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Abstract: Hyperspectral image (HSI) anomaly detection (HSI-AD) has become a hot issue in hy-
perspectral information processing as a method for detecting undesired targets without a priori
information against unknown background and target information, which can be better adapted
to the needs of practical applications. However, the demanding detection environment with no
prior and small targets, as well as the large data and high redundancy of HSI itself, make the study
of HSI-AD very challenging. First, we propose an HSI-AD method based on the nonsubsampled
shearlet transform (NSST) domain spectral information divergence isolation double forest (SI2FM) in
this paper. Further, the method excavates the intrinsic deep correlation properties between NSST
subband coefficients of HSI in two ways to provide synergistic constraints and guidance on the
prediction of abnormal target coefficients. On the one hand, with the “difference band” as a guide,
the global isolation forest and local isolation forest models are constructed based on the spectral
information divergence (SID) attribute values of the difference band and the low-frequency and
high-frequency subbands, and the anomaly scores are determined by evaluating the path lengths
of the isolation binary tree nodes in the forest model to obtain a progressively optimized anomaly
detection map. On the other hand, based on the relationship of NSST high-frequency subband
coefficients of spatial-spectral dimensions, the three-dimensional forest structure is constructed to
realize the co-optimization of multiple anomaly detection maps obtained from the isolation forest.
Finally, the guidance of the difference band suppresses the background noise and anomaly inter-
ference to a certain extent, enhancing the separability of target and background. The two-branch
collaborative optimization based on the NSST subband coefficient correlation mining of HSI enables
the prediction of anomaly sample coefficients to be gradually improved from multiple perspectives,
which effectively improves the accuracy of anomaly detection. The effectiveness of the algorithm
is verified by comparing real hyperspectral datasets captured in four different scenes with eleven
typical anomaly detection algorithms currently available.

Keywords: hyperspectral image; nonsubsampled shearlet transform; anomaly detection; spectral
information divergence; isolation forest; spatial-spectral dimensional forest

1. Introduction

Hyperspectral remote sensing has changed the long-standing problem of unbalanced
access to spatial geometric information and feature attribute information in earth observa-
tion, laying the foundation for earth observation [1,2]. In recent years, the frontier problem
of hyperspectral image (HSI) target detection (HSI-TD) has received attention as a way to
confirm the presence of the specified target on a hyperspectral data cube using narrow and
nearly continuous spectral information and 2D geometric spatial information of features
reflected by HSI [3]. HSI-TD can be divided into spectral match detection and hyperspectral
anomaly detection (HSI-AD) [4], the former being the usual sense of target detection, a
“reconnaissance” technique for finding known targets that requires the use of a priori of the
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target’s spectral signature, as described in other literature. The latter is an undesired target
detection method without any prior knowledge of the target for unknown background and
target information, and is a “surveillance” technique to find unknown targets of interest,
detecting anomalous targets that differ from the background region. The complexity of
the detection scenario and the sparsity and uncertainty of the detected targets in practical
applications make it impossible to obtain a priori such as spectral information of real
ground features, thus making HSI-AD without a priori information more important for
practical applications such as agricultural disease detection, rare mineral exploration, and
military anomaly target detection [5]. However, this demanding environment of no prior
knowledge and small targets, with the large data volume and high redundancy of HSI,
makes HSI-AD research extremely challenging [6,7].

The RX algorithm proposed by Reed and Xiaoli [8] as a classical algorithm for HSI-
AD, which assumes that the background obeys a Gaussian distribution based on the
constant false alarm rate of the generalized likelihood ratio test and uses the Mahalanobis
distance to calculate the deviation degree between the statistical properties of the pixel
to be detected and the reference background, can obtain better detection results when
the conditions of the maximum likelihood ratio test assumptions are satisfied and the
background is relatively simple. Based on the RX algorithm, researchers have made active
improvements, for example, the local RX algorithm (LRX) proposed in the literature [9]
addresses the complexity of the overall background of his and assumes that the local
background conforms to a Gaussian distribution, uses a local double window model based
on the local normal model to detect anomalies, and achieves better results in the detection of
sub-pixel anomalies in low-complexity scenes; further, the literature [10] proposed several
accelerated optimization schemes for RX and LRX and compared them. The authors of [11]
reconstructed the RX anomaly detection operator to increase the sensitivity to noise using
an improved weighted Euclidean distance based on the noise covariance, which enhanced
the robustness of the detection process to noise to some extent. In addition, a nonlinear
RX detection algorithm based on the kernel method has also been proposed [12]. The
RX operator utilises only the mean and variance, while it is a likelihood ratio detection
operator constructed under some simplifying assumptions, which to some extent limits the
processing capability and detection performance for HSI with typical nonlinear properties.

The problem of separable anomalous targets and background regions in HSI-AD
and the suppression of noise and anomalous pixels in the background has become a key
issue in the field in recent years, along with practical application requirements, and has
been actively investigated. For example, an HSI-AD method based on nearest regularized
subspace (NRS) was proposed in the literature [13], which differs from the LRX method in
that it uses a linear combination of samples from external regions as approximate test pixels
based on a double window and measures the similarity between the pixel under test (PUT)
and their approximations using a distance-weighted Tikhonov regularization method.
Further, in [14,15], the authors used an approximate representation of each background
pixel in its spatial neighbourhood to achieve adaptive modeling of the background, and
then proposed a collaborative representation-based detector (CRD) algorithm without the
estimation of the background covariance matrix, which achieved better detection results
than the RX extension algorithm with lower computational cost. However the accuracy of
the estimated approximation of the central pixel was compromised by the above method for
cases where the test pixel was an anomalous pixel and there were several similar anomalous
pixels in the surrounding pixels. For this reason, the authors of [16] first used least squares
to obtain a relatively pure background pixel and then calculated the significance weight
between the neighbouring pixels and the test pixel and applied it to the test pixel, which
enhanced the suppression of background pixel contamination to some extent. The authors
of [17] used a multi-window sliding filter to obtain various local spatial distributions, based
on which multiple local distributions of pixels in the local area around the pixel under
test were combined with spatial-spectral features to propose a local summation anomaly
detection method (LSAD). The method overcame the inability of the LRX single window to



Remote Sens. 2023, 15, 612 3 of 19

achieve the optimal representative local distribution of the PUT, and improved the detection
performance and resistance to background noise to a certain extent. In addition, HSI-AD
methods based on deep feature constraints of HSI have received attention in recent years,
and people have mined the intrinsic features of HSI from different perspectives and applied
them to form effective constraints in complex background modeling. For example, [18]
used the fractional Fourier transform to extract the distinctive features of HSI, which was
then combined with the row-constrained low rank and sparse matrix decomposition model
to clean the background containing noise and anomalies. In [19], a hyperspectral visual
attention model was used to extract a salient features map containing anomalous target
regions in the selected band, and then the salient features map was curvature-filtered
to extract an initial anomaly region map, and the background and noise in the initial
anomaly region map were further suppressed by an adaptive weight map based on the
spectral angular distance. The authors of [20,21] and [22] proposed hybrid mechanisms and
machine learning for hyperspectral anomaly detection, respectively. The above methods
have investigated the key problems of the two types of HSI-AD mentioned earlier from
different perspectives and formed some effective research solutions, but in general, the
use of the salient features inherent in HSI in the current anomaly HSI-AD methods is still
limited, and there are not many suppression solutions for noise and anomalies in complex
backgrounds, while the overall performance of HSI-AD still needs to be improved. The
success of deep learning in the field of computer vision in recent years has also directed
attention to HSI-AD based on deep learning [23–25]; however, weaknesses such as excessive
training cost burden, weak generalization ability, and poor interpretability of such methods
have largely limited the practicality of the methods.

This paper proposes an HSI-AD method based on the nonsubsampled shearlet trans-
form (NSST) domain spectral information divergence isolation double forest model (SI2FM).
Firstly, the NSST is applied to each band of the HSI to obtain the corresponding low-
frequency and high-frequency subbands, and then the difference image between the original
band and the low-frequency subbands is obtained (hereafter referred to as the “difference
band”). The next step is to construct the global and local isolation forest models based on
random samples using the SID attribute between each difference band and low-frequency
high-frequency subbands, and mine the probabilistic differences between the spectra of
detection targets and background elements to improve the identification of anomalous
targets. In addition, in order to reduce the generalization error caused by random samples,
a spatial-spectral 3D forest model based on the spatial and spectral dimensional correla-
tion of the coefficients in the NSST high-frequency subbands of HSI is constructed, and
the transmission relationship between the coefficients in this model forms a synergistic
constraint and guidance for the prediction of the coefficients of the anomalous samples in
the isolation forest of SID attribute, so as to improve the anomaly detection accuracy. The
main contributions of this paper are reflected in the following three aspects:

(1) A global-local isolation forest model based on the NSST domain SID attribute in the
hyperspectral band is proposed to mine the probabilistic differences between detection
targets and background elements modeling to suppress the interference of noise and
anomalies in the background and improve the recognition of anomalous targets.

(2) A scheme for the prediction of anomalous sample coefficients, which are constrained
and guided by a collaborative NSST domain SID attribute isolation forest and a
spatial-spectral 3D forest model, was constructed.

(3) An HSI-AD method based on the NSST domain spectral information divergence
isolation double forest model (SI2FM) is proposed, which effectively improves the
accuracy of anomaly detection, especially for the case of complex scenes.

The remainder of this paper is organized as follows. Section 2 provides an overview
of related works on NSST and isolation forest. The proposed framework is introduced in
Section 3. In Section 4, experimental setups and results are presented. Conclusions are
provided in Section 5.
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2. Related Works
2.1. Nonsubsampled Shearlet Transform

The shearlet transform is an important member of the family of multiscale transforms
in the post-wavelets era, and it is also a natural theoretical extension of the wavelet trans-
form for the multidimensional and multidirectional case. The core idea of the shearlet
transform is to cut the signal on a pseudo-polar grid, which is then filtered by a 1D band-
pass filter bank, with good directional sensitivity and anisotropy [26]. Further, the NSST
was proposed in order to eliminate the spectral aliasing caused by downsampling in the
shearlet transform and to increase the translation–invariant property [27]. The transforma-
tion is based on the idea of non-downsampling and the shearlet transform, and is achieved
through two processes of multiscale decomposition and multidirectional decomposition.
Firstly, the multiscale decomposition of the image is achieved by a non-subsampled pyra-
mid (NSP) filter bank. After one layer of NSP decomposition, a low-frequency subband
and a high -frequency subband are obtained from the original image, and each subsequent
NSP decomposition is carried out on the low-frequency subband of the previous layer; after
j times of decomposition, one low-frequency subband and j high -frequency subbands of
the same size as the original image are finally obtained. Subsequently, a modified shearing
filter (SF) is used to decompose the high-frequency subbands in multiple directions. The
overall process of the NSST is given in Figure 1; for a detailed description of the NSST
algorithm and the Laplacian pyramid decomposition, please refer to [27,28].
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Figure 1. The flow chart of the NSST Transform.

The strong sparse properties and anisotropy of NSST have been effectively used to
capture higher-order singular features of images and have been applied to classification [29],
fusion [30], and enhancement [31,32] processing of HSI in recent years.

2.2. Isolation Forest Model

The isolation forest (iForest) algorithm for data mining was proposed by Zhou et al. [33],
which is usually used for unsupervised anomaly detection on structured data. The algorithm
defines anomaly as “anomalies who are easily isolated” that are sparsely distributed
and distant from the high-density population; that is, the abnormal data represent a
small proportion of the total sample size and the eigenvalues differ significantly from the
normal points.

The iForest consists of a large number of random binary trees, and because the anoma-
lies are “few and distinct”, they are more likely to be isolated in a binary tree structure than
normal instances. Therefore, in the set of isolation trees (iTrees), the anomalies are closer to
the root of the tree than the normal background points, meaning that the average paths of
the anomalies are shorter. The principle is that given a set of datasets, the sample points in
the dataset are selected randomly and are partitioned into left and right nodes according
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to a certain decision rule until each instance is assigned a leaf node and the branch of the
anomaly is closer to the root node. Therefore, the path length of a leaf node becomes the
metric score for determining anomalies. Under randomised division, anomalies are more
likely to be isolated. A schematic diagram of a 2D set of random dataset cuts is shown in
Figure 2, showing the normal and anomaly random division process. It can be seen that
the anomaly x0 requires fewer split lines, while the normal point xi isolated requires more
split lines, and the anomaly is more likely to be isolated than the normal point.
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In fact, the definition of anomalous data in the isolation forest algorithm above also
satisfies the description of anomalies in HIS-AD and is able to distinguish anomalies from
the background. Based on this concept, the authors of [34] proposed a recursive detection
framework for anomalous targets in HIS using global isolation forest and local isolation
forest. Since there is linear inseparability between background pixels and anomaly in
HIS, the framework combined nuclear methods with isolation forest to consider spectral
information along with spatial information. However, there was no fixed criterion for
the selection of the kernel function and its parameters in this method, which could only
be accumulated empirically, and the determination of the attribute rules in the isolation
forest only depended on the size between pixels, without taking into account the deeper
properties inherent in HIS. This affected the performance of the detection to a certain extent.

3. Methodology

The overall architecture of the proposed SI2FM model in this paper consists of three
parts (see Figure 3). (1) NSST is applied to each band of the HIS to obtain the corre-
sponding low-frequency and high-frequency subbands, and then the difference band
between the original band and the low-frequency subbands is obtained. Compared with
the original band, the difference band can effectively suppress the noise and anomalous in-
terference in the background and enhance the separability of the target and the background.
(2) Construct the global and local isolation forest models based on SID attribute for random
samples. Improve identification of anomalies by calculating the average value based on
the path length several times to obtain the anomaly score. (3) The correlation between the
NSST high-frequency subbands of HIS in the spatial and spectral dimensions is mined,
and the spatial-spectral 3D forest model structure of these high-frequency subbands is con-
structed, in which the SID attribute isolation forest anomaly sample coefficient prediction
is collaboratively constrained and guided, effectively improving the accuracy of anomaly
detection. Section 3.1 to 3.2 respectively analyse and illustrate these three components.
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3.1. Analysis of Background Suppression in NSST Difference Band

To illustrate the effectiveness of the HIS NSST difference band used in this paper in
suppressing background noise and anomalous interference, the ‘maxflat’ NSP multiscale
filter and the modified SF are selected to perform 4 directional multiscale decomposition of
the 90th band of the Salians dataset [35] to obtain the low- and high-frequency direction
subbands, respectively. The transformed subbands are shown in Figure 4, where Figure 4a,b
shows the HIS band and the low-frequency subband, respectively, (c) shows the difference
band obtained by subtracting the HIS band from the low frequency, (d) shows the anomaly
detection reference image, and (e) to (h) show the high-frequency direction subbands in
four directions, respectively. From Figure 4, it can be seen that the low frequency contains a
lot of background information, while the anomaly information in the difference band is
more prominent compared to the HIS band.

Table 1 shows the area under the curve (AUC) values for comparing the global RX [8]
and local RX [10] anomaly detection methods in Figure 4a–c. As can be seen from the table,
the difference band has better AUC value than the HSI band, while the low-frequency
subband has very low AUC value, indicating that the difference band is better able to
suppress background information. Based on this paper, it is argued that the low-frequency
subband contains most of the original information of the HSI band and can be regarded
as the background image of HSI, and that most of the abnormal target mutation infor-
mation is contained in the high-frequency subband. Difference band can suppress HSI
background information to a certain extent. The background information contained in the
high-frequency subband is greatly reduced, and effective detection of the high-frequency
subband can well weaken the interference of the background on the anomalous signal
during detection and enhance the separability of the target from the background.

In this paper, the NSST decomposition of HSI is carried out in each band. Non-
translational invariance of NSST better demonstrates the correspondence between high
and low scales, and the intrinsic properties of HSI are explored and modeled according
to the characteristics of different subbands and difference bands, providing effective con-
straints and guidance for improving the separability of anomalous signals and background
information and weakening complex backgrounds.
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Table 1. Parameters of RX methods.

Datasets/AUC (a) (b) (c)

GRX 0.8381 0.5326 0.8978
LRX 0.9475 0.5609 0.9515

3.2. Isolation Forest Construction Based on SID Attribute

Spectral information divergence (SID) [30] measures the similarity of a spectrum by
using the probability difference between two pixels, which is defined as follows.

Assuming that the two given hyperspectral pixel vectors are x = (x1, · · · , xB)
T

and y = (y1, · · · , yB)
T, respectively, and their corresponding probability vectors are

p = (p1, · · · , pB)
T and q = (q1, · · · , qB)

T, where B is the number of bands in the HSI,
pi =

xi
∑B

k=1 xk
, qi =

yi
∑B

k=1 yk
, the SID of x and y are defined as:

SID(x, y) = D(x‖y) + D(y‖x) (1)

where D(x‖y) is the relative entropy of y with respect to x and D(y‖x) denotes the relative
entropy of x with respect to y, which is defined as:

D(x‖y) =
B
∑

i=1
pi log

(
pi
qi

)
D(yx) =

B
∑

i=1
qi log

(
qi
pi

) (2)

SID measures the spectral similarity of the two pixel vectors x and y in terms of probability.
The larger the value is, the stronger the separability of the two is, and vice versa.

3.2.1. The Global Isolation Forest Construction

Let the size of the HS band group be M ×N × B, where M ×N is the size of the
band, B is the number of bands in the band group, and the currently processed band
image is Hb(b ∈ {1, 2, · · · , B}), whose corresponding low-frequency subband is HLb, high-
frequency subband is HHl

b, and difference band is HDb, where l ∈ {1, 2, · · · , L}, L is the
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total number of directions of high-frequency subbands in NSST. The process of constructing
a global isolation forest based on the SID attribute is as follows:

(1) Randomly select Ψ pixels from the HSI as a sample set for constructing a global
isolation forest based on SID attribute.

(2) A binary tree structure is constructed for the pixel points in the sample set based on
the size of the SID attribute. That is, the left node Ψl and right node Ψr are divided:
for the current band image Hb, its dth pixel point Hd

b(d ∈ {1, 2, · · · , Ψ}) is selected,
and the SID attribute value θ of its subband (which can be HLb or HHl

b, see Section
III.C for details) and the corresponding difference band HDb is calculated according
to Equation (1). When the Hd

b value is less than θ, the pixel is divided into a left node;
otherwise, it is divided into a right node.

(3) Iterate over the above operations to divide the child nodes, ending the iteration when
one of three conditions is met: the height of the tree is limited to log2 Ψ, or there is
only one pixel in each child node, or the pixel values in each child node are the same.

After one round of iterations, an isolation binary tree as shown in Figure 5 will be
constructed. Let an isolation forest of t binary trees be generated after continuous iteration.
For each isolation binary tree, the leaf nodes of the background pixels make up the majority
of the nodes, and only a small portion are abnormal nodes. The path length of the anomaly
pixels is much smaller than the path length of the background pixels.
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For a dataset containing Ψ sample points, the average path length of the constructed
isolated binary tree [30] can be calculated by formula (3):

c(Ψ) = 2H(Ψ− 1)− 2(Ψ− 1)
Ψ

(3)

where H(·) is the harmonic number estimated by ln(·) + 0.5772156649 (Euler’s constant).
As c(Ψ) is the average of h(x) given Ψ, we use it to normalise h(x). For an instance x,

which defines the anomaly score s for x as:

s(x, Ψ) = 2−
E(h(x))

c(Ψ) (4)

where E(h(x)) is the average of h(x) for a collection of isolation trees.
Thus, for the HSI Hb, the global isolation forest can be used to obtain anomaly scores,

and each anomaly score s can be used as an element to obtain the “initial anomaly detection
map” matrix Db.



Remote Sens. 2023, 15, 612 9 of 19

3.2.2. The Local Isolation Forest Construction

The global isolation forest is constructed from randomly selected data samples from
the whole HSI, and the initial anomaly detection results obtained from it may have a high
false detection rate. For this reason, this section uses local information from hyperspectral
band images and difference bands to construct a local isolation forest [34] to further refine
the initial anomaly detection map and obtain further anomaly detection results. The specific
procedure is as follows:

(1) The initial anomaly detection map Db(b ∈ {1, 2, · · · , B}) is binarised and converted
to a binary anomaly detection map to obtain Eb.

Eb(i, j) =
{

1, if Db(i, j) > σ

0, otherwise
(5)

where the binarisation threshold σ is determined by the Otsu method [36] and
(i, j) (i ∈ {1, 2, · · · , M}, j ∈ {1, 2, · · · , N}) is the position coordinate.

(2) According to the binary anomaly detection map Eb, the connected domain component
of its anomaly can be obtained. Since the area occupied by the anomaly points is
scattered and relatively small, for a given area, threshold is α (in this paper, α is
chosen as (M×N)/120). If the area of the connected region is larger than α, 1/2 of
the pixels in the region are randomly selected as the sample set to construct a local
isolation forest and re-evaluate the anomaly scores of the pixel points in the connected
region to achieve an update of the initial anomaly detection map Db.

(3) Iterate the above (1)(2) process until the binary anomaly detection map Eb no longer
has any connected areas larger than α, at which point the adjusted Db forms the
“refined anomaly detection map” matrix, denoted as Fb.

3.2.3. SI2FM

We performed a statistical analysis of the correlation properties of the high-frequency
subbands of HSI decomposed by NSST in both spatial and spectral dimensions [32]. By
constructing the NSST hidden Markov forest (NSST-HMF) model to characterize the corre-
lation of the coefficients of high-frequency subbands, the correlation of both spatial and
spectral dimensional states is considered for the first time on the prediction structure of
HSI hidden Markov to synergistically guide the coefficient prediction. A schematics of the
NSST high-frequency subband space-spectral dimensional forest construction is given in
Figure 6. The following conclusions were obtained as a result.
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(1) The spatial distribution of the NSST high-frequency directional subband coefficients in
HSI is persistent and aggregated, as shown by the similarity of the states maintained
by the parent coefficients at different scales and in the same directional subbands.

(2) The distribution of NSST high-frequency directional subband coefficients in the spec-
tral dimension also has a strong continuity and aggregation, so that the NSST di-
rectional subband coefficients in the current band of HSI can be used to predict the
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corresponding directional subband coefficients in the next band (or even the next few
bands), but the correlation between the corresponding directional subbands becomes
weaker and weaker as the number of decomposition levels increases.

From the above conclusions, it can be seen that the joint spatial-spectral dimensional
correlation distribution of subbands in the NSST direction of HIS has a strong aggregation
and persistence. The current high-frequency directional subbands are strongly convergent
and predictive both for the child subbands in the spatial dimension and for the correspond-
ing co-directional subbands in the spectral dimension. The refined anomaly detection map
Fb obtained from Section 3.2.2. If the parent coefficients are anomalous, the child coefficients
will also be anomalous with a high probability. Similarly, if a point in the current band is
anomalous, there is a high probability that the same location in the subsequent band will
also be anomalous.

Accordingly, for the low-frequency subband HLb and high-frequency subband HHl
b

corresponding to the band Hb, the corresponding refined anomaly detection map matri-
ces Fb_HL and Fl

b_HH were obtained by the joint differential band for HDb through the global
and local isolation forest construction process based on SID attribute in
Sections 3.2.1 and 3.2.2, respectively. Further, the probability of the same position value of 1
for Fb_HL and Fl

b_HH is statistically calculated to construct the probability matrix Fmap, and
the final anomaly detection result matrix Ffinal_map is determined by selecting the threshold
value δ based on the Otsu method:

Ffinal_map(his, j) =
{

1, if Fmap(his, j) > δ

0, otherwise
(6)

where (his, j) (i ∈ {1, 2, · · · , M}, j ∈ {1, 2, · · · , N}) is the position coordinate.
Isolation forest is used for data anomaly detection mining, where the values of at-

tributes that are different from the background are isolated from the perspective of anoma-
lies, so that the anomalies can be separated more easily than the background. In order
to make the detection accuracy more accurate, we combine NSST with isolation forest.
The correlation between the space-spectral dimension coefficients of high-frequency sub-
bands uses NSTT. In the spatial dimension, if its parent coefficient is anomalous, its child
coefficient will also be anomalous with high probability, and in the spectral dimension,
if a position in the current band is anomalous, the same position in the subsequent band
will also be anomalous with high probability. The construction and detection of isolation
forests in 3D space suppress the background information in HS and improve the detection
accuracy of the method.

Based on the above analysis, this paper proposes the SI2FM HIS-AD method based
on the isolation forest model with SID attribute and the NSST high-frequency subband
spatial-spectral 3D forest model, and the method description is given in Algorithm 1.

Algorithm 1: SI2FM(H, H, t, ψ)

Input: Hb(b ∈ {1, 2, · · · , B})- input HIS H with the size of M× N × B, L—NSST decomposition
layers, t—number of trees, ψ—sub-sampling size.
for all bands do
1: For each band, Hb is decomposed by L-scale NSST to obtain low-frequency HLb and
high-frequency HHl

b (l ∈ {1, 2, · · · , L}) binary tree structure and difference data HDb;
2: Calculation the value of SID of each HDb and low-frequency HLb, high-frequency HHl

b by
Equation (1);
3: Construct the SID global isolated forest by HLb and HHl

b;
4: Calculate the Db_HL of each HLb and HDb by SID-Global-iForest Equation (4);
5: Calculate the Dl

b_HH of each HHl
b and HDb by SID-Global-iForest Equation (4);

6: Calculate the Fb_HL of each HLb and HDb by Local-iForest Equation (5);
7: Calculate the Fl

b_HH of each HHl
b and HDb by Local-iForest Equation (5);

end for
8: Calculate the final anomaly detection result Ff inal_map by Equation (6);
Output: anomaly detection map Ffinal_map.
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4. Experiment and Analysis

The experimental environment is Windows 7, the computer is equipped with a
3.3 GHz Core i5-4590 processor and 8G RAM, the experimental platform is Matlab 2014b.
Experimental image data cropping was processed using ENVI 5.1 software.

4.1. Dataset

In this paper, four real HIS captured from different scenes [9] are selected to evaluate
the proposed method, and Figure 7 shows the pseudo-color image and the corresponding
reference detection map, respectively. The experimental datasets are all remote sensing
data images with noise bands removed.
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Figure 7. Experimental dataset.

(1) HYDICE Urban: The data were acquired from the hyperspectral digital imagery
collection experiment (HYDICE) sensor and were taken in an urban area in California,
USA. The experimental data have a scene size of 80× 80, with 175 bands where the
noise bands have been removed, and spatial resolution of 2 m and spectral resolution
of 10 nm. They also contains 20 anomalous pixels for cars and roofs.

(2) Texas Coast: Acquired from the AVIRIS sensor, captured in the Texas coastal metropoli-
tan area; flight time was 29 August 2010. The experimental dataset in this paper
is 100 × 100 × 204 in size and 17.2 m in spatial resolution; this dataset contains
67 anomalous pixels from the aircraft scene.

(3) Gulfport Airport: The dataset from the AVIRIS sensor capturing the Gulfport airport
area; flight time was 7 July 2010. The scene size of the experimental dataset in this
paper is 100× 100, 191 spectral channels with a spatial resolution of 3.4 m; this dataset
contains 60 anomalous pixels from the aircraft scene.

(4) Cat Island: It is obtained from the AVIRIS sensor, and the beach and sea area of
Cat Island is photographed. Flight time was 12 September 2010. The size of the
experimental dataset is 150× 150× 188 and the spatial resolution is 17.2 m. The data
contain 19 abnormal pixels from the aircraft scene.

4.2. Parameter Analysis

The proposed SI2FM algorithm involves three important parameters, including the
number of NSST decomposition layers L, building an isolation forest binary tree sub-
sampling size Ψ, and the number of isolation binary trees t. Based on the AUC, we evaluate
the impact of different parameter settings on SI2FM using the HYDICE Urban, Texas Coast,
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Gulfport Airport, and Cat Island datasets as examples; the AUC line graph of the SI2FM
algorithm with parameter variation is given in Figure 8.
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Figure 8. Influence of different parameters on SI2FM algorithm detection performance. (a) The
number of NSST decomposition layers; (b) The isolation forest binary tree sub-sampling size; (c) The
number of isolation binary trees.

(1) The number of NSST decomposition layers L: Figure 8a gives a line graph of the
variation of the AUC value of the SI2FM algorithm with parameter L. From the graph,
it can be seen that the optimal AUC is obtained when L = 3. For the property that
the correlation between coefficients becomes smaller as the number of layers of NSST
decomposition increases, the value of AUC may become smaller and smaller when L
is greater than 4. The results obtained from the Texas Coast dataset are particularly
obvious, so in this experiment, L = 3 was chosen as the optimal parameter based on
the experimental data, and binary trees were constructed with scale directions of 2, 4,
and 8 for each layer.

(2) The isolation forest binary tree sub-sampling size Ψ: Figure 8b shows a line graph
of the variation of the AUC value of the SI2FM algorithm with the parameter Ψ
(percentage of total pixels in the image). It can be seen from the figure that for the
HYDICE Urban and Gulfport Airport, the overall trend of the AUC values is to
increase first and then decrease, with their AUC being at the optimum when Ψ = 3.
The Texas Coast has an overall increasing trend in AUC when Ψ is less than 3, and
plateaus when Ψ is greater than 3. For Cat Island, the overall area is flat and the AUC
reaches a peak at Ψ = 3. Therefore, Ψ = 3 was chosen as the default parameter value
for the experiments in this paper.

(3) The number of isolation binary trees t: Figure 8c shows the line graph of the AUC
value of the SI2FM algorithm as the parameter t changes. From the graph, it can be
seen that when t changes from 1 to 500, the overall trend shows an upward trend, and
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when t continues to increase to 1000, the overall trend tends to a stable state, so this
implementation chooses t = 1000 as the default parameter value.4.3. Comparison and
Analysis of Detection Performance

4.3. Comparison and Analysis of Detection Performance

This section selects 11 state-of-the-art anomaly detection algorithms for comparative
experiments, including: RX algorithm [8], LRX algorithm [10], the unsupervised nearest
regularized subspace (UNRS) algorithm [13], CRD algorithm [14], LSAD algorithm [17],
the local summation unsupervised nearest regularized subspace with an outlier removal
anomaly detector (LSUNRSORAD) algorithm [37], the local summation anomaly detec-
tion based on collaborative representation and inverse distance weight (LSAD -CR-IDW)
algorithm [37], the CRD with background purification and saliency weight (CRDBPSW)
algorithm [16], the feature extraction and background purification for anomaly detection (FEB-
PAD) algorithm [18], the visual attention and background subtraction (VABS) algorithm [19],
and the kernel isolation forest-based hyperspectral anomaly detection (KIFD) algorithm [34].

In order to effectively evaluate the proposed method, we referred to the comparison
literature and conducted experiments on four real hyperspectral datasets. We tried to
keep all parameters the same in different methods to make the comparison parameters as
optimal as possible; the comparison algorithm parameter settings and related papers are
provided as shown in Table 2.

Table 2. Parameters of different detection methods.

Method Parameters

RX —

LRX winout = 5, winin = 3

UNRS λ = 0.01, winout = 5, winin = 3

CRD λ = 0.01, winout = 5, winin = 3

LSAD winout = 5

LSUNRSORAD λ = 0.01, winout = 5, winin = 3

LSAD-CR-IDW λ = 0.01, winout = 5, winin = 3

CRDBPSW λ = 0.01, winout = 5, winin = 3

FEBPAD p = 0.7, r = 3, k = 0.7×m× n

VABS L = 5, T = 1000, cε{1, 2, 3}, εε{1, 2}
KIFD M = 0.03×N, q = 1000, ζ = 300

The results of the subjective comparative evaluation of HIS-AD for the four experi-
mental datasets are shown in Figure 9, and the corresponding ROC curves [38] and target
background separation boxplot [37] are given in Figure 10. Table 3 shows the objective
evaluation for the different methods of AUC values.

In the case of the HYDICE Urban, as shown in the ROC curve in Figure 10a, SI2FM
has a better ability to identify anomalous targets compared to other methods. Table III also
shows the best AUC values. The separability between the anomaly and the background
is shown in Figure 10b. Both the proposed method and KIFD can effectively separate the
background from the anomalous features and make the anomalies clearer on the detection
map, but SI2FM is more effective in background suppression and has a better ability to
identify anomalous targets compared to KIFD. From Figure 7, the anomaly detection results
of the SI2FM algorithm are also the closest to the reference image, providing better detection
performance compared to other methods.

For the Texas Coast, as shown in the ROC curves in Figure 10a, the algorithms of RX,
UNRS, LSUNRSORAD, LSAD-CR -IDW, CRDBPSW, and SI2FM are all relatively good at
identifying anomalous targets. The target background separation boxplot in Figure 10b
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shows that GRX is optimal, but that LSUNRSORAD and SI2FM are more effective in terms
of background suppression, with a more complex background for the Texas Coast. It is
clear from Figure 7 that the SI2FM can detect more anomaly pixels than the LSUNRSORAD.

For the Gulfport Airport, as shown in the ROC curve in Figure 10a, SI2FM has a
better ability to identify anomaly compared to other methods, as is well-evidenced by the
objective evaluation of Table 3. Figure 10b shows that KIFD and SI2FM are more effective
in terms of anomaly and background separability, but SI2FM is more prominent in terms of
background suppression. In Figure 9, we can see that SI2FM and KIFD are able to identify
anomalous targets, but KIFD has relatively more noise.

In the case of the Cat Island dataset, the best AUC values were obtained in the objective
evaluation for Table 3. As shown in the ROC curve in Figure 10a, SI2FM has a better ability
to identify anomalous targets compared to other methods. Figure 10b shows that both
the proposed method and KIFD are effective in separating background and anomalous
features, making the anomalies clearer on the detection map, but SI2FM is more effective
in background suppression and has a better ability to identify anomaly than KIFD. From
Figure 9, the anomaly detection results of the SI2FM algorithm are also the closest to the
reference image, providing better detection performance compared to other methods.

4.4. Ablation Study

In this section, a detailed ablation study of the SI2FM framework is performed to
further investigate the validity of the proposed model.

SI2FM framework consists of the SID global isolation forest model, the local isolation
forest model, and the NSST 3D spatial-spectral dimensional forest model.

To test the effects of the three components on the anomaly detection effectiveness, we
conducted an ablation experiment to evaluate the performance of the proposed model. As
shown in Table 4, the AUC evaluation performance values are calculated separately for the
SID global isolation model, the SID local isolation model, and the SI2FM model. It can be
seen that both the SID local isolation model and the NSST forest model contribute to the
performance of the isolation forest model.

Table 3. AUC of each algorithm for four datasets.

Datasets
AUC

HYDICE Urban Texas Coast Gulfport Airport Cat Island

RX 0.9908 0.9906 0.9526 0.9807

LRX 0.9832 0.8736 0.8235 0.9956

UNRS 0.9863 0.9722 0.7916 0.9936

CRD 0.9925 0.9655 0.7681 0.9928

LSAD 0.9853 0.9201 0.8464 0.9414

LSUNRSORAD 0.9926 0.9962 0.9589 0.9935

LSAD-CR-IDW 0.9564 0.9824 0.8335 0.9943

CRDBPSW 0.9817 0.9741 0.9531 0.9941

FEBPAD 0.9815 0.9432 0.9494 0.9428

VABS 0.7384 0.9161 0.9325 0.9962

KIFD 0.9945 0.9325 0.9759 0.9899

SI2FM 0.9947 0.9664 0.9823 0.9992
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evaluation for the different methods of AUC values. 

Table 3. AUC of each algorithm for four datasets. 

Datasets 
AUC 

HYDICE Urban Texas Coast Gulfport Airport Cat Island 

RX 0.9908 0.9906 0.9526 0.9807 

LRX 0.9832 0.8736 0.8235 0.9956 

UNRS 0.9863 0.9722 0.7916 0.9936 

CRD 0.9925 0.9655 0.7681 0.9928 

LSAD 0.9853 0.9201 0.8464 0.9414 

LSUNRSORAD 0.9926 0.9962 0.9589 0.9935 

LSAD-CR-IDW 0.9564 0.9824 0.8335 0.9943 

CRDBPSW 0.9817 0.9741 0.9531 0.9941 

FEBPAD 0.9815 0.9432 0.9494 0.9428 

VABS 0.7384 0.9161 0.9325 0.9962 

KIFD 0.9945 0.9325 0.9759 0.9899 

SI2FM 0.9947 0.9664 0.9823 0.9992 
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Figure 9. I-AD maps on four datasets. (a) RX; (b) LRX; (c) UNRS; (d) CRD; (e) LSAD; (f) LSUNRSO-
RAD; (g) LSAD-CR-IDW; (h) CRDBPSW; (i) FEBPAD; (j) VABS; (k) KIFD; (l) SI2FM.

Table 4. Ablation study of the proposed models.

Framework
AUC

HYDICE Urban Texas Coast Gulfport Airport Cat Island

the SID global isolation 0.9440 0.9635 0.9565 0.9920

the SID local isolation 0.9459 0.9779 0.9798 0.9925

SI2FM 0.9447 0.9664 0.9823 0.9992

Compared with the original global isolation forest model, both compositional frameworks
help to improve the model performance and validity for hyperspectral experimental data.
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(b) Target background separation boxplot. 

In the case of the HYDICE Urban, as shown in the ROC curve in Figure 10a, SI2FM 

has a better ability to identify anomalous targets compared to other methods. Table III 

also shows the best AUC values. The separability between the anomaly and the back-

ground is shown in Figure 10b. Both the proposed method and KIFD can effectively sep-

arate the background from the anomalous features and make the anomalies clearer on the 

detection map, but SI2FM is more effective in background suppression and has a better 

ability to identify anomalous targets compared to KIFD. From Figure 7, the anomaly de-

tection results of the SI2FM algorithm are also the closest to the reference image, providing 

better detection performance compared to other methods. 

For the Texas Coast, as shown in the ROC curves in Figure 10a, the algorithms of RX, 

UNRS, LSUNRSORAD, LSAD-CR -IDW, CRDBPSW, and SI2FM are all relatively good at 

identifying anomalous targets. The target background separation boxplot in Figure 10b 

shows that GRX is optimal, but that LSUNRSORAD and SI2FM are more effective in terms 

of background suppression, with a more complex background for the Texas Coast. It is 

Figure 10. ROC curves and target background separation boxplot on four datasets. (a) ROC curves;
(b) Target background separation boxplot.

5. Conclusions

In this paper, we propose an HSI-AD method based on SI2FM. Firstly, the difference
band formed between the original HSI band and its NSST low-frequency subband is used
as a guide, the global isolation forest and local isolation forest models are constructed based
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on the SID attribute values of the difference band and the low-frequency high-frequency
subbands, and the anomaly scores are determined by evaluating the path lengths of the
isolation binary tree nodes in the forest model to obtain a progressively optimized anomaly
detection map. Secondly, based on the persistence and aggregation of the high-frequency
subband coefficients of HSI decomposed by NSST in both spatial-spectral dimensions, the
NSST high-frequency subband spatial-spectral dimensional forest structure relationship is
used to achieve the co-optimization of multiple anomaly detection maps obtained from the
isolation forest, which effectively improves the accuracy of anomaly detection. The effec-
tiveness of the algorithm is verified by comparing real hyperspectral datasets captured in
four different scenes with eleven typical anomaly detection algorithms currently available.

It should be noted that the SI2FM algorithm is suitable for small target scenes, but
for noise-laden hyperspectral datasets, the algorithm in this paper has no noise reduction
effect; according to the isolation forest it is easy to identify isolated anomalies. It will
be easy to show the noisy points as anomalies; the above experiments are conducted on
the dataset without noise bands. For conditions where noise appears in the image due
to atmospheric conditions, the ability to check the noise based on its power and spectral
composition will also be an area for further optimization. In any case, the computational
costs of the proposed algorithm are still significant and this is the focus of future work.
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