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Abstract: The frequent occurrence of extreme weather and the development of urbanization have led
to the continuously worsening climate-related disaster losses. Socioeconomic exposure is crucial in
disaster risk assessment. Social assets at risk mainly include the buildings, the machinery and the
equipment, and the infrastructure. In this study, the wealth capital stock (WKS) was selected as an
indicator for measuring social wealth. However, the existing WKS estimates have not been gridded
accurately, thereby limiting further disaster assessment. Hence, the multisource remote sensing and
the POI data were used to disaggregate the 2012 prefecture-level WKS data into 1000 m × 1000 m
grids. Subsequently, ensemble models were built via the stacking method. The performance of the
ensemble models was verified by evaluating and comparing the three base models with the stacking
model. The stacking model attained more robust prediction results (RMSE = 0.34, R2 = 0.9025), and
its prediction spatially presented a realistic asset distribution. The 1000 m × 1000 m WKS gridded
data produced by this research offer a more reasonable and accurate socioeconomic exposure map
compared with existing ones, thereby providing an important bibliography for disaster assessment.
This study may also be adopted by the ensemble learning models in refining the spatialization of the
socioeconomic data.
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1. Introduction

As an important indicator of the economic status of a country (or region), the gross
domestic product (GDP) is widely used as a landmark indicator of the economic exposure
in disaster assessment. However, from the perspective of statistical processes, the GDP only
contains the final outcome of a country’s (or region’s) productive activities over a period of
time at the current market prices. In other words, the GDP can only measure the market
value of the final products over a period (a “flow” indicator). By contrast, the wealth capital
stock (WKS), also called “net” capital stock, can measure the value of the capital stock, that
is, the (hypothetical) value that could be achieved if the complete fixed stock were to be
sold at today’s market prices [1]. Such fixed assets generally include the buildings’ assets,
the tools, the machinery, and the equipment and similar infrastructure. In addition, the
evolution of the capital over time is controlled by the flow of investment and depreciation
(i.e., the consumption of the fixed capital). Thus, we believe that the asset stocks as a
“stock” indicator is more consistent with real socioeconomic exposure, a theory that has
been increasingly supported by the recent research. Previously, Seifert et al. [2] mapped
the distribution of the industrial and the commercial values in Germany to estimate the
risk of future flooding along the Rhine River. The 2013 Global Disaster Risk Assessment
report also stated that capital stocks had been used to replace the GDP as a proxy for the
economic risk to natural disasters [3]. Holz et al. [1] followed the latest OECD methodology
to calculate the long-term series of the provincial and the national capital estimates in China
by distinguishing WKS from the capital services.
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Although China does not have any official data on its capital stock, estimations at
different administrative scales have been produced by many researchers, some of whom
have presented accurate results at the prefecture level. This development allows for the
WKS dataset to be used for more accurate disaster risk management. In the past, Wu et al.
estimated the WKS of 344 prefectural cities in China and used it to assess the direct economic
losses from earthquake disasters.

Similar to the GDP, the WKS data based on the administrative divisions contain lim-
itations, such as the failure to consider the uneven distribution of residents within the ad-
ministrative divisions, the aggregation of socioeconomic activities, and the difference in the
social wealth distribution, which leads to rough and impractical disaster risk assessment
results. The grid data can effectively address these shortcomings by depicting the WKS
density distribution within the administrative districts. In addition, the grid data provide
the basis for flexible data fusion to facilitate further spatial analysis and calculation. Many
studies about the downscaling of the socioeconomic and the demographic data have been
conducted in recent years. Remote sensing data, such as the nighttime light (NTL) images and
the vegetation indices, are widely used in the spatialization of the social and the economic
data, including the GDP and the electricity consumption [4]. This scenario shows the strong
correlation between the multisource remote sensing data and the socioeconomic data. In
regard to the model construction, Wu et al. [5] attempted to grid the WKS data via the auxiliary
data decomposition method, but the gridding process requires linear decomposition, and the
results cannot be accurately estimated because of the complexity of human economic activities.
By considering the complexity of the social wealth distribution, the machine learning algo-
rithms represented by the random forest (RF) have been proven to perform well in the spatial
model construction [4,6,7]. Points of interest (POIs), a type of social-sensing big data that are
closely related to human activities, are increasingly used to assist in the identification of the
urban functional areas because they can clearly describe the type and the location of human
activities [8–13]. POI data have a great potential in the study of the social and the economic
characteristics, especially in complex urban areas [14–16]. However, the training methods,
the learning rules, and the objective functions tend to vary greatly because each model has
its own characteristics for certain datasets. The multimodel ensemble refers to the method of
combining different single models, thereby providing more reliable and robust simulation
results than would be achieved by simply using a single model. Therefore, we introduced
three different types of models, namely, the RF, the cubist, and the extreme gradient boosting
(XGBoost) models, and integrated them via stacking.

By considering the diversity of the various regions in China, the POIs with multisource
remote sensing data were combined in an ensemble learning model prior to disaggregating
the 2012 prefecture-level WKS data into 1000 m × 1000 m grids. Previous data experiments
have confirmed the effectiveness of the stacking model.

2. Data and Methodology
2.1. Data Collection and Preprocessing
2.1.1. WKS Data

The WKS dataset of China’s 344 prefectures was obtained from the study of
Wu et al. (2012), who used the perpetual inventory method to estimate the WKS of the 2012
prefecture-level cities in mainland China [17].

2.1.2. Remote Sensing Datasets

a. NTL data

The global satellite-derived radiance-calibrated NTL product for 2012 at a 1 km resolu-
tion from the NPP-VIIRS was downloaded from the Earth Observation Group of Colorado
School of Mines (https://eogdata.mines.edu/nighttime_light/annual/v20/, accessed on
1 March 2022). The VNL_v20 product provides the global VIIRS night light annual time
series with the annual continuous processing from the monthly cloudless average radiation
grid in 2012, which can be used to solve most of the light saturation problems. Previous
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studies have confirmed its higher simulation accuracy compared with DMSP/OLS; hence,
NPP/VIIRS is considered highly suitable for simulating the regional economies [18–21].

b. Vegetation index

The normalized difference vegetation index (NDVI) dataset from the Satellite Pour I
‘Observation de la Terre (SPOT) was acquired from the Vlaamse Instelling Voor Technolo-
gisch Onderzoek. The SPOT S10 product provides land surface reflectance at 1000 m reso-
lution from seven spectral bands every 10 days. The annual maximum NDVI (NDVIMAX)
images are calculated using the maximum value composite method (to eliminate the effect
of cloud contamination) and the bidirectional reflectance distribution function [22].

NDVIMAX= MAX(NDVI 1, NDVI2, . . . , NDVI36) (1)

where the subscripts 1 to 36 represent the 36 10-day SPOT NDVI images in 2012.

c. Land surface temperature (LST) data

The LST dataset was obtained from the MODIS MOD11A2 product (https://ladsweb.
modaps.eosdis.nasa.gov/search/, accessed on 1 March 2022), which is the eight-day av-
erage of the daily MOD11A1 LST product. The average measurements at daytime and
nighttime are stored separately. Here, the mean daytime and nighttime LSTs (i.e., LST-day
and LST-night, respectively) for 2012 were calculated.

d. Digital elevation model (DEM) data

The original DEM data were obtained from the ASTER GDEM Version 2 dataset of the
Earth Remote Sensing Data Analysis Center of Japan (http://www.gdem.aster.ersdac.or.
jp/search.jsp, accessed on 1 March 2022), with a spatial resolution of 30 m. The DEM data
were projected into the Albers Conical Equal Area projection and then resampled to a new
dataset with a pixel size of 1000 m via bilinear interpolation. The elevation and slope raster
layers were generated from the new image in ArcGIS 10.2.

2.1.3. Road Network Data

The road network vector dataset was obtained from the Data Center for Resources
and Environmental Sciences, Chinese Academy of Sciences (http://www.resdc.cn/). This
dataset includes the national highways, the railways, the provincial highways, the county
highways, the township-level roads, the city roads, and others. The vector data were used
to calculate the corresponding raster data layer of the nearest road density (e.g., DtC-road,
road length per unit of area) at 1 km resolution in ArcGIS 10.2.

2.1.4. POI Data

The POIs of mainland China in 2010 were derived from a mobile map service platform,
namely, Baidu Map (http://map.baidu.com). A total of 5,152,950 POI records [14] were
obtained, with each POI record typically containing the point’s location, the name, the
category, and the attributes. The Baidu POIs dataset also records the above information in
Chinese phrases and classifies the points [23]. According to the application purpose and
actual requirements of this study, we selected a top-level category of 20 labels that contained
educational facilities, entertainment services, and residential communities because they
could provide a good overview of the functions of the geographical entities that are closely
related to human life.

Kernel density estimation (KDE) was used to represent the spatial influence region of
the POIs because it could determine the location influence of the first law of geography and
it is superior to other density expression methods. Bandwidth is the most important control
parameter of the KDE method, but many studies have established the absence of an accurate
algorithm to determine its optimal value [24]. In this study, we calculated the density grid
from 500 to 8000 m at intervals of 500 m and selected 2000 m as the bandwidth in accordance
with the out-of-bag (OOB) error minimization principle of RF [14]. Subsequently, we

https://ladsweb.modaps.eosdis.nasa.gov/search/
https://ladsweb.modaps.eosdis.nasa.gov/search/
http://www.gdem.aster.ersdac.or.jp/search.jsp
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generated continuous and smooth kernel density surfaces for each category by using the
kernel density tool in ArcGIS10.2.

Given that the selected POI data consisted of 20 layers, we introduced the principal
component analysis (PCA) to reduce the dimension of the input data during modeling
while avoiding the massive calculation of unusable data. The PCA is a data analytic method
that is often used for the dimensionality reduction of high-dimensional data and that can
be used to extract the main feature components of the data. According to the maximum
separability for the PCA, the variance of the first principal component would exceed 90%.
Therefore, only the first principal component was selected to output the composite density
surface (POIs-den) raster with a resolution of 1000 m.

2.2. Methodology

The spatialization approach involves four main steps (Figure 1): (1) model learning and
stacking; (2) dasymetric mapping; and (3) validating the predictive ability of the models.

Figure 1. Flowchart of the proposed methodology for WKS estimation.

2.2.1. Building the Base Models

In circumstances where the size of the dataset is small and the final results are subject
to a large number of factors (i.e., the circumstances of this study), the use of different base
models and the stacking method is considered the appropriate choice. Here, the RF, the
cubist, and the XGBoost models were used as the base models.

The RF algorithms are classic machine learning methods for nonlinear and nonpara-
metric work. This machine learning method has strong adaptability to problems that
involve tight coupling data, which means that it can reflect the non-distinct interaction
among data features [25]. The RF method can obtain appropriate results by using only
a few parameters, and as such is different from other congeneric algorithms that require
many parameters to avoid the outliers, the noise, and the overfitting problems [25,26].
The RF algorithms also provide a special OOB error for the unbiased estimation of the
model error. The OOB error can be generated from the error of approximately one-third
of the data, which otherwise could not be extracted randomly when training a tree. By
calculating the average OOB error of each tree, the prediction error of the whole model can
be evaluated [27]. The RF models generally reduce the voting weight of trees with larger
OOB errors to improve the prediction accuracy of the model.

The cubist models are a type of prediction-oriented regression model, which is a
rule-based extension of Quinlan’s M5 model tree. In cubist modeling, the linear regression
model is used recursively at the terminal node, and the predicted value of the previous node
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is considered for smoothing. The tree is reduced to a set of rules, which are initially taken
as paths from the top of the tree to the bottom. The rules are eliminated by pruning and/or
combined for simplification. The final prediction is a simple average of the predictions
from each model tree [26]. Such predictions have been shown to outperform the outputs of
the linear regression models. The running time of cubist models is also much shorter than
those of the classification and the regression tree methods [28].

The XGBoost models are distributed machine learning algorithms based on the boost-
ing learning framework [29]. The core objective of the XGBoost models is to minimize the
model error by using the gradient descent algorithm. In the training process, all samples
are learned in each round of the training, and every sample has the same weight in the
initial state. Subsequent learners learn from the residual of the previous results, and the
new learner is established in the gradient descent direction of the loss function in previous
learners. The XGBoost uses the weighted fusion method to consider the weighted average
of the results of each tree as the final output [30], which improves the accuracy of the
model effectively.

In training the base models in this study, eight raster layers (e.g., NTL brightness,
NDVI, LST-day, LST-night, slope, elevation, Dtc-road, and POI density) were aggregated at
the ground level as the independent variables. The natural logarithm of the WKS density
was used as the dependent variable. Then, the three models (e.g., the RF, the cubist, and the
XGBoost models) were used to construct the relationship between the geographic indicators
and the WKS density. The raster layers were inputted into the constructed model, and
then the prediction layers were calculated. By using the prediction layer as pixel-level
distribution weights, the prefecture-level WKS density data could be decomposed into
1000 m resolution grids as follows:

WKSgrid =
WKSprefecture ×Wgrid

Wprefecture
(2)

where Wgrid is the WKS distribution weight of a 1000 m × 1000 m grid area, Wprefecture is
the sum of the total WKS distribution weights for a prefecture, WKSprefecture represents the
total WKS of a county, and WKSgrid is the gridded WKS distribution.

2.2.2. Ensemble Learning and Model Fitting

The commonly used ensemble learning methods are stacking, bagging, and boosting.
Bagging and boosting methods are often used to combine homogeneous models, whereas
stacking is often used to combine different trained models.

After the base model training, multiple linear regression was chosen for model stack-
ing, with the output of the base model selected as the independent variable and the actual
result as the dependent variable. In addition, the stacking effect was verified using the
reserved validation set data. The modeling was implemented as follows:

Ps= a0+a1 × Prf+a2 × Pcb+a3 × Pxg (3)

where Ps is the predicted value of the integrated model; Prf, Pcb, and Pxg are the predicted
values of the RF, the cubist, and the XGBoost models, respectively; and ai is the linear
regression coefficient, which can be determined via the least-square method.

2.2.3. Dasymetric WKS Mapping

Dasymetric mapping methods can ensure constant totals within a given administrative
division [31] and reveal highly reliable patterns of spatial distribution in the population
and the GDP spatialization [32,33]. In this study, we initially used the water body mask
to obtain the inhabited area, and on this basis, the WKS density distribution was further
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divided. Then, we took the Wprefecture (Section 2.2.2) as the weight layer and redistributed
the prefecture level as follows:

WKSij= WKSj ×WKSi
grid (4)

where j represents the index of the prefecture from 1 to 344, i represents the index of a grid
in the j-th prefecture, WKSij represents the allocated WKS of the i-th grid in j-th prefecture,
WKSj represents the total WKS in the j-th prefecture, and WKSgrid represents the weight
cost of the i-th grid in Equation (2).

2.2.4. Accuracy Validation

We selected the leave-one-out (LOO) method for cross validation to verify the accuracy
of the WKS maps from the individual basic learners and the multiple models. The LOO
method is widely used in cross validation because it can evaluate the performance of a
model with a limited dataset quickly and accurately. Here, we took 90% of the samples as
the training set and the remaining 10% as the validation set. Consistency in data features in
the training set and validation set were ensured by using the Fisher-Yates shuffle algorithm
to arrange the data randomly. Subsequently, the top 10% of the data was extracted as the
validation set, whereas the remainder was used as the training set.

eRE =
|y− y|

y
(5)

eMRE =
∑(eRE)

n− 1
, (6)

eRMSE =

√
∑(y− y)2

n− 1
, (7)

Equations (5)–(7) were used to evaluate the accuracies of the prediction datasets.
The MRE was used to reflect the degree to which the model output was close to the real
result. The MRE is a dimensionless evaluation indicator used for depicting the accuracy
of a model. In contrast to the MRE, the RMSE, as a convincing indicator for evaluating
models, is often used to compare the accuracies of different models based on the dimension.
However, the accuracy verification can only determine the error of the average density
of the prefecture-level administrative units, but it cannot directly obtain the simulation
accuracy of the actual WKS distribution characteristics. Therefore, two additional steps
were performed: (1) generate gridded WKS maps and (2) compare the performance of the
different models in the gridded WKS maps. We selected four typical regions of China for
the detailed analysis and comparison of the gridded WKS maps.

3. Results
3.1. Accuracy Assessment

Table 1 shows the accuracy evaluation results of the four models. The XGBoost
outperformed the two other base models, and the performances of the RF and the cubist
were analogous. This outcome can be explained by the fact that the RF and the cubist
models require linear classifiers, which often achieve good classification results when
using large sample sizes. By contrast, the flexible classifier selection of the XGBoost is
more apparent when the dataset size is small. The stacking model also showed good
performance, especially because the WKS data varied greatly in the different numerical
ranges. Furthermore, the stacking model utilizes a more flexible and extensive selection
and combination of base classifiers [15,34,35]. In conclusion, the ensemble model for the
WKS prediction (i.e., the stacking model) supersedes the three other base models despite
the limitations of the dataset size and the considerable differences in the spatial distribution
of each sample because of geographic, economic, and political factors.
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Table 1. Accuracy evaluation of estimated WKS maps.

RF Cubist XGBoost Stacking

MRE 4.183% 4.248% 4.044% 3.798%
RMSE 0.371293 0.374573 0.361901 0.337656

Figure 2 shows a scatter plot of the predicted and the true values of the models. A
perfect model is represented by a straight line (y = x). The degree of deviation of the
scattered points from the straight line can reflect the effect of the model. Firstly, in the
low-value region (0–7), the results of all the models were the least desirable (i.e., widely
scattered), which may be explained by the scarcity of data. The performances of all the
models in this range were consistent with one another, which also indicated that the data
were significantly different from the training data. Secondly, in the middle range (7–9), most
of the data were concentrated, and the performance of each model varied. The values of the
RF model were more dispersed and located farthest from the y = x line, those of the cubist
model were more dispersed along the y = x line, and those of the XGBoost model were
below the y = x line. Meanwhile, the values of the stacking model were highly concentrated
near the y = x line. Thirdly, in the high-value region (9–12), the predicted values of the RF
and the XGBoost models were relatively small, as shown in the figure where the scatter
points are located below the line y = x, while the points of the cubist model were mostly
located on the line. The prediction results of the stacking model are shown as adopting the
prediction results of the cubist model, that is, most of the scattered points are located on
the line. Therefore, the stacking model can better balance the results of the based models.
The low performance of the stacking model in the low-value region can be explained by
the poor data regularity, but this issue is likely to affect all models.

Figure 2. Scatter plot of the predicted and true values of (a) RF, (b) cubist, (c) XGBoost, and
(d) stacking models. (note: predicted and true values of the models are both logarithmic).



Remote Sens. 2023, 15, 689 8 of 12

3.2. Gridded WKS Maps and Model Comparison

By implementing the methods discussed in Section 2.2.3, we generated a WKS gridded
density map at a resolution of 1000 m for the RF, the cubist, the XGBoost, and the stacking
models. The final gridded density and the final fusion map results are shown in Figure 3d.
The spatial distribution trends of the four models were similar for mainland China. In
particular, high-value regions were mainly distributed in the metropolitan areas of the
Yangtze River Delta, Pearl River Delta, Chengdu–Chongqing, and Beijing-Tianjin. Un-
surprisingly, China’s four municipalities (e.g., Chongqing, Shanghai, Beijing, and Tianjin)
showed the highest stock of fixed assets. The second-highest value region was distributed
in other coastal and developed provincial capitals. As depicted by the WKS density map
of mainland China in 2012, most of the WKS was mainly distributed in areas with high
urbanization levels and relatively complete infrastructure construction.

Figure 3. Gridded WKS maps in 2012 by using (a) RF, (b) cubist, (c) XGBoost, and (d) stacking models.

Next, we used the natural logarithm of the WKS density at the prefecture level as the
dependent variable to obtain the numerical range of the four models. Table 2 shows the
numerical ranges of the four models on the training data. The natural logarithm values
range from 1.495 to 11.647. Correspondingly, the pixel value range of the weight layer, as
predicted by the RF model, was the smallest, ranging from 2.210 to 7.944. This finding could
be attributed to the predicted value of the RF model always being within the training data
range, and the numerical range after voting would be more concentrated. Meanwhile, as the
cubist model entails excellent extrapolation, the numerical range was the widest, ranging
from 0.181 to 8.961, even outstripping the range of the training set. It also showed an
extremely obvious data overflow, especially at the lower boundary. Figure 2 shows that the
cubist model had the worst prediction effect in the low value area. The reason for this may
be because the cubist model is sensitive to small training data samples, so the prediction
effect is poor. Similar to the RF model, the XGBoost model is also a conservative model,
and its predicted value will not exceed the training value range (prediction range: 1.777 to
8.820). However, in contrast to the RF model, which pays more attention to the variance,
the XGBoost model focuses more on the deviation, hence its larger range. The stacking
model, whose data range is from 1.213 to 8.550, integrates the different characteristics of the
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base models and can overcome their inherent shortcomings. This feature of the stacking
model implies its ability to maximize the model accuracy for achieving a higher quality
population fitting.

Table 2. Range comparison between the training set and the four models.

Train RF Cubist XGBoost Stacking

Lower 1.495 2.210 0.181 1.777 1.213
Upper 11.647 7.944 8.961 8.820 8.550

Finally, we compared the differences of the four models by using the four selected key
areas of Beijing–Tianjin, Yangtze River Delta, Pearl River Delta, and Chengdu. Figure 4
shows the apparent variations in the modeling results of the selected regions. The maximum
of the RF model was less than 1100 million CNY/km2, which was lower than those of the
other models, and with a concentrated value range. The large number of warm-colored
areas of the RF model surpassed those of the other models, as depicted by the disorderly
sprawl. Meanwhile, the cubist model was characterized by fewer warm-colored areas, but
the center of each area had a highlighted area, which was especially prominent for the
Yangtze River Delta and Pearl River Delta. The results of the XGBoost model were closer to
those of the stacking model, which was also consistent with the conclusion presented in
Section 3.1. The overall performance of the XGBoost model was depicted by its relatively
concentrated data, which was apparent in areas with multiple economic centers, such as
the Yangtze River Delta and Pearl River Delta. The performance of the stacking model
neutralized the characteristics of the three abovementioned models. The high-value areas
were more concentrated, and the megacities (Beijing, Shanghai, Guangzhou, and Shenzhen)
were more distinguishable from the surrounding urban agglomerations, which is consistent
with the actual distribution. In addition, the predicted value of the ensemble learning
model essentially obeys the law in which the WKS is 2.5 times the GDP, as depicted by
the characteristic distribution along the roads in the outer edge of the economic zone,
which is also in accordance with the main road having a high capital stock value. The
aforementioned findings jointly demonstrate the credible predictions of this study.

Figure 4. Comparison of the WKS maps by using the (a) RF, (b) cubist, (c) XGBoost, and (d) stacking
models for four metropolitan agglomerations in China.
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4. Discussion

The WKS data offer a unique perspective for estimating and mapping economic
exposures across a range of spatial scales. The main limitation of the previous studies is
their overdependence on the GDP data and the spatial modeling method selection. As a
widely used economic indicator, the GDP can indeed provide an effective reference for
economic activity. However, with the deepening study of disaster assessment, some serious
disasters, such as the earthquake in Haiti [36], were found to cause economic losses at levels
higher than the GDP of the affected area, thereby rendering the GDP an ineffective indicator.
Consequently, searching for more precise indicators of the total physical fixed assets at
risk is crucial in disaster risk management. Fixed assets generally include the buildings’
own assets, the tools, the machinery and the equipment, and similar infrastructure; thus,
it is a more precise indicator of social wealth at risk. In addition, the depreciation and
loss of the stock assets can also be measured by the WKS. Recent research on the WKS
has demonstrated the great potential of this index in studying various disasters, such as
earthquakes [17] and floods [37]. In the spatialization results of this study, we found the
evident distribution characteristics of fixed assets, such as high-value areas concentrated in
parts with high urbanization levels and perfect infrastructure. The distribution along road
shapes outside the economic zone was highly consistent with the high capital stock of the
trunk roads. Moreover, the WKS value in the non-high value area was 2.5 times the value
of the GDP, which is consistent with the findings in economic research.

Instead of traditional linear modeling methods, an ensemble machine learning al-
gorithm was used in this study to build a complex nonlinear model between the WKS
destiny and each indicator factor, thereby achieving improved performance. Previously,
Wu et al. [5] used linear decomposition to spatialize the WKS, a widely used spatialization
method, by assuming that a linear relationship exists between the fixed assets and certain
indicators. The fixed assets and other economic indicators at the prefecture level can also
be used to solve this linear relationship, after which the weight is calculated according to
the grid-level economic indicators.

The findings of this study offer numerous insights. Firstly, researchers need to assume
the existence of a linear relationship between the fixed assets and other economic indicators
empirically, which may require several attempts to verify. Secondly, the assumption that
this relationship is consistent across the country should be avoided because it is clearly
inappropriate. Finally, equal weight must be given to each prefecture-level sample, and the
features of special numerical samples may be eliminated. Machine learning methods can
overcome existing shortcomings by representing the features within the model without
making empirical assumptions. Moreover, special samples can be processed to obtain a
model with stronger generalization ability. Existing single-model machine learning models
are affected by differences in their internal structures, the training methods used, and their
objective functions [4,7], and vary in handling the characteristics of samples with unique
features. As discussed in Chapter 3, the stacking model can provide suitable weights to
each model at different intervals and obtain better overall results.

Despite the significant improvements in methodology, certain limitations were still
apparent in the current study. Given the lack of the grid-scale reference data, we did not
evaluate the model results at the grid scale level accurately. Instead, we only compared the
model effects by analyzing the data distribution of the validation set. Conversely, the POI
data generally lacked information about the range and the value of the POI, such as the
highways and the rural roads. Equal weighting was used in the model while ignoring their
vastly different WKS values. As for the social-sensing big data, the number of POIs could
represent the value of the whole system but only to a certain extent. The existing POI data
for rural areas are incomplete, which may underestimate asset stocks in the rural areas of
the WKS grid map. However, the asset stocks in rural areas are much lower than those in
urban areas. Therefore, the spatial heterogeneity of the POI data in rural areas would not
cause significant errors in the spatial results.
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5. Conclusions

Multisource remote sensing images and POI data were used to develop four machine
learning models, namely, the RF, the cubist, the XGBoost, and the stacking models. Subse-
quently, the built models were used to disaggregate the 2012 prefecture-level WKS dataset
in mainland China. A set of spatial distribution data of the WKS in the Chinese mainland
in 2012 with a resolution of 1000 m was established. The dataset that represented the
social wealth stock revealed the distribution of social wealth in mainland China, which
could provide a grid-scale reference for social economic exposure and vulnerability in
disaster assessment. Considerable differences were apparent in the economic development
and infrastructure levels in China. The map generated in this research also reflected the
obvious regional differences in the WKS distribution. The multisource remote sensing data
and the social-sensing big data captured economic and social characteristics accurately.
Compared with single-machine learning methods, the stacking ensemble model addressed
the shortcomings of each of the three primary models more effectively and even showed
a better prediction effect. This finding indicates the great potential for the use of more
advanced machine learning methods in spatial applications, thereby allowing for more
refined socioeconomic factor estimation research in the future.
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