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Abstract: Three dimensional (3D) object detection with an optical camera and light detection and
ranging (LiDAR) is an essential task in the field of mobile robot and autonomous driving. The
current 3D object detection method is based on deep learning and is data-hungry. Recently, semi-
supervised 3D object detection (SSOD-3D) has emerged as a technique to alleviate the shortage of
labeled samples. However, it is still a challenging problem for SSOD-3D to learn 3D object detection
from noisy pseudo labels. In this paper, to dynamically filter the unreliable pseudo labels, we first
introduce a self-paced SSOD-3D method SPSL-3D. It exploits self-paced learning to automatically
adjust the reliability weight of the pseudo label based on its 3D object detection loss. To evaluate
the reliability of the pseudo label in accuracy, we present prior knowledge based SPSL-3D (named
as PSPSL-3D) to enhance the SPSL-3D with the semantic and structure information provided by a
LiDAR-camera system. Extensive experimental results in the public KITTI dataset demonstrate the
efficiency of the proposed SPSL-3D and PSPSL-3D.

Keywords: 3D object detection; semi-supervised learning; self-paced learning; LiDAR-camera system

1. Introduction

Three dimensional (3D) environment perception has an important role in the field of
autonomous driving [1]. It analyzes the real-time information of the surroundings to ensure
traffic safety. To avoid vehicle collision [2], 3D object detection is an important approach
among the techniques of 3D environment perception. Its task is to identify the classification
and predict the 3D bounding box of a targeted object a the traffic scenario. In a word, 3D
object detection performance affects the traffic safety of intelligent driving [3]. As 3D object
detection requires spatial information from the environment, light detection and ranging
(LiDAR) is a suitable sensor because it can generate a 3D point cloud in real-time [4]. Thanks
to its ranging accuracy and stability, multi-beam mechanical LiDAR is the mainstream
LiDAR sensor for environment perception [1,5]. It is referred to as LiDAR henceforth for
discussion simplicity. Due to the limited rotation frequency and beam number, the vertical
and horizontal resolution angles are limited, causing sparsity of the LiDAR point cloud,
thus increasing the difficulty of 3D object detection [1].

The current 3D object detection method exploits the technique of deep learning and
takes LiDAR points as the main input to identify and localize 3D objects [6]. To decrease
the negative impact of the sparse LiDAR point cloud, researchers have done lots of work
in several areas such as (i) detector architecture [7], (ii) supervised loss function [4], and
(iii) data augmentation [8], which have made progress in fully supervised 3D object de-
tection (FSOD-3D). By training with the sufficient labeled data, FSOD-3D can achieve
performance in 3D environment perception close to that of humans.
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However, there is a contradiction between the demand for 3D object detection perfor-
mance and the cost of human annotation on the LiDAR point cloud. Due to the sparsity of
the LiDAR point cloud and occlusion of the 3D object, the annotation cost of the 3D object
is high, so the labeled dataset is insufficient. Therefore, it is essential to utilize unlabeled
data to train the 3D object detector.

Semi-supervised 3D object detection (SSOD-3D) [9–11] has attracted a lot of attention,
for it improves the generalization ability of the 3D object detector with both labeled and
lots of unlabeled samples recorded in various traffic scenarios. From the viewpoint of
optimization, SSOD-3D is regarded as a problem that alternatively optimizes the weights
of 3D objects detector w and pseudo labels from the unlabeled dataset. For one unlabeled
sample x (i.e., the LiDAR point cloud), its pseudo label l consists of the 3D bounding boxes
of the targeted objects (i.e., car, pedestrian, cyclist), predicted from x. This means that
the capacity of w and quality of x are coupled. To obtain the optimal w∗, it is essential
to decrease the false-positives (FP) and true-negatives (TN) in l. To improve the quality
of l, one common approach is to utilize the label filter to remove the incorrect objects in
l. Sohn et al. [12] employed a confidence-based filter to remove pseudo labels of which
the classification confidence score is below threshold τcls. Wang et al. [11] extended this
filter [12] in their SSOD-3D architecture, with both the τcls and the 3D intersection-over-
union (IoU) threshold. However, in practical application, the optimal thresholds are
different with detector architecture, the training dataset and even the object category. It
takes a lot of time to search the optimal thresholds in the label filter, which is inefficient
in the actual application. Thus, it is a challenging problem to design a more effective and
convenient SSOD-3D method.

In the background of intelligent driving, most self-driving cars are equipped with
LiDAR and an optical camera. A sensor system with LiDAR and a camera is called a LiDAR-
camera system. To remedy the sparsity of the LiDAR point cloud, researchers have studied
3D object detection methods on a LiDAR-camera system [13–17]; the LiDAR-camera system
provides a dense texture feature from the RGB image, improving the classification accuracy
and confidence of the 3D detection result. Thus, it is wise for the SSOD-3D to consider the
prior knowledge provided by LiDAR-camera systems.

Motivated by this, we present a novel SSOD-3D method on a LiDAR-camera system.
First, in order to train a 3D object detector with reliable pseudo labels, we introduce a
self-paced, semi-supervised and learning-based 3D object detection (SPSL-3D) framework.
It exploits the theory of self-paced learning (SPL) [18] to adaptively estimate the reliability
weight of pseudo label with its 3D object detection loss. After that, we notice that the
prior knowledge in the LiDAR point cloud and RGB image benefits the evaluation of the
reliability of pseudo label, and propose a prior knowledge-based SPSL-3D (named PSPSL-
3D) framework. Experiments are conducted in the autonomous driving dataset KITTI [19].
With the different labeled training samples, both comparison results and ablation studies
demonstrate the efficiency of the SPSL-3D and PSPSL-3D frameworks. Therefore, SPSL-3D
and PSPSL-3D benefit SSOD-3D on a LiDAR-camera system. The remainder of this paper
is organized as follows. At first, the related works of FSOD-3D and SSOD-3D are illustrated
in Section 2. In the next, the proposed SPSL-3D and PSPSL-3D methods are discussed
in Section 3. After that, experimental configuration and results are analyzed in Section 4.
Finally, this work is concluded in Section 5.

2. Related Works
2.1. Fully Supervised 3D Object Detection

To achieve high performance in environment perception in autonomous driving,
FSOD-3D on LiDAR has been widely studied in recent years. Its architecture commonly
has three modules [6]: (i) data representation, (ii) backbone network, (iii) detection head.
LiDAR data mainly have three representations: point-based [4], pillar-based [20], and voxel-
based [21]. Selection of a backbone network is dependent on data representation. Point-
based features are extracted with PointNet [22], PointNet++ [23], or a graph neural network
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(GNN) [24]. As the pillar feature is regarded as the pseudo image, a 2D convolutional
neural network (CNN) can be used. To deal with the sparsity of the LiDAR voxel, a 3D
sparse convolutional neural network (Spconv) [25] is exploited for feature extraction. The
detection head can be classified as anchor-based [26] and anchor-free [27]. The anchor-
based 3D detector first generates the 3D bounding boxes with the pre-defined size of the
different categories (called anchors) that are placed uniformly in the ground, then predicts
the size, position shift, and confidence score of each anchor, and removes the incorrect
anchors with lower confidence scores. After that, to remove the redundant 3D bounding
boxes, 3D detection results are obtained by using non maximum suppression (NMS) on the
remaining shifted anchors. The anchor-free 3D detector first usually predicts the foreground
point cloud from the raw points [28], and then predicts the 3D bounding box from each
foreground LiDAR point with a fully connected (FC) layer. Then, NMS is exploited to
remove the bounding boxes with high overlap.

Recently, many researchers have produced lots of work; Zheng et al. [29] trained
a baseline 3D detector with knowledge distillation. The teacher detector generates the
pseudo label, and supervises the student detector with shape-aware data augmentation.
Schinagl et al. [30] analyzed the importance of each LiDAR point for 3D object detection by
means of Monte Carlo sampling. Man et al. [31] noticed that LiDAR can obtain multiple
return signals with a single laser pulse and use this mechanism to encode a meaningful
feature for the localization and classification of 3D proposals. Yin et al. [27] proposed a light
anchor-free 3D detector to regress the heat maps of 3D bounding box parameters. In the
training stage, it did not need target object alignment, thus saving lots of time. Based on 3D
Spconv [25], Chen et al. [32] presented a focal sparse convolution to dynamically select the
receptive field of voxel features for convolution computation. This can be extended for the
multi-sensor feature fusion. As for FSOD-3D on a LiDAR-camera system, Wu et al. [33]
used multi-model-based depth completion to generate a dense colored point cloud of 3D
proposals for accurate proposal refinement. Li et al. [34] presented the multi-sensor-based
cross attention module to utilize the LiDAR point as query, and its neighbored projected
pixel coordinates and RGB values as keys and values for the fusion feature computation.
Piergiovanni et al. [35] studied a general 4D detection framework for both RGB images and
LiDAR point clouds in a time series. To deal with the sparsity of the LiDAR point cloud,
Yin et al. [36] attempted to generate 3D virtual points of a targeted object with the guidance
of the instance segmentation result predicted from the RGB image.

2.2. Semi-Supervised 3D Object Detection

Semi-supervised learning (SSL) is a classical problem in machine learning and deep
learning [37]. Compared with the booming development of FSOD-3D and the rapid
development of SSOD-2D, relatively fewer works on SSOD-3D have been published in
academia. However, it is a challenging and meaningful problem for both industry and
academia. First, unlike FSOD-3D, SSOD-3D needs to both consider how to generate reliable
pseudo or weak labels from unlabeled point clouds, and how to exploit pseudo labels with
uncertain quality for 3D detector training. Second, a classical SSL framework is difficult
to directly use in SSOD-3D. For the labeled data xi and unlabeled data xj, traditional
SSL theory [37] emphasises their similarity w(xi, xj) ∈ [0, 1], and constructs a manifold
regularization term for SSL optimization. However, in SSOD-3D, point clouds xi and xj are
collected from different places and have different data distributions; thus, it is difficult to
measure their similarity. Third, as the sparse and unstructured LiDAR point cloud contains
fewer texture features than the dense and structured RGB image, it is more difficult for
SSOD-3D to extract salient prior knowledge of the targeted object than it is for SSOD-2D.

Some insightful works of SSOD-3D are discussed hereafter. Tang and Lee [9] exploited
the weak label (i.e., the 2D bounding box in RGB image) of an unlabeled 3D point cloud
to train a 3D detector. The weak label is generated via the 2D object detector. To compute
3D detection loss with the weak label, the predicted 3D bounding box is projected onto
the image plane. After that, 3D detection loss is converted into 2D detection loss. This



Remote Sens. 2023, 15, 627 4 of 20

method requires both RGB imaging and point cloud, and it works for both RGB-D camera
and LiDAR-camera systems. Xu et al. [38] adaptively filtered the incorrect 3D object in
the unlabeled data with a statistical and adaptive confidence threshold, and added the
remaining predicted 3D objects into the 3D object database for 3D object detector training
in the next iteration.

Mean teacher [39] is a common SSL paradigm in SSOD-3D. It consists of teacher and
student detectors. For one unlabeled data, its pseudo label is generated from the teacher
detector and used to supervise the student detector. Zhao et al. [10] were the first to utilize
the mean teacher framework [39] for SSOD-3D. For the unlabeled data x, they generated
its pseudo label from the teacher detector and constructed consistency loss to minimize
the difference between the pseudo label and result predicted by the student detector with
data augmentation on x. After that, parameters in the teacher detector were updated
with the trained student detector via exponential moving average (EMA). Some current
literature [11,40,41] has attempted to improve the previous work [10]. Wang et al. [11]
focused on how to remove incorrect annotations from the predicted label l with multi-
thresholds of object confidence, class, and 3D IoU. Wang et al. [40] attempted to generate
accurate predicted labels with temporal smoothing. The teacher 3D detector predicted
multi-frame labels from the multi-frame LiDAR data. After that, temporal GNN was
used to generate the accurate labels at the current frame from these multi-frame labels.
Park et al. [41] exploited a multi-task (i.e., 3D and 2D object detection) teacher detector to
establish multi-task guided consistency loss for supervision. It works on a LiDAR-camera
system. Sautier et al. [42] presented a self-supervised distillation method to pre-train the
backbone network in a 3D object detector, with the guidance of super-pixel segmentation
results, on an RGB image.

Some researchers consider that weak label is convenient and time-efficient for an-
notation, and study weak-supervised 3D object detection (WSOD-3D). Meng et al. [43]
proposed a weak and fast 3D annotation procedure to generate a 3D cylindrical bounding
box by clicking the object center in an RGB image. With the cylindrical label, they converted
SSOD-3D as WSOD-3D and provided a two-stage training scheme for the 3D object detector.
Qin et al. [44] designed an unsupervised 3D proposal generation method to obtain the 3D
bounding box with anchor size, using the normalized point cloud density. Peng et al. [45]
presented a WSOD-3D method for a monocular camera, which utilizes the alignment con-
straint of predicted 3D proposal and LiDAR points for the weak supervision. Xu et al. [46]
dealt with WSOD-3D under the condition that the position-level annotations are known.
A virtual scene with GT annotation is constructed with the known object centers. Then,
samples in the real scene with weak labels and in the virtual scene with GT labels are both
used for detector training.

2.3. Discussions

From the above analysis, most of the current study of SSOD-3D emphasises improving
the quality of pseudo labels. Two common schemes are utilized: (i) label filter [10,11,38,41]
and (ii) temporal smoothing [40]. However, both of these have space for improvement.
The label filter scheme is not time-efficient enough to search for the optimal filter thresh-
olds. The temporal smoothing scheme needs multi-frame LiDAR point clouds with the
accurate sensor pose information; this need is difficult to satisfy in some actual situations.
Although the weak label (i.e., 2D bounding box [9,45], 3D cylindrical bounding box [43] and
3D center position [46]) is easier for annotation than the standard label (i.e., 3D bounding
box), it still costs time and human resources for the amount of unlabeled data that needs
annotation in the context of autonomous driving. Therefore, an effective SSOD-3D method
is still required.
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3. Proposed Semi-Supervised 3D Object Detection
3.1. Problem Statement

SSOD-3D is a training framework to learn baseline detection from the labeled and
unlabeled datasets Xl and Xu. The baseline detector is the arbitrary 3D object detector
based on the LiDAR point cloud. Let w be the parameter set of baseline detector. SSOD-3D
aims to learn w∗ with higher generalization ability.

Some symbols are discussed here. Let xi = {Pi} be the i-th training sample where
xi ∈ Xl or xi ∈ Xu means that it is ground truth (GT), labeled or not. Pi is [Ni, 4] LiDAR
point cloud where Ni is number of LiDAR points. It contains the 3D position and reflected
intensity of the LiDAR point cloud. Let li = {lij}

ni
j=1 be the 3D object label of xi. ni is the

object number. lij represents the 3D bounding box of the j-th object using the parameter
vector of the 3D bounding box [28]. li is the pseudo or GT label if xi ∈ Xu or xi ∈ Xl . Let
lp
i = f (xi; w) be the output of the 3D object detector with the input of xi and weight of w.

lp
i = {lp

ik}
ni
k=1 is the pseudo label of xi.

3.2. Previous Semi-Supervised 3D Object Detection

Before illustrating the proposed SPSL-3D, we briefly revisit the previous SSOD-3D
approach [10]. The pipeline of the previous SSOD-3D is presented in Figure 1a. For the 3D
object detector with high generalization ability, its prediction results from the unlabeled
sample xi and its augmented sample A(xi) are both consistent and closed to the GT labels.
Based on this analysis, as the unlabeled sample does not have annotation, Lcons was
proposed to minimize the difference in labels predicted from xi and A(xi). A(xi) is the
affine transformation on Pi of xi, which contains scaling, X/Y-axis flipping, and Z-axis
rotating operations. Lcons is the core in this scheme [10], for this loss can update the weights
in the 3D object detector via back-propagation. The current SSOD-3D [10,11,38,41,47]
optimizes w∗ by minimizing the function as:

LSSOD-3D(w) =
Nl

∑
i=1
‖L3d(l

p
i , li)‖1 + Lcons, xi ∈ Xl (1)

Lcons(w) =
Nu

∑
j=1
‖L3d(l

p
j , A−1(lp

j,Aug))‖1, xj ∈ Xu (2)

lp
j = f (xj; w), lp

j,Aug = f (A(xj); w)

where L3d(l
p
i , li) is the common 3D object detection loss of each detected object [20,28]. It is

represented as [ni, 1] vector to describe the detection loss of each object. With the inverse
affine transformation A−1(·), A−1(lp

i,Aug) is obtained with the same reference coordinate

system as in lp
i . In the end, we also provide discussion of the relation of a previous SSOD-3D,

and traditional SSL theory is further discussed in Appendix A.1.

3.3. Self-Paced Semi-Supervised Learning-Based 3D Object Detection

The main challenge of consistency loss in Equation (2) is that the quality of the pseudo
label lp

j is uncertain. As Nu > Nl , if lp
j is noisy or even incorrect, the baseline detector

with the optimized parameter set w∗ tends to detect 3D objects with low localization
accuracy. To deal with this problem, we needs to evaluate the reliability weight vj of lp

j ,

where vj = (vj1, · · · , vjk, · · · , vjnj)
T is a vector to reflect the reliability score of objects in

lp
j (vjk ∈ [0, 1]). In the training stage, unreliable pseudo labels are filtered out with vj.

However, determining vj is a crucial problem.
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Figure 1. Difference between the previous SSOD-3D [10] and the proposed SPSL-3D. (a) Consistency
loss [10]. (b) Loss in SPSL-3D. This emphasizes the quality of pseudo label lp

j , adjusting the relia-

bility weight of object in lp
j and thus enhancing the generalization ability of the baseline detector.

(c) Improvement of SPSL-3D in 3D object detection.

One naive idea is to adjust the reliability weight vj with the guidance of the consistency
loss of lp

j . If the consistency loss of lp
j enlarges, the pseudo labels lp

j are unreliable. Based on
this idea, we exploit the theory of SPL [18] to construct the mathematical relation of vj to
L3d(l

p
j , A−1(lp

j,Aug)), and propose a novel SSOD-3D framework, SPSL-3D, in this paper. Its
pipeline is presented in Figure 1b. SPSL-3D optimizes w∗ by minimizing the function as:

Lraw(w, v, λl , λu) =
Nl

∑
i=1

vT
i L3d(l

p
i , li) +

Nu

∑
j=1

(
vT

j L3d(l
p
j , A−1(lp

j,Aug)) + fu({vj}Nu
j=1, λu)

)
,

v = {vj}Nu
j=1, xi ∈ Xi, xj ∈ Xj

(3)

λu =
e
E

max(L3d(l
p
j , A−1(lp

j,Aug))) +
(

1− e
E

)
mean(L3d(l

p
j , A−1(lp

j,Aug))) (4)

where λu is age parameter to control the learning pace [48]. Let the current epoch and maxi-
mum training epoch be e and E. Furthermore, fu({vj}Nu

j=1, λu) is a self-paced regularization
term [48] for the unlabeled sample:

fu({vj}Nu
i=1, λu) = −λu

Nu

∑
j=1

nj

∑
k=1

(
−1

2
v2

jk + vjk

)
(5)

However, in deep learning, w contains lots of parameters, so it is difficult to directly
optimize Equation (3). As the modern deep neural network (DNN) is trained with a batch
of data the size of Bl + Bu [49], the loss of SPSL-3D is simplified as:

LSPSL-3D(w, v, λl , λu) =
Bl

∑
i=1

(
vT

i L3d(l
p
i , li)

)
+

Bu

∑
j=1

(
vT

j L3d(l
p
j , A−1(lp

j,Aug))− λu

nj

∑
k=1

(
−1

2
v2

jk + vjk

))
,

v = {vj}Bu
j=1, xi ∈ Xi, xj ∈ Xj

(6)

An alternative optimization scheme is used to optimize w and v. With the fixed
w, v needs to be optimized. The closed-form solution is obtained as Equation (7) via
∂LSPSL-3D/∂v = 0. For a vector L, [L]k is its k-th element. With the fixed v, w is optimized
in Equation (6) with the deep learning-based optimizer (i.e., Adam and SGD).
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vjk =

1−
[L3d(l

p
j , A−1(lp

j,Aug))]k

λu
, [L3d(l

p
j , A−1(lp

j,Aug))]k < λu

0, [L3d(l
p
j , A−1(lp

j,Aug))]k ≥ λu

(7)

Intuitive explanation of Equation (7) is discussed here. For the k-th object in the
sample with the pseudo label, if its loss is larger than λu, it is regarded as an unreliable
label and cannot be used. If its loss is smaller than λu, SPSL-3D evaluates its reliability
score with its consistency loss. SPSL-3D emphasizes the most reliable pseudo label in the
training stage to enhance the robustness of the baseline detector. When epoch e grows,
λu increases (seen Equation (4)), meaning that SPSL-3D enlarges the size of the unlabeled
samples for training, thus improving the generalization ability of baseline detector. The
improvement can be found in Figure 1c.

3.4. Improving SPSL-3D with Prior Knowledge

From Equation (7), SPSL-3D can adaptively adjust the reliability weight of pseudo label
using its 3D object detection loss. In fact, the reliability weight of pseudo label is not only
dependent on consistency loss, but also dependent on the prior knowledge in the LiDAR
point cloud and RGB image provided by the LiDAR-camera system. If the LiDAR point
cloud or image feature of one predicted object is not salient, its pseudo label is not reliable.
Based on this analysis, to further enhance the performance of PSPL-3D with information
from the LiDAR point cloud and RGB image, we propose a prior knowledge-based SPSL-3D
named PSPSL-3D, which is presented in Figure 2.

Figure 2. Framework of the proposed PSPSL-3D. It can evaluate the reliability weight of a pseudo
label from prior knowledge extracted from the LiDAR point cloud and RGB image.

In PSPSL-3D, we attempt to represent the reliability of the pseudo label with the
LiDAR point cloud and RGB image. For the k-th object ojk in lp

j , its prior reliability
coefficient is modeled as ρdet,jk = ρdiff,jk · ρanno,jk. It consists of the detection difficulty
coefficient ρdiff,jk ∈ [0, 1] and the label accuracy coefficient ρanno,jk ∈ [0, 1]. The motivation
of designing ρdet,jk is to constrain vjk with both 3D detection loss and prior knowledge from
the RGB image and LiDAR point cloud.

Due to the LiDAR mechanism, ρdiff,jk is mainly dependent on the occlusion and
resolution of ojk in the LiDAR point cloud. However, due to the complex situation of
3D object in the real traffic situation, it is difficult to model the relationship between the
occlusion, resolution, and detection difficulty of ojk. An approximate solution is provided
here. Following the thought in the literature [50], a statistical variable mjk is used as the
LiDAR point number inside the 3D bounding box of ojk to describe ρdiff,jk:
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ρdiff,jk =
min(mjk, mth(cjk))

mth(cjk)
(8)

where cjk is the category (i.e., car, pedestrian, cyclist) of ojk, and mth(cjk) is the minimal
threshold of the LiDAR point number of the corresponding category. For the actual
implementation, mth(cik) is a statistic variable from Xl , discussed in Section 4.2. If ojk has
higher resolution and less occlusion, mjk is closer and even higher than mth(cjk), so that
ρdiff,jk is closer to 1. The 3D detection difficulty of ojk is largely decreased.

Then, ρanno,jk is discussed. As GT is unknown, we attempt to evaluate the annotation
accuracy indirectly. On the one hand, as for the current 3D detection method, a confidence
score sp

jk ∈ [0, 1] of ojk is supervised with the 3D IoU of the predicted and GT 3D bounding

box [21,26]. sp
jk can be used to describe ρanno,jk. On the other hand, a semantic segmentation

map predicted from RGB image also contains annotation information. As the RGB image
is more dense than the LiDAR point cloud, semantic segmentation on the RGB image is
more accurate than the semantic segmentation on the LiDAR point cloud. Projecting the 3D
bounding box of ojk onto the image plane generates a 2D bounding box Bjk. Its pixel area is
Ajk. The pixel area of the semantic map of cjk inside Bjk is Sjk. If the predicted 3D bounding
box of ojk is accurate, sp

jk and ratio of Sjk and Ajk are closer to 1. Due to the occlusion of

object, Sjk is not accurate enough. Thus, the arithmetic mean of sp
jk and the pixel area ratio

is used to describe ρanno,jk:

ρanno,jk =

√
sp

ik ·
Sik
Aik

(9)

From the above discussion, prior knowledge is not directly extracted from the RGB
image, for the RGB feature of the targeted object is affected by shadow and blur in the
complex traffic scenario. Compared with the RGB image, the semantic segmentation map
is more stable to reflect the location information of a targeted object. Thus, the semantic
feature is used to describe ρanno,jk.

After obtaining ρdet,jk, a scheme designed to constrain vjk with ρdet,jk is required.
Referring to the thought in self-paced curriculum learning [51], the interval of vjk can be
constrained from [0, 1] to [0, ρdet,jk]. This means that the interval of vjk is dependent on its
prior detection coefficient ρdet,jk. To achieve this scheme, vjk in Equation (6) is replaced
with vjk/ρdet,jk, and the loss function of PSPSL-3D is presented as:

LPSPSL-3D(w, v, λl , λu) =
Bl

∑
i=1

(
vT

i L3d(l
p
i , li)

)

+
Bu

∑
j=1

vT
j L3d(l

p
j , A−1(lp

j,Aug))− λu

nj

∑
k=1

−1
2

(
vjk

ρdet,jk

)2

+
vjk

ρdet,jk

,

v = {vj}Bu
j=1, xi ∈ Xi, xj ∈ Xj

(10)

As the same in Section 3.2, the alternative optimization scheme is used to find
the optimal w and v. The close-formed solution of v is shown in Equation (11) via
∂LPSPSL-3D/∂v = 0. The procedure of PSPSL-3D is summarized in Algorithm 1.

vjk =


ρdet,jk ·

(
1−

[L3d(l
p
j , A−1(lp

j,Aug))]k

λu

)
, [L3d(l

p
j , A−1(lp

j,Aug))]k < λu

0, [L3d(l
p
j , A−1(lp

j,Aug))]k ≥ λu

(11)
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Algorithm 1 Proposed SPSL-3D and PSPSL-3D framework for SSOD-3D.
Inputs: Baseline detector, maximum epoch E, datasets Xl and Xu, batch sizes Bl and Bu;
Parameters: Baseline detector weight w, current epoch e, sample weight v, age parameters
λl and λu;
Output: Optimal 3D detector weight w∗

1: Pre-training baseline 3D detector in Xl obtains w0
2: Let e = 1 and w = w0
3: while e ≤ E do
4: Let k = 1
5: while k ≤ Nl do
6: {xi, li}

Bl
i=1 = DataLoader(Xl , Bl), {xj}Bu

j=1 = DataLoader(Xu, Bu)

7: Computing λu with e and E via Equation (4)
8: if SPSL-3D is exploited then
9: Optimizing v using w, λu via Equation (7)

10: Optimizing w with v via Equations (6)
11: end if
12: if PSPSL-3D is exploited then
13: Computing ρdet,jk via Equations (8) and (9)
14: Optimizing v using w, ρdet,ik, λu via Equation (11)
15: Optimizing w with v via Equation (10)
16: end if
17: k = k + Bl
18: end while
19: e = e + 1
20: end while
21: Return w∗ as w.

4. Experiments
4.1. Dataset and Configuration

The classical outdoor KITTI dataset [19] is exploited to evaluate 3D detection perfor-
mance in the outdoor traffic scenario. It contains (i) training datasetDtrain with 3712 samples,
(ii) validation dataset Dval with 3769 samples, and (iii) testing dataset Dtest with 7518 sam-
ples. All of them have GT annotation. The LiDAR point cloud and RGB image are provided
in each sample. As the raw KITTI dataset does not contain semantic segmentation images,
we generate semantic maps with four categories (i.e., car, pedestrian, bicycle, background)
using the pre-trained deeplab v3 [52]. Three categories (i.e., car, pedestrian, cyclist) of
targeted object are considered in the following experiments. To verify the performance of
SSOD-3D methods, a semi-supervised condition is established in the experiments. Dtrain is
divided as Xl and Xu where Xl ∪Xu = Dtrain and Xl ∩Xu = ∅. GT labels in Xu are disabled
in the training stage. Xu is regarded as unlabeled dataset. Let Ranno = Nl/(Nl +Nu) be the
labeled ratio. In the following experiments, to evaluate the performance of SSOD-3D com-
prehensively, we set various training situations with the different labeled ratios, from 4%
(hard SSL case ) to 64% (easy SSL case). Specifically, Ranno is set as 4%, 8%, 16%, 32%, 64%,
respectively. Furthermore, we mainly focus on the comparison results in the hard SSL case
(Ranno ≤ 16%).

To measure the results of SSOD-3D methods, SSOD-3D methods are trained on Dtrain,
and then evaluated on Dval. 3D average precision (AP) is the main metric for comparison.
In order to further evaluate the different SSOD-3D methods, a bird’s eye view (BEV)
AP and 3D recall rate are also provided. The IoU thresholds of 3D and BEV objects
are 0.7 (car) and 0.5 (pedestrian and cyclist). As object label in KITTI dataset has three
levels (i.e., easy, moderate, hard), these metrics of all level objects are provided for the
comprehensive comparison.

The proposed SPSL-3D, PSPSL-3D needs a baseline detector. Voxel RCNN [21] is
selected as the baseline 3D detector as it has simple detector architecture and fast and
accurate inference performance. THe optimizer, learning rate policy, and hyper-parameters
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in A(·) are default [21]. As the proposed method is implemented on a single Nvidia
GTX 3070, the batch size is set as 2, where Bl = 1 and Bu = 1. w0 is needed for SPSL-
3D and PSPSL-3D. This is obtained by per-training Voxel R-CNN on Xl with 80 epochs.
The maximum epoch E is related to Ranno. Fine-tuning experience shows that better results
are achieved when E = 30 if Ranno ≤ 16% and E = 50 if Ranno > 16%. In the actual training
stage, data augmentation contains not only 3D affine transformation on the LiDAR point
cloud, but also the cut-and-paste operation [4]. This operation aims to increase the object
number in xi by putting extra 3D objects with GT annotation into the point cloud Pi. 3D
objects with GT labels are stored in the object bank before training. To prevent data leakage,
the object bank should be built only on Xl instead of Dtrain.

Current SSOD-3D methods are selected for comparison. SESS [10] is the first to
utilize the mean-teacher SSL framework [39] in SSOD-3D. SESS is enhanced with the
multi-threshold label filter (LF) proposed in work [11], and the improved method is named
as 3DIoUMatch. UDA [53] is a classical SSL framework. It exploits the consistency loss
Lcons for supervision. We consider that it can work for SSOD-3D. As curriculum learning
(CL) [54] is a fundamental part of SPL theory [18], CL can also be used in SSOD-3D,
so that method UDA+CL is designed. As unlabeled data increase learning uncertainty,
UDA+CL tries to learn w with increasing unlabeled data. For Lcons in Equation (3), Nl
is replaced with bα(e)Nlc where α(e) = e/E. These methods also require a baseline 3D
detector. For a fair comparison, Voxel RCNN [21] is marked as Baseline and used as
the baseline 3D detector for all SSOD-3D methods. The above mentioned methods are
trained in the same condition. As for the SSOD-3D method on the LiDAR point cloud,
only the open-source code of 3DIoUMatch [11] is provided (https://github.com/THU1
7cyz/3DIoUMatch-PVRCNN, accessed on 1 July 2022). Other methods are implemented
by authors on the open-source FSOD-3D framework OpenPCDet (https://github.com/
open-mmlab/OpenPCDet, accessed on 1 March 2022).

4.2. Comparison with Semi-Supervised Methods

This experiment investigates the comparison results of the proposed PSPSL-3D meth-
ods with the current SSOD-3D methods. The results of all SSOD-3D methods at
Ranno = 4%, 8%, 16%, 32%, 64% are presented in Tables 1–5. In these tables, gain from
baseline means the improvement of the proposed PSPSL-3D over the baseline method.
For the baseline, its 3D mAPs of all categories are dramatically increased from Ranno = 4%
to 8%, suggesting the large potential improvement of SSOD-3D. The 3D mAPs of baseline
increased slowly when Ranno ≥ 16%, and the improvements of SSOD-3D methods are also
relatively small. The 3D mAP of 3DIoUMatch [11] is higher than SESS [10], as the multi-
threshold-based label filter in 3DIoUMatch can remove some incorrectly predicted labels.
The 3D mAP of UDA+CL [54] is higher than UDA [53], as the curriculum can reduce
certain instances of overfitting of easily detected objects in the training stage. In most
cases, the proposed SPSL-3D is superior to SESS [10] and UDA [53], because it exploits
SPL theory [18] to filter incorrect and too difficult labeled and unlabeled training samples
adaptively. It is noticed that the proposed PSPSL-3D has higher 3D mAPs than other current
methods because it adds prior knowledge from the RGB image and LiDAR point cloud as
self-paced regularization terms in SPSL-3D to achieve robust and accurate learning results.
It is found that 3DIouMatch [11] has better performance than other previous methods.
Compared with 3DIoUMatch, the proposed PSPSL-3D makes a significant improvement
in 3D cyclist detection and also has a certain improvement in 3D pedestrian detection,
because the prior knowledge from the LiDAR point cloud and RGB image is beneficial to
modeling the reliability of objects with a relatively small size. Therefore, it is concluded
that the proposed SPSL-3D and PSPSL-3D benefit SSOD-3D in a LiDAR-camera system.

https://github.com/THU17cyz/3DIoUMatch-PVRCNN
https://github.com/THU17cyz/3DIoUMatch-PVRCNN
https://github.com/open-mmlab/OpenPCDet
https://github.com/open-mmlab/OpenPCDet
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Table 1. 3D AP of current SSOD-3D methods in KITTI validation dataset at Ranno = 4%.

4% Labeled 3D AP of Car 3D AP of Pedestrian 3D AP of Cyclist

Methods Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

Baseline [21] 36.88% 32.05% 30.03% 19.71% 16.76% 16.40% 13.84% 13.45% 13.50%
SESS [10] 39.07% 33.81% 32.20% 15.02% 12.35% 12.37% 13.98% 12.80% 12.75%
UDA [53] 38.43% 35.94% 31.57% 20.25% 19.81% 17.06% 15.42% 7.67% 7.79%

3DIoUMatch [11] 47.73% 41.15% 39.33% 21.53% 22.01% 18.04% 18.33% 14.57% 13.32%
UDA+CL [54] 40.21% 36.17% 32.19% 22.52% 19.34% 18.11% 15.97% 10.12% 9.09%

SPSL-3D 46.98% 40.87% 38.16% 25.58% 21.71% 18.05% 19.27% 13.70% 13.73%
PSPSL-3D 52.24% 42.52% 40.30% 24.83% 21.22% 21.17% 20.57% 15.15% 13.79%

Gain from
baseline +15.36% +10.47% +10.27% +5.12% +4.46% +4.77% +6.73% +1.70% +0.29%

Table 2. 3D AP of current SSOD-3D methods in KITTI validation dataset at Ranno = 8%.

8% Labeled 3D AP of Car 3D AP of Pedestrian 3D AP of Cyclist

Methods Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

Baseline [21] 74.64% 63.57% 57.25% 37.79% 31.96% 30.53% 50.73% 34.51% 30.18%
SESS [10] 77.70% 64.14% 59.66% 41.11% 33.79% 33.17% 50.92% 33.24% 32.67%
UDA [53] 76.02% 64.88% 61.47% 37.90% 32.91% 31.92% 49.87% 35.20% 30.07%

3DIoUMatch [11] 76.12% 65.16% 58.19% 43.28% 36.56% 32.17% 48.82% 34.85% 34.12%
UDA+CL [54] 76.14% 65.15% 62.59% 38.08% 33.47% 31.99% 50.35% 35.19% 30.25%

SPSL-3D 76.40% 65.79% 63.70% 39.54% 35.01% 30.78% 52.15% 32.23% 31.18%
PSPSL-3D 77.03% 66.03% 63.28% 42.24% 37.14% 32.14% 55.14% 38.76% 32.69%

Gain from
baseline +2.39% +2.46% +6.03% +4.45% +5.18% +1.61% +4.41% +4.25% +2.51%

Table 3. 3D AP of current SSOD-3D methods in KITTI validation dataset at Ranno = 16%.

16% Labeled 3D AP of Car 3D AP of Pedestrian 3D AP of Cyclist

Methods Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

Baseline [21] 86.52% 75.06% 68.98% 50.17% 45.96% 43.09% 64.72% 47.99% 47.05%
SESS [10] 85.74% 75.25% 68.52% 51.16% 47.36% 45.36% 63.22% 48.03% 46.54%
UDA [53] 86.21% 75.73% 73.90% 50.42% 48.33% 43.34% 66.12% 47.39% 46.88%

3DIoUMatch [11] 87.41% 76.41% 74.57% 52.39% 49.33% 45.59% 65.30% 48.88% 47.35%
UDA+CL [54] 86.67% 75.97% 74.55% 50.22% 48.36% 43.58% 66.57% 48.85% 47.74%

SPSL-3D 86.98% 76.14% 74.65% 50.67% 48.76% 43.72% 73.43% 48.77% 48.20%
PSPSL-3D 87.18% 76.49% 74.66% 52.41% 49.64% 44.29% 74.71% 49.68% 49.28%

Gain from
baseline +0.66% +1.43% +5.68% +2.24% +3.68% +1.20% +9.99% +1.69% +2.23%

Table 4. 3D AP of current SSOD-3D methods in KITTI validation dataset at Ranno = 32%.

32% Labeled 3D AP of Car 3D AP of Pedestrian 3D AP of Cyclist

Methods Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

Baseline [21] 87.20% 77.14% 75.44% 59.13% 52.55% 50.49% 73.85% 54.21% 52.26%
SESS [10] 87.67% 76.91% 75.25% 62.61% 55.74% 49.84% 73.91% 54.14% 52.03%
UDA [53] 87.99% 77.12% 75.24% 60.10% 54.88% 49.95% 74.25% 57.92% 56.82%

3DIoUMatch [11] 87.86% 77.26% 75.28% 63.17% 56.42% 50.03% 74.19% 55.20% 52.72%
UDA+CL [54] 88.13% 77.46% 75.63% 60.49% 55.59% 50.02% 77.84% 58.42% 56.91%

SPSL-3D 88.30% 77.81% 75.58% 62.84% 56.97% 54.59% 77.90% 58.13% 57.02%
PSPSL-3D 88.22% 77.84% 75.76% 62.87% 57.02% 54.88% 77.96% 58.21% 57.18%

Gain from
baseline +1.02% +0.70% +0.32% +3.74% +4.47% +4.39% +4.11% +4.00% +4.92%
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Table 5. 3D AP of current SSOD-3D methods in KITTI validation dataset at Ranno = 64%.

64% Labeled 3D AP of Car 3D AP of Pedestrian 3D AP of Cyclist

Methods Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

Baseline [21] 88.94% 78.70% 77.84% 64.95% 60.43% 56.46% 77.20% 58.13% 57.04%
SESS [10] 88.97% 78.83% 77.55% 65.21% 60.37% 56.15% 77.38% 58.44% 57.65%
UDA [53] 88.74% 78.72% 77.34% 64.31% 61.19% 56.02% 77.52% 57.93% 57.34%

3DIoUMatch [11] 89.20% 78.91% 78.02% 65.60% 61.72% 56.33% 77.82% 58.94% 58.02%
UDA+CL [54] 88.84% 78.74% 77.85% 64.64% 61.35% 56.48% 77.73% 58.25% 57.62%

SPSL-3D 89.08% 78.69% 77.98% 65.27% 62.02% 56.52% 76.27% 58.80% 56.44%
PSPSL-3D 89.35% 78.99% 78.13% 65.75% 62.64% 56.72% 78.29% 60.71% 57.78%

Gain from
baseline +0.41% +0.29% +0.29% +0.80% +2.21% +0.26% +1.09% +2.58% +0.74%

4.3. Comparison with Fully Supervised Methods

This experiment investigates the comparison results of the proposed PSPSL-3D meth-
ods with current FSOD-3D methods. FSOD-3D methods are all trained on the entire Dtrain.
For the proposed method PSPSL-3D at Ranno = 100%, the unlabeled testing samples Dtest in
the KITTI dataset are used in the training procedure. Results in the KITTI validation dataset
are provided in Table 6. The 3D APs of almost all categories of SPSL-3D and PSPSL-3D are
smaller than fully supervised Voxel RCNN [21], but the 3D APs difference between car and
pedestrian is not large. Compared with other FSOD-3D methods, it is found that 3D APs of
pedestrians of PSPSL-3D are larger than some of classical methods [4,20,26], while 3D APs
of the car category are smaller than the state-of-the-art FSOD-3D methods [14,29,55,56]. Ad-
ditionally, the BEV AP results of SPSL-3D, PSPSL-3D, and fully supervised Voxel RCNN [21]
are also presented in Table 7. As BEV object detection is easier than 3D object detection, it
is found that most of the BEV APs of the proposed SSOD-3D methods and fully supervised
methods are fairly close. In conclusion, the proposed PSPSL-3D method, which needs only
64% labeled data, can achieve a performance that is close to the BEV and 3D object detec-
tion performance of current FSOD-3D methods. By exploiting more unlabeled samples
(Ranno = 100%), the proposed PSPSL-3D outperforms than other FSOD-3D methods, which
means that SSOD-3D has huge research potential in the field of autonomous driving.

Table 6. 3D AP of the proposed SSOD-3D at Ranno = 64% and current FSOD-3D methods in KITTI
validation dataset.

3D AP of Car 3D AP of Pedestrian 3D AP of Cyclist

Methods Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

PointPillars [20] 87.75% 78.39% 75.18% 57.30% 51.41% 46.87% 81.57% 62.94% 58.98%
Point-

RCNN [4] 88.26% 77.73% 76.67% 65.62% 58.57% 51.48% 82.76% 62.83% 59.62%

PV-
RCNN [26] 92.57% 84.83% 82.69% 64.26% 56.67% 51.91% 88.88% 71.95% 66.78%

3D-CVF [14] 89.97% 79.88% 78.47% − − − − − −
SE-SSD [29] 93.19% 86.12% 83.31% − − − − − −
EPNet [55] 92.28% 82.59% 80.14% − − − − − −
TANet [56] 88.21% 77.85% 75.62% 70.80% 63.45% 58.22% 85.98% 64.95% 60.40%

Voxel
RCNN [21] 89.17% 79.25% 78.33% 66.43% 62.59% 57.14% 83.02% 63.87% 57.62%

SPSL-3D
(Our, 64%) 89.08% 78.69% 77.98% 65.27% 62.02% 56.52% 76.27% 58.80% 56.44%

PSPSL-3D
(Our, 64%) 89.35% 78.99% 78.13% 65.75% 62.64% 56.72% 78.29% 60.71% 57.78%

PSPSL-3D
(Our, 100%) 89.27% 79.32% 78.58% 68.11% 65.51% 59.58% 83.29% 64.30% 58.13%
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Table 7. BEV AP of the proposed SSOD-3D at Ranno = 64% and baseline FSOD-3D methods in KITTI
validation dataset.

BEV AP of Car BEV AP of Pedestrian BEV AP of Cyclist

Methods Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

Voxel
RCNN [21] 90.17% 88.17% 87.41% 67.86% 63.28% 59.97% 82.87% 64.17% 57.85%

SPSL-3D
(Our, 64%) 90.12% 87.84% 87.04% 69.23% 63.34% 58.14% 76.89% 64.33% 56.84%

PSPSL-3D
(Our, 64%) 90.13% 88.03% 87.12% 70.58% 64.73% 58.92% 77.22% 64.74% 57.89%

PSPSL-3D
(Our, 100%) 90.40% 88.30% 87.86% 73.97% 67.83% 61.45% 83.38% 64.51% 58.30%

4.4. Visualizations

To better show the learning efficiency of PSPSL-3D, visualizations of 3D object detec-
tion are provided and discussed in this experiment. Comparisons with a fully supervised
baseline 3D detector and PSPSL-3D trained in Ranno = 64%-labeled data are shown in
Figure 3. In the different outdoor scenarios, the proposed PSPSL-3D has nearly the same
performance as the fully supervised baseline detector. If the object is far from the LiDAR,
only a few false-positives are generated in PSPSL-3D. To further compare 3D object de-
tection results in the LiDAR point cloud, more visualizations of the proposed method in
the condition of Ranno=8% are presented in Figures 4 and 5. As 3DIoUMatch [11] has a
performance close to that of PSPSL-3D, it is used for the main comparison. In the complex
street scenarios with lots of cars and cyclists, PSPSL-3D has a higher 3D recall rate than
3DIoUMatch, because the proposed PSPSL-3D emphasizes the reliability of the pseudo
label, thus achieving stable learning results. PSPSL-3D also has accurate results in simple
outdoor scenarios. It is concluded that the proposed PSPSL-3D has stable and accurate 3D
object detection performance.

Figure 3. 3D object detection results of the fully supervised (FS) baseline method and the proposed
PSPSL-3D trained in Ranno = 64%-labeled data in the KITTI validation dataset.
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Figure 4. 3D object detection results in the complex scenarios. Baseline, 3DIoUMatch, and PSPSL-3D
are trained with Ranno = 8%-labeled data. The recall rate of PSPSL-3D is higher than in other methods.

Figure 5. 3D object detection results of PSPSL-3D trained with Ranno = 8%-labeled data in simple
traffic scenarios. Few false-positives and true-negatives were obtained.

4.5. Ablation Study

This experiment evaluates the effectiveness of the proposed PSPSL-3D framework.
From Tables 6–8, it is also found that the 3D AP, BEV AP, and 3D recall rates of PSPSL-3D
are higher than those of SPSL-3D in most of cases. Specifically, in the task of BEV object
detection, PSPSL-3D has significantly improved pedestrian and cyclist detection under
the same annotation conditions. In the task of 3D object detection, under the condition
that Ranno ≤ 16%, PSPSL-3D has a larger improvement than SPSL-3D in detecting 3D
objects of all categories. The reason for this is provided in the following. Based on an
SPSL-3D framework, PSPSL-3D exploits prior knowledge from the RGB image and LiDAR
point cloud and then establishes extra regularization terms to prevent incorrectly predicted
labels, thus achieving a higher 3D object detection performance. Therefore, ablation studies
demonstrate the effectiveness of the proposed PSPSL-3D.
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Table 8. 3D recall rate with an IoU threshold of 0.7 in the KITTI validation dataset.

Method/Ranno 4% 8% 16% 32% 64%

SPSL-3D 43.47% 57.46% 65.65% 67.06% 71.30%
PSPSL-3D 44.25% 58.03% 66.13% 67.37% 71.63%

5. Discussion

The proposed SSOD-3D frameworks, SPSL-3D and PSPSL-3D, have several advan-
tages. At first, we consider the reliability of pseudo label in the SSOD-3D training stage.
As the GT annotation of pseudo label is unknown, we attempt to use the consistency loss to
represent the weight of the pseudo label. If the pseudo label is incorrect, its consistency loss
is larger than other pseudo labels. To reduce the negative effect of the pseudo label with
large noise, we need to decrease the reliability weight of this pseudo label in the training
stage. To adaptively and dynamically adjust the reliability weight of all pseudo labels, we
exploit the theory of SPL [18] and then propose SPSL-3D as a novel and efficient framework.
Second, we utilize the multi-model sensor data in the semi-supervised learning stage,
thus further enhancing the capacity of the baseline 3D object detector based on LiDAR.
The reason for the usage of multi-model data is that we notice that the LiDAR-camera
system is widely equipped in the autonomous driving system. Thus, both the RGB image
and LiDAR point cloud can be used in the training stage of SSOD-3D. For one object, there
are generally abundant structural and textural features in the RGB image and LiDAR point
cloud. However, as shown in Figure 6, the RGB image has shadow, occlusion, and blur,
so it is difficult to extract prior knowledge of an object in the RGB image. Compared
with RGB images, semantic segmentation images can directly reflect the object category
information. Based on this analysis, we used the area of semantic segmentation of the
object to describe the annotation accuracy. However, the semantic segmentation image also
has two main limitations: it cannot identify occluded objects, and finds it hard to determine
objects that are far from the sensor. Thus, the proposed PSPSL-3D exploits Equation (9) to
approximately represent the annotation accuracy of the pseudo label.

Figure 6. Multi-sensor data collected by the LiDAR-camera system in the different outdoor scenarios.
Occlusion, shadow, blur, and sparsity in the LiDAR point cloud and RGB image have impacts on
the detection difficulty and annotation accuracy (only for pseudo label) of the 3D object, limiting the
efficiency of SSOD-3D. Blur in RGB images causes ambiguity in the semantic image. The image and
3D point cloud show significant differences in the various scenes. 3D objects are detected using the
proposed PSPSL-3D framework with Ranno = 100%.

Extensive experiments in Section 4 demonstrate the effectiveness of the proposed
SPSL-3D and PSPSL-3D. Firstly, compared with the state-of-the-art SSOD-3D methods,
the proposed SPSL-3D and PSPSL-3D frameworks have achieved the better results than
other methods because the proposed frameworks consider the reliability of the pseudo
labels, thus decreasing the negative effect of incorrect pseudo labels in the training stage.
Second, the proposed frameworks are also suitable to train baseline 3D object in a fully
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supervising way. Compared with the current FSOD-3D methods, the baseline 3D detec-
tor trained with PSPSL-3D outperforms other FSOD-3D methods. This means that the
training scheme which emphasizes the weight of label is beneficial to baseline 3D object
detector training.

In the future, we will study SSOD-3D in the several ways. Firstly, computer graphic
(CG) techniques can be used to generate a huge number of labeled simulated samples.
Exploiting the theory of SPL [57] in SSOD-3D with unlabeled samples and labeled simulated
samples is an ongoing problem. Secondly, in actual application, the data distribution of
the labeled LiDAR point cloud might be different from that of the unlabeled LiDAR point
cloud because the dataset is collected with a different type of LiDAR sensor at a different
place. Utilizing domain adaptation in a SSOD-3D is a challenging problem. We will deal
with the above problems in subsequent studies.

6. Conclusions

The main challenge of learning-based 3D object detection is the shortage of labeled
samples. To make full use of unlabeled samples, SSOD-3D is an important technique. In this
paper, we propose a novel and efficient SSOD-3D framework for 3D object detection on a
LiDAR-camera system. Firstly, to avoid the negative effect of unreliable pseudo labels, we
propose SPSL-3D to adaptively evaluate the reliability weight of pseudo labels. Secondly,
to better evaluate the reliability weight of pseudo labels, we utilize prior knowledge from
the LiDAR-camera system and present the PSPSL-3D framework. Extensive experiments
show the effectiveness of the proposed SPSL-3D and PSPSL-3D on the public dataset.
Hence, we believe that the proposed framework benefits 3D environmental perception in
autonomous driving.
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The following abbreviations are used in this manuscript:

LiDAR Light detection and ranging
3D Three dimensional
SSL Semi-supervised learning
SSOD-3D Semi-supervised 3D object detection
FSOD-3D Fully supervised 3D object detection
WSOD-3D Weakly supervised 3D object detection
SPL Self-paced learning
SPSL-3D Self-paced semi-supervised learning based 3D object detection
PSPSL-3D Self-paced semi-supervised learning based 3D object detection with prior knowledge
AP Average precision
BEV Bird’s eye view
UDA Unsupervised data augmentation
CL Curriculum learning
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IoU Intersection over union
GT Ground truth
EMA Exponential moving average
NMS Non maximum suppression
FC Fully connected
CNN Convolutional neural network
GNN Graph neural network
Spconv Sparse convolutional neural network

Appendix A

Figure A1. Relation of classical SSL, current SSOD-3D, and proposed SPSL-3D, PSPSL-3D. As weight
function w(xi, xj) is difficult to design in complex traffic scenarios, the regularization (reg.) term
‖w‖I in traditional SSL theory is simplified as the consistency loss Lcons. In this paper, emphasising
the impact of the reliability of pseudo labels on SSOD-3D training, we present SPL-based consistency
loss LSPSL-3D and SPSL-3D. Prior information (info.) is exploited to enhance the effect of SPL on
SPSL-3D.

Appendix A.1. Relation of Traditional SSL Theory and Previous SSOD-3D Method

We briefly revisit the previous SSOD-3D approach [10] and discuss the relation be-
tween the classical SSL theory and existing SSOD-3D method (seen in Figure A1). Classical
SSL [37] aims to find w∗ by minimizing the following cost function:

LSSL(w) =
Nl

∑
i=1
‖L3d(l

p
i , li)‖1 + α‖w‖2

2 + γ‖w‖2
I , xi ∈ Xl (A1)

where α and γ are coefficients of regularization terms. Suppose that x lies in a compact
manifold M [37]. Px is the marginal distribution of x. ‖w‖I reflects the intrinsic structure
of Px on M [37]:

‖w‖2
I =

∫
x∈M
‖∇Mw‖2dPx(x)

≈ 1
Nl + Nu

∑
i 6=j

w(xi, xj)L3d(l
p
i , lp

j ), xi, xj ∈ Xl ∪Xu
(A2)

In the above equation, data weight w(xi, xj) ∈ [0, 1] describes the similarity of xi
and xj. However, as presented in Figure 6, xi and xj collected in the different scenarios
have different data distribution. Their object number and category are also not the same.
Therefore, it is hard to design a suitable w(xi, xj). There is a gap between traditional SSL
theory and SSOD-3D.

To solve this problem, researchers attempted to relax ‖w‖I and present the consistency
loss Lcons as an approximation of SSOD-3D. They exploit data augmentation operator A(·)
to create datum A(xi) similar to xi [10,39]. A(xi) is used to replace xj in Equation (A2).
A(xi) is the affine transformation on Pi of xi, which contains scaling, X/Y-axis flipping
and Z-axis rotating operations [26]. As affine transformation does not change the structure
of point cloud, it is safe to assume that w(xi, A(xi)) ≈ 1. lp

i,Aug is one of the results in

f (A(xi); w). With the inverse affine transformation A−1(·), A−1(lp
i,Aug) is obtained, which

has the same reference coordinate system as lp
i . After that, ‖w‖2

I in Eq. (A1) is simplified
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and replaced as one consistency loss Lcons [10] as Equation (2). It is the core loss function
in the pseudo label based SSOD-3D methods [10,11,38,41,47]. In the other literature, Lcons
is called unsupervised data augmentation (UDA) [53] because it does not utilize any
GT information. The current SSOD-3D [10] optimizes w∗ by minimizing the function in
Equation (1).
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