to disaggregate the coarser resolution soil moisture to finer resolution. Soil evaporative
efficiency and soil moisture [24], LST, NDVI, and soil moisture [25], MODIS and physical
based Soil Evaporative Efficiency (SEE) model [1,26], Evaporative Fraction (EF) and Actual
Evaporative Fraction (AEF) [27], Sequential model [28], Disaggregation based on Physical
And Theoretical scale Change (DisPATCh) algorithm [28], Enhanced Vegetation Index (EVI)
and surface temperature from MODIS are some of the popular disaggregation methods.
Most of these algorithms are knitted by utilizing the relationship among finer LST, VI, and
coarser soil moisture. Considering the available approaches, we have utilized LST, NDVI
and AMSR-2 C-band derived soil moisture [1]. In the second phase, the downscaled soil
moisture is utilized in inversely deriving the SHPs required for the simulation of soil water
content in HYDRUS-1D [29]. The consistency of SHPs is evaluated based on the numerical
experiments considered in the present study. In the third phase of the study, the optimized
SHPs based on downscaled soil moisture are utilized to model the soil moisture content in
the unsaturated zone and provide RZSM at a 1 km spatial resolution with a daily temporal
resolution. The importance of the study lies in the fact that the algorithm proposed in this
study is intended to make it independent of in-situ data. This method would be helpful for
the unmonitored regions and this method is replicable globally wherever the satellite data
products are available.

The study presented in this paper is organized as follows. Section 2 briefly describes
the satellite and ground-based observations and the equipment used to monitor the soil
moisture at validation sites. Section 3 outlines the soil moisture downscaling algorithm,
and numerical simulations to optimize SHPs and derive RZSM. Results are discussed in
detail in Section 4 followed by discussion in Section 5. Section 6 includes the conclusions
and limitations of the present study.

Study Area

The validation sites are located in the agricultural belt of Northern India, in the
Varanasi district of Uttar Pradesh, India. The latitudinal and longitudinal extent of the
district is 25.17◦N–25.58◦N and 82.66◦E–83.19◦E, respectively. Figure 1 shows the geograph-
ical location of the study area. The region experiences a humid sub-tropic climate, Cwa
or Cwb according to Köppen–Geiger climate classification [30]. The region experiences
warm summers with temperatures often going above 40 ◦C and mild dry winters with
temperatures going as low as 2 ◦C because of the cold waves from the Himalayas [31].
The study area receives an average annual rainfall of 103.6 cm and the majority of the
rainfall events happen between June and September. The total areal extent of the district
is 1535 km2 and the total population is 3.68 million as per the 2011 census of India. The
area has a high population density [32]. The study area (Figure 1) can be characterized
by quaternary alluvium deposits with younger and older alluvium. The rich soil in the
study area is formed and frequently enriched by erosional and depositional activities of
the river Ganges, its tributaries, and channels. Geomorphologically the region can be
broadly classified into active flood plains of the river Ganges and its tributaries, and older
flood plains of the same. The distribution of the elevation over the study area is given
in Figure 1 (C) and it shows that the majority of the area has an elevation range of 60 to
100 m above Mean Sea Level (MSL) with maximum elevation reaching less than 200 m
above MSL [33]. The land use of the study area is dominated by agricultural activities and
small-scale farmers hold the majority of the agricultural land.
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Figure 1. (A) Geographical location of the study area in the Indian sub-continent. (B) Geographical
extent of the study area along with spatial distribution of validation sites and the location of Hy-
draProbe at the validation site. Red dot represents the HydraProbe site, where Stevens HydraProbe
soil moisture sensor is permanently installed. Green dots represent the 44 validation sites, where
surface soil moisture is obtained for six random days during the study through gravimetric analysis.
(C) Distribution of altitude in the study area from MSL.

2. Data Sources

The study region has comparatively homogeneous soil types and agricultural areas.
This section discusses the collection of in-situ soil moisture data and satellite-derived
datasets that were used for the present study. Satellite data sets used in this study for
the development of the model are freely available and sources are mentioned in the data
availability statement.

2.1. In-Situ Soil Moisture Data

The soil moisture sensor, Stevens HydraProbe, is installed at a site (calibration and
validation site for Scatsat-1 and NASA—ISRO Synthetic Aperture Radar (NISAR)), located
at Institute of Environment and Sustainable Development, Banaras Hindu University,
Varanasi where soil moisture is being monitored continuously at 5 cm, 20 cm, and 50 cm
depth since 2017 at hourly intervals. Stevens HydraProbe is a reliable resource for mea-
suring soil moisture and other parameters such as soil temperature and precipitation and
has been extensively used in similar studies [34–36]. The surface soil moisture data are
also validated spatially at 44 different sites where in-situ measured surface soil moisture
data were available on six dates: 1 January 2018, 5 February 2018, 16 February 2018, 28
March 2018, 18 April 2018 and 4 June 2018 (Figure 1). Three surface soil samples were
collected at each site on each sampling date. Thus, 24 samples were collected in total at
each of the 44 sites. The analysis was carried out using the gravimetric method, where the
soil samples were oven dried and the difference in weight of wet soil and oven-dried soil
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was taken as the moisture content of the soil. For the second phase of the study, six-month
in-situ soil moisture data from the HydraProbe site from January to June 2018, has been
utilized to obtain the SHPs. The October–December 2018 in-situ soil moisture data are
used for validating the simulated soil moisture with the utilization of estimated SHPs. The
period July to September 2018 is the Monsoon period and the soil is usually saturated due
to which in-situ soil moisture was not available at the HydraProbe site.

2.2. MODIS Data

The current study utilizes the Moderate Resolution Imaging Spectroradiometer’s
(MODIS) daily (day and night) Land Surface Temperature (LST) version 6 (MOD11A1.
006) having a spatial resolution of 1 km [37]. Along with MOD11A1. 006, products of
MOD13A2.006 are used for establishing coefficients of regression and fractional vegetation
index in the algorithm [38]; 16 days NDVI, 16 days VI Quality indicators, and 16 days
composite day of the year are the data set layers that are used from MOD13A2.006. The
Vegetation Indices (VI) are derived from the combination of multiple bands. In the current
study, the Normalized Difference Vegetation Index (NDVI) is used, which is the normalized
ratio of red and Near Infrared (NIR) reflectance. The NDVI ranges from −1 to +1. The
value of −1 indicates very little or no vegetation activity and values closer to +1 indicate
lush vegetation. A detailed description of how MOD11A1.006 and MOD13A2.006 are used
in the present study is given in the Methodology (Section 3). Additionally, MOD15A2H
version-6 [39] is used for deriving the combined Leaf Area Index (LAI) of the study area.
MOD15A2H-006 is a global-composite dataset (The LAI algorithm picks the most suitable
value for each pixel from the Terra sensor from an 8-day window) with 500 m spatial
resolution. Furthermore, albedo data from band 20 of MODTBGA, MODIS [40] are used for
the RZSM simulations in the present study. The MODTBGA Version 6 of the Terra MODIS
collection is a daily global dataset with a 1 km spatial resolution.

2.3. C-Band Derived Soil Moisture from AMSR-2

Advanced Microwave Scanning Radiometer-2 (AMSR-2) measures the weak mi-
crowave emissions from the Earth’s surface as well as the atmosphere [21]. The sensor
has been providing measurements on soil moisture, precipitation, sea surface temperature,
snow cover, water vapor, sea ice concentration, winds, and cloud liquid water since 2
July 2012. The soil moisture downscaling algorithm used in the present study uses the
daytime and nighttime (ascending and descending) soil moisture data from AMSR-2 with
a spatial resolution of 25 km. The present study utilized AMSR2/GCOM-W1 surface soil
moisture (LPRM) L3 1 day 25 km × 25 km ascending V001 (LPRM_AMSR2_A_SOILM3)
and AMSR2/GCOM-W1 surface soil moisture (LPRM) L3 1 day 25 km × 25 km descending
V001 (LPRM_AMSR2_D_SOILM3), which are the gridded level-III data sets obtained from
AMSR-2 using Land Parameter Retrieval Model (LPRM) [41]. The AMSR-2 data have been
previously validated at various ground stations as part of the International Soil Moisture
Network (ISMN) [42]. The same has been validated at Indian sites also, where in LPRM
datasets, C-band products had R equal to 0.621 and an average unbiased RMSE of 0.07 [23].
Volumetric soil moisture from 6.9 GHZ (C Band) of daytime and nighttime is used in the
present study.

2.4. Field and Ancillary Datasets

The soil texture data at the HydraProbe site were based on percentages of sand and
clay. However, for regional assessment, the data have been utilized from the available FAO
STATSGO. FAO STATSGO is a 30 s soil texture data remapped from the original global,
5 min soil texture data of the United Nations’ Food and Agriculture Organization (FAO).
State Soil Geographic (STATSGO) datasets are available from the NASA Center for Climate
Simulation (NCCS) data portal along with further information [43]. The meteorological
data, including maximum and minimum temperature, relative humidity (morning and
evening), sunshine hours, and wind speed used in the simulations were collected in-situ and
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also obtained from NASA-POWER (Prediction Of Worldwide Energy Resources) [44]. The
elevation data are derived from Hydrological data and maps based on SHuttle Elevation
Derivatives at multiple Scales (HydroSHEDS). The HydroSHEDS DEM is hydrologically
conditioned with void-filling, filtering, stream burning, and upscaling through various
techniques [33].

3. Methodology

A number of studies have been conducted by combining the two sensitive land
parameters, NDVI and LST, to quantify soil moisture for the last couple of decades [4,45]
and there is an established strong negative correlation between LST and NDVI [46,47]
(Figure 2).

Figure 2. LST-NDVI scatter plot of the study area. LST and NDVI are chosen from corresponding
LST (average of day and night) and NDVI raster of single day. The current plot shows the LST-NDVI
negative correlation of 20 January 2018.

In addition, Figure 3 shows the correlation of NDVI and LST with the soil moisture
in the study area. The correlation between LST-soil moisture and NDVI-soil moisture is
calculated for 365 days (1 January 2018–31 December 2018). The spatial distribution of
these correlation values is demonstrated in Figure 3. The correlation between NDVI and
soil moisture was found to be positive. The values varied between 0.35 and 0.55 within
the quantile range of 25% and 75%. In the same quantile range, the correlation between
LST and soil moisture was negative (−0.43 to −0.53). The maximum correlation was 0.81
and −0.71, respectively. This method has been comprehensively tested and reviewed
globally in various climatic conditions and terrain types [48]. Thus, the algorithm in the
first phase of the present study downscales the 25 km C-band derived surface soil moisture
from AMSR-2 to a 1 km surface soil moisture product by exploiting the strong correlations
among MODIS-NDVI, MODIS-LST, and soil moisture.
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Figure 3. Correlation plot of LST and AMSR-2 soil moisture of study area (right). Correlation plot of
NDVI and AMSR-2 soil moisture of the study area (left). The four AMSR-2 pixels are marked in each
figure with black lines.

3.1. Downscaling AMSR-2 Surface Soil Moisture

The 16 days MODIS NDVI (MOD13A2) product is linearly interpolated to daily NDVI
by considering the data acquisition date and quality. The computationally expensive
processing was executed with an algorithm in R [49] by using MODIS [50] and MODISEx-
tra [51] packages. A soil moisture downscaling algorithm based on previous work [1] is
modified for the current study. The method is based on soil evaporative efficiency (SEE)
in which 25 km AMSR-2 soil moisture is downscaled to 1 km. The SEE is derived from
the 1 km LST and 1 km NDVI and a relationship between SEE and soil moisture is estab-
lished for disaggregation. The algorithm starts by computing fractional vegetation and is
calculated as below, (Equation (1)).

Fv =
NDVIMODIS − NDVIs

NDVIv − NDVIs
(1)

where Fv is fractional vegetation cover, NDVIMODIS is the NDVI derived from MODIS [38],
NDVIv is the NDVI fraction for the full vegetation cover, and NDVIs is the NDVI fraction
for bare vegetation. Temporal computation of SEE requires skin temperature (Ts) also for
each pixel. The expression used for finding the Ts is given in Equation (2).

Ts =
LSTMODIS − fv . (Tv,min + Tv,max ) /2

1 − fv
(2)

where Ts is the skin temperature and LSTMODIS is the pixel LST which is derived from
MODIS. Fv is the fractional vegetation cover, Tv,max and Tv,min (min(TMODIS)) are the maxi-
mum and minimum temperature of the vegetated area and similarly Ts,max (max(TMODIS)),
and Ts,min (min(TMODIS)) are the maximum and minimum temperature of bare soil. Tv,max
is estimated using the following expression, (Equation (3))

Tv,max = min(
LSTMODIS − Ts,max (1 − fv)

fv
) (3)
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Soil Evaporative Efficiency (SEE) is calculated using the below expression (Equa-
tion (4)).

SEE =
Ts,max − Ts

Ts,max – Ts ,min
(4)

The relationship between SEE and soil moisture is computed for each three-month
period for the present study (January 2018 to June 2018). So, the average SEE at 25 km in
Equation (5) is derived for the January–March period and April to June period separately,
based on Equation (4). The soil moisture at 1 km is obtained over the study area by
computing the difference between the SEE at 1 km and the SEE at 25 km (Equation (5)).
Additionally, the present study computed SEE and the parameters (Ts,max, Ts,min, Tv,max,
and Tv,min) yearly, half-yearly, and monthly along with quarterly computations. The best
results were obtained when SEE is computed quarterly because the three months period
best represents the seasonal changes in the study area. The seasonality being captured in
the values of LST, NDVI, and Soil moisture (AMSR-2), SEE, and downscaled soil moisture
are shown in Figure 4.

SM1km = (
∂SM
∂SEE

)
25km

(SEE1km − SEE25km) + SM25km (5)

where SM1km is the high-resolution (1 km) soil moisture calculated, SM25km is the AMSR-2
soil moisture at 25 km (coarser resolution), ∂SM/∂SEE is the partial derivative of soil
moisture with respect to SEE, and SEE1km and SEE25km are the SEE at 1 km and 25 km,
respectively. The partial derivative is computed by establishing the coefficients of multiple
regression between SEE and SM, as shown in Equation (6).

∂SM
∂SEE

= a
1
N

N

∑
i=1

SMAMSR−2,i

SEE25km,i
(6)

where a is an experimental tuning parameter and N is the number of days the algorithm
has been applied over the study area.

3.2. Derivation of SHPs and RZSM Simulation

Since, RZSM has a crucial role in various applications such as irrigation scheduling,
flood mapping, drought estimation and even in numerical simulations of landslides, any
method for retrieving RZSM at a regional scale remains significant. Thus, the estimation of
subsurface soil moisture is equally important for surface soil moisture estimation. A number
of studies have been undertaken to extrapolate the satellite-based surface soil moisture and
quantify the root zone (up to 1 m) [52]. However, quantifying soil moisture in the root zone
from the surface soil moisture is difficult because of the heterogeneity and nonlinearity of
the physical processes which affect the soil moisture. On the other hand, the quantification
of RZSM through a numerical model requires the input of SHPs, which in themselves are
difficult to measure [22]. Thus, the second phase of the study hypothesizes that surface
soil moisture downscaled from Earth observation data can be utilized to inversely derive
SHPs and help in improved estimation of RZSM using HYDRUS-1D. HYDRUS-1D is a
software package that comprises a one-dimensional numerical model for simulating water
flow in vertical soil profiles and solute transport in variably saturated porous media [29].
HYDRUS-1D is a finite element model [29]. The model can be downloaded from the
following link, https://www.pc-progress.com/en/Default.aspx?Downloads, accessed on
29 November 2022. It solves Richards’ equation for soil water flow dynamics [53] based on
Equation (7).

∂θ

∂t
=

∂

∂x

[
K(h)

(
∂h
∂x

+ cos α

)]
− S (7)

where h = water pressure head (cm), θ = water content (cm3cm−3), t = time (days), x = spatial
coordinate (cm) (positive upward), S = sink term (cm3 cm−3 day−1), α = angle between the

https://www.pc-progress.com/en/Default.aspx?Downloads


Remote Sens. 2023, 15, 706 9 of 27

flow direction and the vertical axis and K = unsaturated hydraulic conductivity function
(cm day−1). A Galerkin-type linear finite element scheme is used for the spatial distribution
and a Crank–Nicholson implicit finite difference scheme is used for the temporal variation
of the variables in Equation (7). The simulation time step is dynamically adjusted to achieve
optimal convergence of the iteration scheme. In solving Richard’s equation, the water is
partitioned into evapotranspiration (ET0), runoff and RZSM. The maximum possible root
water extraction rate when soil water is not limiting, i.e., the non-uniform distribution of
the potential water uptake rate over a root zone was given by Equation (8):

Smax = βz × Tp (8)

where βz is the normalized water uptake depth, dependent on root distribution function
(cm−1) and Tp is the potential transpiration rate (cm day−1) obtained from potential evap-
otranspiration, calculated by the Penman–Monteith method [54]. The Equation (9) for
calculating Tp, involves using Beer’s law that partitions the solar radiation component of
the energy budget.

Tp = ETp

(
1 − e−k−LAI

)
(9)

Figure 4. The seasonality captured in the values of LST, NDVI, SEE, and AMSR-2 soil moisture at
25 km resolution, and the corresponding 1 km resolution downscaled soil moisture of the selected
days where the results have been compared with in-situ soil moisture.
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Additionally, the albedo is utilized in the Penman–Monteith equation. The ET0 accord-
ing to the Penman–Monteith equation is as follows (Equation (10)):

λET◦ =
∆(Rn − G) +

86400ρacp(eo
s−ea)

rav

∆ + γ
(

1 + rs
rav

) (10)

where λ is the latent heat of vaporization in MJ kg−1, ρa is air density (kg m−3), Cp is
the specific heat of dry air, eo

s is mean saturated vapor pressure (kPa) computed as the
mean eo at the daily minimum and maximum air temperature (◦C), rav is bulk surface
aerodynamic resistance for water vapor (s m−1), ea is the mean daily ambient vapor
pressure (kPa), rs is the canopy surface resistance (s m−1), γ is the psychrometric constant
(kPa ◦C−1), and Rn is the net radiation. Albedo in the HYDRUS-1D is utilized to calculate
the net radiation. The details of the same are available with the HYDRUS-1D [29]. For
numerically solving Richard’s equation, SHPs are described based on van Genuchten [55]
and Mualem [22,53,56]. The required hydraulic characteristics (θs, θr, α and n) can be
obtained directly from the experimental analysis of soil samples, indirectly from lookup
tables, available pedotransfer functions, or determined by a best curve fitting method using
in-situ soil moisture data. It has been shown previously that experimental datasets obtained
through pressure plate analysis are time-consuming while lookup tables do not represent
the regional areas [53]. Additionally, the pedotransfer functions require field soil analysis
as most of them are based on percentages of sand, silt and clay. Moreover, pedotransfer
functions developed for a region need to be used with caution at another field site as the
soil conditions may be different. The current study, therefore, looks to indirectly estimate
SHPs being independent of any field data. The study proposes to utilize the downscaled
AMSR-2 soil moisture to inversely estimate the SHPs. Tens of thousands of iterations
are carried out by using multiple sets of SHPs to generate a sequence of soil moisture
(forward modeling). A range of feasible values for SHPs (saturated hydraulic conductivity
(Ks), saturated soil moisture content (θs), residual soil moisture content (θr), and alpha (α)
and n of the Van Genuchten equation) are generated as the uniform distribution between
the upper and lower limit of SHPs. Table 1 shows the constraining boundaries of the
SHPs chosen for the forward modeling. The optimized SHPs are chosen based on the
minimum normalized Root-Mean-Square Error (nRMSE) with the in-situ soil moisture data.
However, as already stated the in-situ soil moisture has limited availability and numerical
experiments were designed to understand the impact of the usage of downscaled soil
moisture as an observed dataset in deriving the SHPs at a regional scale. The details of
governing numerical experiments to determine the SHPs are described below and given in
Figure 5. The four treatments (I-a, I-b, I-c, I-d) consider the vertical soil profile homogeneous
while two treatments (II-a and II-b) consider the vertical soil profile heterogenous, which
represents the field conditions ideally. I-a numerical run is the simplest of the six numerical
experiments, which considers a 100 cm deep soil profile with silt loam as only the soil type
and the SHPs based on the default lookup table values in HYDRUS-1D. The lookup table
values are literature values for each soil type based on the FAO (Food and Agriculture
Organization) dataset. For I-b, HydraProbe Data record System (HDS) surface soil moisture
(Figure 1) is used for inversely optimizing the SHPs with parameters in the range given
in Table 1. The optimization is based on the least nRMSE between modeled surface soil
moisture and HDS surface soil moisture. I-c is an inverse optimization simulation that
takes AMSR-2 satellite-derived, daily, 25 km soil moisture data as input and estimates the
SHPs. The parameters are optimized based on the minimization of nRMSE between the
modeled surface soil moisture data and the AMSR-2 soil moisture. I-d is again an inverse
optimization where downscaled surface soil moisture product from the first phase of the
study has been utilized to obtain the effective SHPs. Method I-d has the advantage of
being independent of the in-situ soil moisture data, required in experiment I-b and has
a finer spatial resolution as compared to experiment, I-c. So, it is hypothesized in this
study that method, I-d, can result in providing high-resolution RZSM for agricultural zones
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where in-situ soil moisture datasets are limited or even missing and further help with
designing water management policies. The robustness of the method is further tested with
two more experiments, which consider heterogeneous soil layers (II-a and II-b). II-a is based
on heterogeneous layers (0–15 cm, 15–30 cm and 30–100 cm) in the soil profile (Figure 5).
The SHPs for the three layers are based on the default lookup table values. The lookup
table values are literature values for each soil type based on the built-in Rosetta module
in HYDRUS-1D. The soil type for the study area is based on in-situ data collection. The
final treatment, II-b takes into consideration the in-situ soil moisture for all three layers to
inversely optimize the SHPs for the three layers. The summary of these experiments is
given in Figure 5 and the flowchart of the optimization methodology is shown in Figure 6.
Finally, the derived SHPs are utilized with model boundary conditions to simulate RZSM.

Table 1. Upper and lower limit of SHPs (range of SHPs) used in the study area. The upper and lower
limits of the SHPs have been chosen to include a set of possible values of SHPs so that the simulation
in HYDRUS-1D will be realistic and non-repetitive.

SHPs Ks θs θr α n

Lower Limit 15 0.35 0.01 0.0007 1

Upper Limit 35 0.43 0.07 0.1 2

Figure 5. Details of the experiments with the input data sets, based on which the SHPs are optimized.

Model Initial and Boundary Conditions

Atmospheric boundary condition or the flux type upper boundary condition was
applied for one-dimensional soil moisture movement with Equation (11) being the initial
condition and Equation (12) being the upper boundary condition. The bottom boundary
condition considered in the current study is free drainage (Equation (13))

θ(z, t) = θi(z, 0), f or − L ≤ z ≤ 0 (11)

where θi is the initial soil moisture content and L = depth of soil profile.

− K(h)
(

∂h
∂z

+ 1
)∣∣∣∣

z=0
= q0(t) for t > 0 (12)

where q is the soil moisture flux, and q0 is the initial value of soil moisture flux on the
surface.

∂h
∂z

= 0, z = −L (13)
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Figure 6. The methodology adopted for optimization of SHPs for the homogeneous and hetero-
geneous soil column for calibration and validation period. SM indicates the soil moisture from
HYDRUS-1D. SM* indicates the soil moisture datasets such as HDS in-situ data (I-b treatment),
AMSR-2 at 25 km2 (I-c treatment), and Downscaled soil moisture at 1 km2 (I-d treatment) with which
optimization is achieved in homogeneous soil column. SM# indicates the soil moisture dataset from
HDS in-situ soil moisture (II-b).

3.3. Statistical Analysis for Model Performance

The major parameters considered for analysis of results and model outputs in the
current study are (ANalysis Of Variance) ANOVA, nRMSE, and Correlation. ANOVA is a
statistical technique that compares sample populations based on their means and spread
of the data (variance). The ANOVA coefficient, F, is calculated by the ratio between MST
(mean sum of the squares due to treatment) and MSE (mean sum of errors due to error).
Correlation is a statistical tool to quantify the linear relationship between two variables
without considering the cause and effect and the correlation coefficient; r measures the
extent of the relationship.

r =
Σ(xi − x)(yi − y)√

Σ(xi − x)2Σ(yi − y)2
(14)

where r = correlation coefficient, xi = values of the x variable in the sample, x = mean of
the values of the x variable, yi = values of the y variable in the sample, and y = mean of
the values of the y variable.

Root Mean Square Error/Deviation (RMSE or RMSD) denotes the difference between
the simulated values from the model or algorithm and ground-measured values. The
present study uses Normalized Root Mean Square Error (nRMSE) and is calculated as,

nRMSE =
RMSE

y
(15)



Remote Sens. 2023, 15, 706 13 of 27

where y = mean of the observed data sets; RMSE is computed between the output soil
moisture and in-situ soil moisture,

RMSE =

√
∑N

i=1(xi − x̂1)
2

N
(16)

where N = number of non-missing data points, i = variable i, xi = actual observation
time series, and x̂1 = simulated values or model output time series. The selection of
best-fit simulation in the study is achieved through normalized RMSE which enables the
comparison of datasets with different scales. A schematic diagram of major input and
output parameters and cardinal steps in the methodology is shown in Figure 7. The study
has been carried out in two interlinked stages and the output from the first stage of the
study is used in the second stage for the derivation of SHPs and RZSM.

Figure 7. Outline of the methodology of the present study. I-a, I-b, I-c, I-d, II-a, and II-b are explained
in Section 3.2. Refer to Figure 5 for details about the treatments and resolution of the input and output
datasets.
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4. Results

In the present study, the downscaled AMSR-2 soil moisture from the algorithm is
compared with the ground measurements in two comprehensive ways viz. a continu-
ous daily comparison with the HydraProbe (temporal) dataset and with surface ground
measurements at 44 locations (spatial).

4.1. Temporal Validation of Downscaled Soil Moisture

Figure 8 shows the plot of in-situ soil moisture at the validation site with the cor-
responding soil moisture from the downscaled product and also with the AMSR-2 soil
moisture. The downscaled soil moisture has a correlation of 0.73 at the validation site
(1 January 2018 to 11 June 2018) whereas AMSR-2 soil moisture has a much lesser (0.58)
correlation during the same period with the in-situ soil moisture data. Additionally, the cor-
relation between original AMSR-2 and downscaled AMSR-2 soil moisture is 0.62. Although
the downscaled AMSR-2 soil moisture is not able to capture the sudden spikes observed
in the in-situ soil moisture data, it fairly follows the trend. The spikes may have been the
result of the irrigation rather than any kind of precipitation. In the year 2018, 6 months of
downscaled soil moisture values have been validated with the in-situ soil moisture and an
nRMSE of 0.44 is calculated for the validation site.

Figure 8. (A) Comparison of ground-measured soil moisture at the study site versus the correspond-
ing soil moisture from the downscaled product with the AMSR-2 soil moisture from 1 January 2018
to 11 June 2018 (line-plot). (B) Scatterplot of in-situ soil moisture and AMSR-2 soil moisture and
scatterplot of in-situ soil moisture and AMSR-2 downscaled soil moisture.
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From 1 September 2018 to 31 December 2018 the downscaled soil moisture has a
32% correlation with the in-situ data. The correlation between in-situ soil moisture data
and downscaled soil moisture data for September–December period is low because the
input satellite data (AMSR-2) used in the algorithm have a negative correlation with the
in-situ soil moisture data. Since the algorithm used in the present study depends on the
quality of the input data sets, the downscaled product has a poor positive correlation with
in-situ soil moisture. It is worth mentioning that the algorithm could derive high-resolution
soil moisture with better correlation from a satellite dataset which was actually having a
negative correlation with the in-situ data. Figure 8 shows four scatter plots that depict the
behavior of downscaled soil moisture data and AMSR-2 data in the study area during the
January–June and September–December periods.

4.2. Spatial Validation of Downscaled Soil Moisture

The two parameters, LST and NDVI have been utilized in the downscaling of AMSR-2
soil moisture and the descriptive statistics of these parameters on six dates, when the
surface soil moisture was collected are shown in Table 2. The range shown is the data that
lie between the first and third quartiles.

Table 2. Descriptive statistics of LST, NDVI, SEE, AMSR-2, and Downscaled soil moisture for the
selected six days. * The values in brackets represent the median value of the spatial data.

Variables 1 January 2018 5 February
2018

16 February
2018 28 March 2018 18 April 2018 4 May 2018

LST 286–288 *
(287.11)

289.82–291.62
(290.60)

289.98–291.66
(291.07)

300.71–302.65
(301.53)

302.45–303.47
(302.80)

301.84–303.64
(302.86)

NDVI 0.48–0.66 (0.44) 0.28–0.35 (0.60) 0.48–0.66 (0.61) 0.28–0.35 (0.32) 0.22–0.26 (0.24) 0.20–0.24 (0.22)

SEE 0.07–0.49 (0.28) 0.09–0.25 (0.16) 0.07–0.19 (0.12) 0.44–0.75 (0.60) 0.46–0.76 (0.61) 0.45–0.75 (0.60)

AMSR-2 SM 30.75–32.00
(31.50)

24.75–26.25
(25.50)

21.75–23.75
(22.75)

13.00–13.50
(13.25)

10.00–11.00
(10.50)

10.75–11.75
(11.00)

Downscaled
SM

28.97–39.16
(34.25)

27.51–32.78
(30.34)

25.99–29.85
(27.68)

12.35–20.06
(16.43)

9.35–17.29
(13.68)

13.00–21.00
(17.58)

It can be seen in Figure 4 that with the utilization of the downscaling algorithm, spatial
heterogeneity of the data is achieved for the six dates. Figure 9 depicts the boxplot of
nRMSE and the correlation of downscaled soil moisture and original AMSR-2-derived soil
moisture with the in-situ soil moisture at 44 validation sites. The comparison of downscaled
soil moisture shows a very good correlation with the field measurements. It shows an above
70% correlation at nearly 38 stations and five stations show a correlation between 50% and
70%; 36 validation sites have nRMSE less than 1 between in-situ data and downscaled soil
moisture with the highest nRMSE being 1.599 and the lowest being 0.141. The median of
the nRMSE of downscaled soil moisture is just above 0.2 and the corresponding AMSR-2
soil moisture has a median above 0.4. The outliers in the plot represent six validation
sites where the correlation is fairly low. It is evidently clear from the comparison of the
boxplots (Figure 9) that the downscaled soil moisture is significantly closer to the in-situ
soil moisture data with a substantially better spatial resolution.
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Figure 9. Boxplot of nRMSE and correlation of downscaled soil moisture and original AMSR-2
derived soil moisture, with the in-situ surface soil moisture at 44 validation sites. * Is for metrics
between downscaled soil moisture and in-situ surface soil moisture. # Is for metrics between AMSR-2
soil moisture and in-situ surface soil moisture.

4.3. Impact on Surface Soil Moisture and RZSM Simulation Based on Estimated SHPs

The RZSM simulations corresponding to the homogeneous and heterogeneous soil
profiles are validated at the HydraProbe site while the surface soil moisture simulations are
validated both at the HydraProbe site and 44 sites.

4.3.1. Impact of Homogeneous Soil Profile

The indirectly estimated SHPs of best-fit iteration based on the least nRMSE from the
10,000 iterations for all the methods are given in Table 3. Figure 10 shows the dotty plots
representing the 10,000 iterations, for the SHPs based on the two numerical experiments (I-b
and I-d). The blue dots represent the single parameter combination from 10,000 iterations
with the least nRMSE. Table 3 has the correlation and nRMSE between the modeled and
in-situ soil moisture data for the calibration (January 2018–June 2018) period during which
the SHPs are derived for all the numerical experiments. The derived SHPs are further
utilized in the model to obtain the soil moisture for the three soil layers (surface, 20 cm, and
50 cm) during the validation period (September 2018–December 2018), with correlation
and nRMSE being mentioned in Table 3. The soil moisture output from the I-b and I-d
treatments has a very good correlation with the HDS data at the considered depths as seen
in Table 3 and Figure 11. I-a and I-c-derived SHPs have reduced performance among the
four treatments, which illustrates the significance of site-specific derivation of SHPs for
better soil moisture modeling (Figure 11).
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Table 3. Summary of the experiments, nature of the corresponding soil profile and soil depth,
optimized SHPs, and correlation and nRMSE of output soil moisture from each experiment in
calibration and validation period.

Soil Profile Experiment
No.

Soil
Depth
(cm)

Soil Hydraulic Parameters Soil
Depth
(cm)

Calibration Validation

Ks θs θr α n Cor nRMSE Cor nRMSE

Homogeneous

I-a 0–100 10.80 0.45 0.07 0.0200 1.41

0–15 0.49 0.38 0.78 0.50

15–30 0.32 0.43 0.92 0.22

30–100 0.09 0.16 0.98 0.18

I-b 0–100 31.66 0.43 0.03 0.0008 1.31

0–15 0.76 0.25 0.96 0.34

15–30 0.70 0.19 0.91 0.28

30–100 0.81 0.24 0.98 0.31

I-c 0–100 20.67 0.35 0.07 0.0011 1.24

0–15 0.73 0.27 0.91 0.43

15–30 0.67 0.25 0.9 0.35

30–100 0.78 0.18 0.98 0.37

I-d 0–100 32.54 0.42 0.04 0.0009 1.33

0–15 0.76 0.25 0.96 0.37

15–30 0.71 0.18 0.91 0.31

30–100 0.82 0.25 0.98 0.34

Heterogeneous

II-a

0–15 10.80 0.45 0.07 0.0200 1.41 0–15 0.45 0.39 0.81 0.48

15–30 10.80 0.45 0.07 0.0200 1.41 15–30 0.19 0.37 0.92 0.22

30–100 1.68 0.43 0.09 0.0100 1.23 30–100 −0.35 0.29 0.98 0.1

II-b

0–15 16.57 0.36 0.01 0.0500 1.163 0–15 0.73 0.27 0.87 0.43

15–30 22.81 0.39 0.07 0.0600 1.05 15–30 0.68 0.39 0.91 0.55

30–100 24.86 0.43 0.02 0.0240 1.324 30–100 0.53 0.42 0.98 0.48

Figure 10. Dotty plots, for the parameters considered for the two runs (I-b and I-d). The blue dots
represent the parameter combination (optimized parameter) with nRMSE. The y-axis shown here
represents the correlation. Ksat, θs, and θr are saturated hydraulic conductivity, saturated water
content, and residual water content, respectively. α is related to the inverse of the air entry suction
and n is a measure of the pore-size distribution.
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Figure 11. Comparison of the output soil moisture from I-a, I-b, I-c, and I-d treatments corresponding
surface, 20 cm, and 50 cm deep layers with HDS soil moisture. Plots corresponding to each layer’s
(surface, 20 cm, and 50 cm) calibration and validation are plotted.

The I-a simulation showed a low correlation below 25% (Table 3) with the HDS
dataset’s 0 cm (surface), 20 cm deep (second), and 50 cm (third) deep soil moisture. The
corresponding nRMSE of the modeled soil moisture for the respective surface, first, and
second layers are 0.37, 0.43, and 0.16. This run is usually a default run that is carried out
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in the absence of in-situ SHPs. The I-b simulation has a high correlation for the surface
and 20 cm soil depth for both calibration and validation period. However, it can be seen
that the model is not able to have a correlation for the 50 cm soil depth with the chosen
SHPs. The I-c treatment uses AMSR-2 soil moisture data (25 km) to obtain SHPs followed
by simulating the RZSM. This treatment has a poor correlation being below 25% for all
three soil depths with the HDS data. The I-d simulations, which consider the homogeneous
soil profile, use the high-resolution downscaled AMSR-2 soil moisture data derived in the
first phase of this study. The model shows an improvement in correlation as compared to
I-a and I-c for the surface soil moisture simulation and is comparable to I-b being at 70%.
This simulation is seen to be a better scenario as the correlation in the calibration period is
maintained high for all three layers of the soil profile. Even for the validation period, the I-d
treatment can be seen to outperform the I-a and I-c with better performance at 50 cm also
as compared to I-b. These experiments suggest that the I-d method can be a robust method,
wherein the SHPs are estimated independent of in-situ data and RZSM is obtained at high
spatial (1 km) and temporal resolution (1 day). Secondly, this method can be used in the
ungauged areas as the input data are mostly Earth observation-based datasets and can help
with the determination of agricultural water demands based on soil moisture. Figure 11
compares the output soil moisture from I-a, I-b, I-c, and I-d treatments corresponding to the
surface, 20 cm deep, and 50 cm deep layers.

4.3.2. Impact of Heterogeneous Soil Profile

The other two runs considered in the study, II-a and II-b were conducted by introducing
the heterogeneity in the soil profile. These two runs, however, are not independent of
in-situ data. II-a required the soil type information for the three layers and then was run on
the default lookup tables. Even considering the heterogeneous soil layer, the default SHPs
(Table 3) were not able to correlate as highly as the I-c treatment for the calibration period.
The validation period showed some high correlation (0.59–0.92), which means the default
SHPs are suited for the winter period of the region. However, in the absence of in-situ data,
it will be difficult to ascertain the validity of this method if utilized for agricultural water
management policies. On the other hand, the II-b run, based on in-situ soil moisture for all
three depths had a high correlation for both the calibration and validation period being in
the range of 0.40–0.82 and 0.94–0.95, respectively. This method is best as compared to all the
six treatments considered in the present study. However, this method is totally dependent
on the HDS, which is not the scenario in most agricultural field locations. The availability
of a continuous in-situ soil moisture dataset is lacking. So, this treatment even if it provides
the best set of SHPs at the site, its usage at any other location becomes negligible. Thus,
it can be seen again that I-d treatment, which considers downscaled soil moisture from
AMSR-2 data can be relied upon with some improvement required for the wet season.

4.3.3. Rootzone Soil Moisture Geo-Product at High Temporal and Spatial Scale

The I-d method, which is shown to have performed well at the HDS site, was used to
spatially simulate the soil moisture using HYDRUS-1D for the 44 sites. Table 4 shows the
optimized SHPs for each of the 44 HDS sites corresponding to the best iteration (minimum
error). These SHPs are fed to HYDRUS-1D for the simulation of soil moisture at 44 locations.
Even though these locations are geographically not very close to each other (Figure 1),
these 44 sites fall under a single soil type, loam (FAO Soil texture), which would contribute
the same set of SHPs for all the sites. The present study could estimate the SHPs for each
location rather than choosing a single value for a fairly large geographic extent through
inverse simulation of SHPs in HYDRUS-1D with high-resolution downscaled soil moisture
as input. At these 44 sites, the modeled surface soil moisture was compared with the in-situ
surface soil moisture. Figure 12a shows the in-situ and modeled surface soil moisture (I-a
and I-d) over the study site as a spatial dataset with a time series of selected stations as
shown in Figure 12b. Figure 12b also has time series with SHPs based on FAO soil type
(treatment I-a). The time series is plotted with Nash-Sutcliffe Efficiency (NSE). It can be
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seen from the plot that the SHPs impact the soil moisture simulations. The I-a experiment
has the same soil moisture simulation for each location as compared to the I-d treatment.
Further, the SHPs at Location 6 have let the NSE to be improved from 30% to 80%. It can
also be seen from Figure 12c, that the mean NSE improved from 0.10 to 0.50. Additionally,
the mean nRMSE was found to reduce from 0.50 to 0.31. The range of nRMSE decreased
from 0.24–0.66 to 0.20–0.32. The ANOVA test was significant at p = 0.10, showing that
the change in SHPs values resulted in a change in soil moisture simulations. The mean
correlation for all the stations was found to be 60%. The quantile range (0.25, 0.75) for the
correlation was 39%–68% with the maximum correlation being 88%. This analysis shows
that the treatment, I-d can be utilized in the absence of a real in-situ soil moisture dataset
and we can simulate high-resolution soil moisture both spatially and temporally. Figure 13
shows the rootzone soil moisture product based on I-a and I-d treatment. It can be seen
that there is no spatial variation at a time for I-a simulation as SHPs remain the same. On
the other hand, there is variation in the rootzone soil moisture in the case of I-d treatment.
The rootzone soil moisture is important to understand the deficit as it plays an important
role in determining the irrigation depth. The geo-product can be helpful for the water
management policies in the region as the soil moisture product can be utilized for further
processing of the soil moisture deficit [57,58], the quantification of irrigation water demand
and it can be replicated in other areas as well. Even though the results look promising, the
study is limited, and more validation is required.

Table 4. SHPs of 44 HDS sites corresponding to the best iteration (minimum error).

Station Ks θs θr α n Station Ks θs θr α n

HDS-01 18.47 0.41 0.01 0.047 1.15 HDS-23 34.97 0.38 0.07 0.022 1.14

HDS-02 21.95 0.37 0.04 0.046 1.35 HDS-24 29.78 0.40 0.05 0.018 1.29

HDS-03 21.98 0.42 0.05 0.005 1.60 HDS-25 22.05 0.37 0.06 0.042 1.78

HDS-04 17.11 0.42 0.06 0.024 1.04 HDS-26 24.62 0.37 0.07 0.052 1.08

HDS-05 17.11 0.42 0.06 0.024 1.04 HDS-27 23.75 0.40 0.03 0.062 1.65

HDS-06 24.65 0.39 0.06 0.017 1.59 HDS-28 17.53 0.38 0.02 0.042 1.80

HDS-07 24.54 0.43 0.05 0.085 1.86 HDS-29 15.55 0.42 0.06 0.039 1.83

HDS-08 17.11 0.42 0.06 0.024 1.04 HDS-30 29.78 0.40 0.05 0.018 1.29

HDS-09 23.65 0.39 0.07 0.002 1.73 HDS-31 23.23 0.38 0.05 0.002 1.10

HDS-10 21.98 0.42 0.05 0.005 1.60 HDS-32 33.71 0.40 0.05 0.008 1.14

HDS-11 22.05 0.37 0.06 0.042 1.78 HDS-33 32.18 0.39 0.01 0.006 1.14

HDS-12 17.53 0.38 0.02 0.042 1.80 HDS-34 23.73 0.41 0.05 0.005 1.18

HDS-13 29.78 0.40 0.05 0.018 1.29 HDS-35 22.68 0.38 0.02 0.008 1.08

HDS-14 21.95 0.37 0.04 0.008 1.04 HDS-36 22.34 0.39 0.07 0.008 1.11

HDS-15 34.43 0.41 0.04 0.085 1.00 HDS-37 28.52 0.42 0.03 0.010 1.07

HDS-16 23.75 0.40 0.03 0.062 1.65 HDS-38 22.68 0.38 0.02 0.008 1.08

HDS-17 24.11 0.36 0.02 0.023 1.04 HDS-39 21.5 0.43 0.05 0.015 1.06

HDS-18 20.57 0.42 0.04 0.079 1.84 HDS-40 27.65 0.37 0.02 0.095 1.46

HDS-19 24.52 0.42 0.05 0.064 1.74 HDS-41 22.26 0.39 0.07 0.049 1.38

HDS-20 34.29 0.37 0.04 0.057 1.46 HDS-42 18.1 0.36 0.01 0.012 1.10

HDS-21 24.11 0.36 0.02 0.023 1.04 HDS-43 21.09 0.39 0.04 0.006 1.12

HDS-22 34.29 0.37 0.04 0.057 1.46 HDS-44 18.39 0.36 0.04 0.007 1.10
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Figure 12. Cont.
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Figure 12. (a) Spatial derivation of surface soil moisture at 44 locations. The in-situ soil moisture and
modeled soil moisture from I-a and I-d treatments are plotted for six days during the study period. (b)
Time series of soil moisture simulations at 10 locations. The x-axis denotes the simulation days (Julian
days) and y-axis denotes the soil moisture (%). Blue line represents the soil moisture simulations
based on I-d experiment while red line denotes the soil moisture simulations based on I-a experiment.
Black line represents the in-situ soil moisture. (c) Boxplot representation of NSE and nRMSE for the
surface soil moisture at the 44 locations. The black dot represents the mean of the data.

Figure 13. Modelled RZSM simulations for six days during the study period. The simulated I-a and
I-d RZSM for 44 locations in the study area are plotted.

5. Discussion

The current study has focused on estimating the high-resolution SHPs using the
downscaled AMSR-2 soil moisture. A downscaling algorithm utilized two optical datasets,
NDVI and LST. However, the study has some limitations, such as the linear interpolation
of non-linear data, NDVI could lead to errors in the AMSR-2 soil moisture downscaling.
NDVI is dependent on the phenological stages of the cropped areas and interpolation can
lead to some erroneous values, especially during the transitional period from a cropped
period to a bare zone. Additionally, the aggregation of NDVI and LST to a 25 km resolution
for developing the relationship with the AMSR-2 soil moisture dataset may lead to errors.
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However, even with the above-stated uncertainties, the algorithm is well-established and
has been widely accepted. The high-resolution downscaled surface soil moisture has been
further used for estimating high-resolution (~1 km) SHPs through inverse modeling in the
HYDRUS-1D software suit. The proposed method has the advantage of being independent
of field data over the previously available methods (Pressure-plate lab experiments, in-situ
soil moisture data, or regression equations) as all the methods require field sampling, which
can be expensive, time-consuming and remote areas can be inaccessible. Even though the
range set for inverse optimization can impact the SHP set obtained, point-based sampling
is not possible for the regional scale. The dotty plot also shows the parameter sets that are
possible to obtain but one needs to choose statistical parameters to minimize the uncertainty.
The study shows that with the derivation of these SHPs, the simulation of the rootzone
soil moisture is improved. The RZSM with this study is available at a scale of 1 km on
a daily basis. Thus, in the context of previous studies, it can be seen that the estimated
SHPs here are independent of in-situ soil moisture data, which itself are scarce or available
in limited regions. Additionally, the estimated SHPs may perform better as compared to
pedotransfer functions as they tend to be site-specific [22] and application to other regions
results in the under or over-estimation of RZSM. Secondly, the derivation of SHPs is also
independent of soil data collection, which again is not available at all places due to being
time-consuming and expensive. The study, hence, provides a new method to improve the
simulation of RZSM both spatially and temporally by improving the input dataset that has
the effective SHPs. Although the study is limited by the fact that the soil profile has been
treated as homogeneous, it is hypothesized that from the agricultural perspective or even
shallow landslides, the soil layer is shallow and we can treat it as a homogeneous layer.
Additionally, the results show that even though the soil profile is considered homogeneous,
the results are comparable to the heterogeneous layer (Table 3) in the considered study
area.

We would like to point out that the study is limited by the availability of the validation
dataset. Additionally, the mismatch in the spatial resolution of the datasets further leads
to uncertainty but the approach is promising. The future work would include looking at
the derivation of these parameters based on the other available Earth observation datasets
such as SMAP products and understanding the uncertainty based on the different products.
It will also include deriving SHPs at a finer spatial resolution (30 m) and vertical resolution.
This would entail further improvement of soil moisture simulation in deeper soil moisture
layers.

6. Conclusions

A downscaling algorithm to downscale 25 km spatial resolution radiometer based
AMSR-2 soil moisture to 1 km has been applied over a semi-arid region where the land is
mostly used for agricultural activities. The obtained finer resolution surface soil moisture
product has been used for inverse parameterization of SHPs and thus simulating RZSM
through HYDRUS-1D. The performance of the algorithm has been validated temporally and
spatially at 0.05 m, 0.20 m, and 0.50 m at a validation site; surface soil moisture simulation
has been validated at 44 different locations in the Varanasi district of Uttar Pradesh, India.

In order to understand the performance of the spatial downscaling algorithm, a
primary time series comparison has been carried out at one test site where the in-situ soil
moisture is compared with AMSR-2 satellite-derived soil moisture (25 km) and downscaled
soil moisture (1 km) for a period of six months from 1 January 2018 to 10 June 2018; the
former has an R-value of 0.33 and the latter of 0.53. The temporal correlation between
downscaled soil moisture product and HDS soil moisture is 0.704 whereas AMSR-2 has
a significantly lower correlation (0.58) with the HDS soil moisture. The modeling of the
water movement in the unsaturated soil based on Richard’s Equation requires SHPs, which
are important parameters in determining the retaining capacity of the soil. The SHPs
play an important role in the partitioning of water to be infiltrated. These parameters
are difficult to ascertain on a regional scale due to time-consuming and expensive field
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experiments. In the current study, inverse optimization was conducted to obtain these
parameters. However, the method requires the usage of the in-situ soil moisture dataset.
Thus, six numerical experiments (I-a, I-b, I-c, I-d, II-a and II-b), were conducted to estimate
the SHPs with various datasets that were considered as observed soil moisture. The soil
moisture output of the I-b and I-d treatments distinctly stand out with markedly good
correlation with the HDS data at three layers (surface, 20 cm and 50 cm). It was seen
that the SHPs estimated using the downscaled soil moisture (I-d experiment) performed
with similar efficiency as compared to SHPs estimated from the in-situ soil moisture data
(I-b experiment) in simulating the soil moisture. The normalized nRMSE for the two
treatments was 0.37 and 0.34, respectively. It is to be noted that the I-a treatment, which
is based on soil texture and the I-c treatment, which uses coarser AMSR-2 soil moisture
as an observed dataset have reduced performance among the four treatments. It was also
noted that nRMSE for the treatment with the utilization of default SHPs (I-a) and AMSR-2
soil moisture (I-c) were found to be 0.50 and 0.43, respectively. This firstly illustrates the
significance of site-specific derivation of SHPs for better soil moisture modeling. Secondly,
the performance of the I-d treatment shows that downscaled AMSR-2 soil moisture can be
utilized as the observed dataset in the absence of the in-situ soil moisture dataset. Even after
considering the soil layer heterogenous, the default SHPs were not able to correlate as high
as the I-d treatment for the calibration period. This shows that the downscaled AMSR-2 soil
moisture information can be utilized to derive the parameters and improve the soil moisture
simulations. II-b is found to be the best treatment among all six treatments considered in the
present study. Although II-b outperformed all the treatments, its applicability is limited to
the places where in-situ data are readily available. It was also seen that at the 44 sites, there
was improvement in the mean NSE for the surface soil moisture simulation with the I-d
treatment (0.50) as compared to the I-a treatment (0.10). Additionally, the study emphasizes
that in the absence of in-situ soil moisture data, the inverse optimization scheme cannot be
utilized. Thus, the methodology employed in this study provides an alternative source to
be utilized as an observed dataset, which leads to an improved soil moisture simulation
both at spatial and temporal scales. In conclusion, monitoring and assessment of surface
soil moisture as well as RZSM is extremely significant for agriculture and many other
applications; in reality, it is very difficult to obtain as the establishment and maintenance of
soil moisture observation networks have huge costs. Thus, the present study is significant as
the method proposed for estimating the SHPs and simulating high-resolution soil moisture
is based entirely on satellite-derived datasets.
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29. Šimůnek, J.; van Genuchten, M.T.; Šejna, M. Development and applications of the HYDRUS and STANMOD software packages
and related codes. Vadose Zone J. 2008, 7, 587–600. [CrossRef]

30. Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World Map of the Köppen-Geiger climate classification updated. Meteorol. Z.
2006, 15, 259–263. [CrossRef]

31. Varanasi Mines Officer. District Survey Report for Planning and Execution of Minor Mineral Excavation; National Informatics Center
Varanasi: Varanasi, India, 2020.

32. Nistor, M.M.; Rai, P.K.; Dugesar, V.; Mishra, V.N.; Singh, P.; Arora, A.; Kumra, V.K.; Carebia, I.A. Climate change effect on water
resources in Varanasi district, India. Meteorol. Appl. 2020, 27, e1863. [CrossRef]

33. Lehner, B.; Verdin, K.; Jarvis, A. New global hydrography derived from spaceborne elevation data. EOS Trans. Am. Geophys.
Union 2008, 89, 93–94. [CrossRef]

34. Gruber, A.; Dorigo, W.A.; Zwieback, S.; Xaver, A.; Wagner, W. Characterizing coarse-scale representativeness of in situ soil
moisture measurements from the International Soil Moisture Network. Vadose Zone J. 2013, 12, vzj2012.0170. [CrossRef]

35. Jabro, J.; Stevens, W.; Iversen, W. Field performance of three real-time moisture sensors in sandy loam and clay loam soils. Arch.
Agron. Soil Sci. 2018, 64, 930–938. [CrossRef]

36. Sharma, J.; Prasad, R.; Srivastava, P.K.; Singh, S.K.; Yadav, S.A.; Yadav, V.P. Roughness characterization and disaggregation of
coarse resolution SMAP soil moisture using single-channel algorithm. J. Appl. Remote Sens. 2021, 15, 014514. [CrossRef]

37. Wan, Z.; Hook, S.; Hulley, G. MOD11A1 MODIS/Terra Land Surface Temperature and the Emissivity Daily L3 Global 1km SIN Grid;
NASA LP DAAC: Sioux Falls, SD, USA, 2015.

38. Didan, K. MOD13A2 MODIS/Terra Vegetation Indices 16-Day L3 Global 1km SIN Grid V006; NASA LP DAAC: Sioux Falls, SD, USA,
2015; No. 10.

39. Myneni, R.; Knyazikhin, Y.; Park, T. MOD15A2H MODIS/Terra leaf area Index/FPAR 8-Day L4 Global 500m SIN grid V006; NASA LP
DAAC: Sioux Falls, SD, USA, 2015.

40. Boschetti, L.; Vermote, E.; Wolfe, R. MODTBGA MODIS/Terra Thermal Bands Daily L2G-lite Global 1km SIN grid V006; NASA LP
DAAC: Sioux Falls, SD, USA, 2015.

41. Owe, M.; de Jeu, R.; Walker, J. A methodology for surface soil moisture and vegetation optical depth retrieval using the microwave
polarization difference index. IEEE Trans. Geosci. Remote Sens. 2001, 39, 1643–1654. [CrossRef]

42. Dorigo, W.; Wagner, W.; Hohensinn, R.; Hahn, S.; Paulik, C.; Xaver, A.; Gruber, A.; Drusch, M.; Mecklenburg, S.; van Oevelen, P.
The International Soil Moisture Network: A data hosting facility for global in situ soil moisture measurements. Hydrol. Earth Syst.
Sci. 2011, 15, 1675–1698. [CrossRef]

43. Tian, Y.; Peters-Lidard, C.D.; Kumar, S.V.; Geiger, J.; Houser, P.R.; Eastman, J.L.; Dirmeyer, P.; Doty, B.; Adams, J. High-performance
land surface modeling with a Linux cluster. Comput. Geosci. 2008, 34, 1492–1504. [CrossRef]

44. Stackhouse, P.; Zhang, T.; Westberg, D.; Barnett, A.J.; Bristow, T.; Macpherson, B.; Hoell, J.M. POWER Release 8.0. 1 (with GIS
applications) Methodology (Data Parameters, Sources, & Validation); NASA Langley Research Centre: Hampton, VA, USA, 2018.

45. Li, Z.-L.; Tang, R.; Wan, Z.; Bi, Y.; Zhou, C.; Tang, B.; Yan, G.; Zhang, X. A review of current methodologies for regional
evapotranspiration estimation from remotely sensed data. Sensors 2009, 9, 3801–3853. [CrossRef]

46. Goetz, S. Multi-sensor analysis of NDVI, surface temperature and biophysical variables at a mixed grassland site. Int. J. Remote
Sens. 1997, 18, 71–94. [CrossRef]

47. Nemani, R.; Pierce, L.; Running, S.; Goward, S. Developing satellite-derived estimates of surface moisture status. J. Appl. Meteorol.
Climatol. 1993, 32, 548–557. [CrossRef]

http://doi.org/10.1007/s00271-015-0463-7
http://doi.org/10.3390/rs14071629
http://doi.org/10.1016/j.rse.2010.05.007
http://doi.org/10.1109/TGRS.2011.2120615
http://doi.org/10.1016/j.rse.2008.06.012
http://doi.org/10.1109/TGRS.2007.914807
http://doi.org/10.1016/j.rse.2009.06.012
http://doi.org/10.2136/vzj2007.0077
http://doi.org/10.1127/0941-2948/2006/0130
http://doi.org/10.1002/met.1863
http://doi.org/10.1029/2008EO100001
http://doi.org/10.2136/vzj2012.0170
http://doi.org/10.1080/03650340.2017.1393528
http://doi.org/10.1117/1.JRS.15.014514
http://doi.org/10.1109/36.942542
http://doi.org/10.5194/hess-15-1675-2011
http://doi.org/10.1016/j.cageo.2007.12.014
http://doi.org/10.3390/s90503801
http://doi.org/10.1080/014311697219286
http://doi.org/10.1175/1520-0450(1993)032&lt;0548:DSDEOS&gt;2.0.CO;2


Remote Sens. 2023, 15, 706 27 of 27

48. Rahimzadeh-Bajgiran, P.; Berg, A. Soil moisture retrievals using optical/TIR methods. In Satellite Soil Moisture Retrieval; Elsevier:
Amsterdam, The Netherlands, 2016; pp. 47–72.

49. Team, R.C. R: A Language and Environment for Statistical Computing; RC Team: Vienna, Austria, 2013.
50. Mattiuzzi, M.; Detsch, F. MODIS: Acquisition and Processing of MODIS Products; RC Team: Vienna, Austria, 2016.
51. Atzberger, C.; Eilers, P.H. A time series for monitoring vegetation activity and phenology at 10-daily time steps covering large

parts of South America. Int. J. Digit. Earth 2011, 4, 365–386. [CrossRef]
52. Pablos, M.; González-Zamora, Á.; Sánchez, N.; Martínez-Fernández, J. Assessment of root zone soil moisture estimations from

SMAP, SMOS and MODIS observations. Remote Sens. 2018, 10, 981. [CrossRef]
53. Gupta, M.; Garg, N.; Joshi, H.; Sharma, M. Persistence and mobility of 2, 4-D in unsaturated soil zone under winter wheat crop in

sub-tropical region of India. Agric. Ecosyst. Environ. 2012, 146, 60–72. [CrossRef]
54. Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements; FAO

Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998; Volume 300, p. D05109.
55. Van Genuchten, M.T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J.

1980, 44, 892–898. [CrossRef]
56. Mualem, Y. A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour. Res. 1976, 12,

513–522. [CrossRef]
57. Srivastava, P.K.; Petropoulos, G.P.; Prasad, R.; Triantakonstantis, D. Random Forests with Bagging and Genetic Algorithms

Coupled with Least Trimmed Squares Regression for Soil Moisture Deficit Using SMOS Satellite Soil Moisture. ISPRS Int. J.
Geo-Inf. 2021, 10, 507. [CrossRef]

58. Srivastava, P.K.; Han, D.; Yaduvanshi, A.; Petropoulos, G.P.; Singh, S.K.; Mall, R.K.; Prasad, R. Reference evapotranspiration
retrievals from a mesoscale model based weather variables for soil moisture deficit estimation. Sustainability 2017, 9, 1971.
[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1080/17538947.2010.505664
http://doi.org/10.3390/rs10070981
http://doi.org/10.1016/j.agee.2011.10.009
http://doi.org/10.2136/sssaj1980.03615995004400050002x
http://doi.org/10.1029/WR012i003p00513
http://doi.org/10.3390/ijgi10080507
http://doi.org/10.3390/su9111971

	Introduction 
	Data Sources 
	In-Situ Soil Moisture Data 
	MODIS Data 
	C-Band Derived Soil Moisture from AMSR-2 
	Field and Ancillary Datasets 

	Methodology 
	Downscaling AMSR-2 Surface Soil Moisture 
	Derivation of SHPs and RZSM Simulation 
	Statistical Analysis for Model Performance 

	Results 
	Temporal Validation of Downscaled Soil Moisture 
	Spatial Validation of Downscaled Soil Moisture 
	Impact on Surface Soil Moisture and RZSM Simulation Based on Estimated SHPs 
	Impact of Homogeneous Soil Profile 
	Impact of Heterogeneous Soil Profile 
	Rootzone Soil Moisture Geo-Product at High Temporal and Spatial Scale 


	Discussion 
	Conclusions 
	References

