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Abstract: The ecological redline defines areas where industrialization and urbanization development
should be prohibited. Its purpose is to establish the most stringent environmental protection system
to meet the urgent needs of ecological function guarantee and environmental safety. Nowadays, deep
learning methods have been widely used in change detection tasks based on remote sensing images,
which can just be applied to the monitoring of the ecological redline. Considering the convolution-
based neural networks’ lack of utilization of global information, we choose a transformer to devise a
Siamese network for change detection. We also use a transformer to design a pyramid pooling module
to help the network maintain more features. Moreover, we construct a self-supervised network based
on a contrastive method to obtain a pre-trained model, especially for remote sensing images, aiming
to achieve better results. As for study areas and data sources, we chose Hebei Province, where
the environmental problem is quite nervous, and used its GF-1 satellite images to do our research.
Through ablation experiments and contrast experiments, our method is proven to have significant
advantages in terms of accuracy and efficiency. We also predict large-scale areas and calculate the
intersection recall rate, which confirms that our method has practical values.

Keywords: deep learning; change detection; transformer; pyramid pooling; self-supervised study;
ecological redline; GF-1 satellite

1. Introduction

Nowadays, with the rapid development of China’s urbanization and industrialization,
the environmental problem has become increasingly severe. Although the government
has tried hard to increase the monitoring and protection of the ecological environment,
the deterioration of the overall environment has never been curbed. To deal with this
ecological crisis, the ecological redline (Eco-redline, ECR) policy is proposed, which aims to
maintain vital ecosystem services needed for sustainable social development through coor-
dinated nationwide planning. The policy defines key ecological protection areas where five
necessary national ecosystem services [1] should be maintained: flood disaster mitigation,
sandstorm disaster prevention, water resources protection, soil resources conservation,
and biodiversity conservation. To sum up, the Eco-redline represents an attempt to establish
strict criteria for assessing ecosystem services in land-use planning, and is defined as “the
minimum ecological area for the protection of the safety and functioning of the ecological
environment and the maintenance of a country’s biodiversity.” [2].

To properly regulate the Eco-redline areas, large amounts of data and advanced
technology are needed. In recent years, remote sensing datasets acquired by multiplex
spaceborne and airborne sensors with rich temporal, spatial, spectral, and radiometric
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resolution characteristics have largely increased [3]. Due to the rapid development of
sensors and the advancement of image processing technology, the increasing trend of
remote sensing big data will surely continue [4].

Based on the ever-increasing data, change detection using remote sensing images
has surpassed the means of manual field exploration and has become one of the most
common research techniques. This technology can function in pixel-level and grid-level
research, which leads to wide use in urban monitoring, environmental monitoring, and post-
disaster damage assessment [5,6]. Since it can quickly and accurately explore changes in
natural landscapes, it can provide real-time feedback on changes in mountainous areas and
woodlands, which perfectly fits the research needs of detecting human-induced changes in
Eco-redline areas.

Therefore, many remote sensing change detection methods have been proposed, some
of which have been tested and validated in many studies [7–10]. For example, traditional
methods such as principal component analysis (PCA) [11], independent component analysis
(ICA) [12], and multivariate alteration detection (MAD) [13] have been successfully applied
to many change detection studies. However, given the interference of many internal
factors on change detection, these methods still cannot be reliably applied to practical
situations. Moreover, since the purpose of change detection is to quantitatively analyze
and determine the surface changes in different periods through remote sensing data,
the following problems cannot be avoided: firstly, there are too many land cover categories,
and the similarity between different sorts and the diversity between the same sorts will
disturb the research. Secondly, systematic errors such as the interference of the imaging
environment and the sensing system will lead to huge differences in the remote sensing
data obtained from different sensors in the same area. Finally, there are seasonal changes
in the land cover itself, such as various grasslands and woodlands changing with the
seasons, and these irrelevant changes will no doubt hinder the extraction of research
targets. Therefore, it is quite difficult to obtain highly accurate change results to meet the
requirements of Eco-redline monitoring.

Fortunately, the recent remarkable achievements of neural networks in the field of
computer vision have contributed to the rise and development of deep learning-based
change detection methods [14–20]. Such methods have strong feature expression capabili-
ties and can extract more key information from images. Depending on whether the dataset
has labels, there are two types of deep learning methods, unsupervised and supervised.
The purpose of the change detection method based on the unsupervised neural network
is to learn a new feature space through the neural network so as to shorten the distance
between different time-phase feature spaces. Although unsupervised learning improves
the discriminative ability of new feature spaces to some extent by introducing pseudo-
labels [20–22], the problem of detecting changes that are not related to the problem of
interest still arises in the real application. Compared with unsupervised methods, the rich
label information possessed by supervised neural network-based change detection methods
can better distinguish the specific change types of interest in the whole scene but will need
much more effort to finish the labeling job. Therefore, sometimes these two approaches are
combined to achieve better results with less workload.

The following question is about the information fusion method used when construct-
ing a change detection network. Generally, there are three levels of information fusion,
namely data-level fusion, feature-level fusion, and decision-level fusion [23]. Among them,
data-level fusion is the easiest way. It straightly concatenates the pre- and post-phases
as the input of the network. This is the strategy adopted when applying many typical
semantic segmentation networks to the field of change detection. However, sometimes
this method may receive unexpectedly low-precision results [24]. Moreover, since two
inputs only produce one output in change detection, decision-level fusion can not be pos-
sible [25]. Therefore, to achieve high-performance networks, more and more researchers
have begun to use the idea of feature-level fusion, thus, giving birth to the Siamese network.
The Siamese network inputs data of different phases into different network branches to
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complete feature extraction. These high-level features will then be combined to achieve
feature-level information fusion, and finally, the combined information will be used to iden-
tify the changes. The Siamese neural network proposed in this theory is usually regarded
as the basic network structure for acquiring high-level features [26,27].

Then, the sampling method will also need to be considered. The traditional con-
volution is constrained by the limited receptive field and lacks the utilization of local
information. To further optimize the network performance, many researchers have intro-
duced Visual Transformer (ViT). The Multi Self-Attention (MSA) module of traditional
ViT can well utilize global information based on ensuring parallel computing [28]: for
example, Wang et al. combined the convolutional neural network with the CBAM at-
tention mechanism to improve the feature learning performance of radar image change
detection [29]. Peng et al. optimized and improved the UNet++ network by replacing the
original upsampling unit using the attention mechanism [30]. This approach enhances
spatial and channel attention guidance and achieves better results than the original net-
work. Chen et al. propose an attention information module AIFM and combine it with the
Siamese ResNet [25]. As a bridge of feature fusion, this module improves the performance
of the network for feature extraction of changes in remote sensing images.

Since the self-attention mechanism is quite successful, how to effectively apply and
further improve it has become a popular direction. Recently, the Hierarchicle Vision
Transformer using Shifted Windows (Swin Transformer, Swin-T) was proposed and rapidly
achieved remarkable results on many experimental tasks [31]. It uses the window-based
multi-self-attention (W-MSA) module to replace the traditional ViT MSA module, which
greatly reduces the amount of computation. To ensure the utilization of information, Swin-
T additionally designs and adds a shifted window-based multi-self-attention (SW-MSA)
module. The combination of W-MSA and SW-MSA can guarantee the interaction of global
information. In addition, Swin-T introduces a relative position offset to increase the overall
accuracy of the network further. Based on the idea of Swin-T, Swin-UNet was proposed in
2021 and was famous for its high efficiency as well as high performance [32]. It constructs a
symmetric encoder-decoder structure with skip-connections based on Swin-T.

Given the excellent performance of Swin-UNet, our experiment considers modifying
and applying it as the backbone to devise change detection networks. Actually, we use
the feature-level fusion method and build a Siamese Swin-UNet for change detection
called SWUNet-CD. However, to achieve the goal of obtaining higher-precision change
results, the following problems will still need to be solved: firstly, the traditional pooling
layers (such as the max pooling layer and average pooling layer) can inevitably lose some
key features when applied to more complex remote sensing images [33–35]. Secondly,
public pre-trained models are trained on the ImageNet dataset, and these images can be
quite dinstinct from remote sensing images due to geographic information and shooting
angles. Thirdly, to better deal with the problem of large-scale unbalanced distribution,
especially in our research regions, we need to pay more attention to the research area and
the aimed objects of our experiment. To solve the problems listed above, we make two
major improvements: (1) we combine the W-MSA/SW-MSA mechanism with the idea of
multi-scale fusion, and design a swin-based pyramid pooling module (SPPM) with a more
complex structure. The purpose is to improve the feature expression ability of the network
and retain more key features when applied to complex remote-sensing images. (2) We
construct a self-supervised network using the idea of the contrastive method. The purpose
of this network is to provide a more suitable pre-trained model for our downstream tasks.
This network is trained on a large amount of unlabeled data in the study area, where
pseudo-labels are produced by employing data augmentation. Its purpose is to reduce
the influence caused by the differences between the datasets where negative samples are
much more when compared to positive samples, and keep closer to our research area and
aimed objects.

In summary, we build SWUNet-CD, a Siamese change detection network based on
Swin-UNet. To better apply it in the remote sensing field, we design SPPM, a special
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pooling module to replace the traditional pooling layer, and construct a self-supervised
network that is used to obtain specialized pre-trained models. The main contributions of
this paper are as follows:

• A Siamese self-supervised learning network is constructed using the idea of contrast.
The original image and the data-augmented image are used as two inputs to the
network, and the classification of each data augmentation is the output. By training
with a large amount of unlabeled remote sensing data from the study area, a set of pre-
trained models for loading into subsequent supervised networks is finally obtained.
We have verified through experiments that this method helps the proposed network
better adapted to remote sensing change detection;

• Based on the idea of Swin-T and multi-scale fusion, a self-attention mechanism-based
pyramid pooling module SPPM is constructed and applied to the Siamese Swin-UNet
network adopted in this experiment. The self-attention module can better utilize
global information to obtain more complete features, while the multi-scale fusion
method can maximize the use of the information of each pixel and reduce the loss of
key features;

• We apply the Siamese Swin-UNet network using a special pre-trained model and
improved pooling module SPPM to the problem of remote sensing change detection
for ecological redline monitoring and verify the performance of this change detection
method through experiments.

The following contents are organized as follows. Section 2 clarifies the study area
and the preparation of the dataset in detail. Section 3 provides a quite detailed theoretical
introduction to the change detection method proposed. Section 4 contains ablation experi-
ments, contrast experiments, and the calculation of intersection recall rate for large-scale
prediction results. These are all used to justify the validity and the superiority in terms of
performance. Section 5 is a refined conclusion of our research work.

2. Dataset Details
2.1. Study Area and Data Source

To achieve the goal of our experimental task, we use two sets of GF-1 remote sensing
data in different phases (one group from 2018, the other group from 2022) in Hebei Province
and have labeled some of the data. The parameters of the GF-1 satellite are shown in
Table 1, while the panorama and the labeled data coverage of remote sensing images in
Hebei Province are shown in Figure 1a.

Table 1. GF-1 satellite parameters.

Panchromatic Camera Multispectral Camera

Spectral range 0.45–0.90 µm

0.45–0.52 µm
0.52–0.59 µm
0.63–0.69 µm
0.77–0.89 µm

Spatial resolution 2 m 8 m/16 m
Coverage width 60 km 60 km/800 km
Revisit period 4 days 4 days
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Figure 1. (a) Hebei Province and labeled area. (b) A remote sensing image from the city area. (c) A
remote sensing image from Eco-redline area.

2.2. Labeling Method

The overall labeling work takes buildings, roads, construction sites, and mining areas
as the main targets. The reasons are as follows: on the one hand, the urban areas consist
of large numbers of buildings and roads whose changes can be easily identified. These
changes can serve as typical samples to train the network preliminarily. On the other hand,
since the damages to the Eco-redline areas, are mainly caused by illegal constructions of
buildings and mining areas, the labeling work of these changes are more than vital because
it straightly concentrates on the network’s ability to monitor the Eco-redline areas. Changes
in other ground objects, such as changes in cultivated land, are not labeled because their
changes have nothing to do with our research goals. Therefore, we choose 61 groups of
GF-1 satellite data in different phases to label, which are not geographically contiguous but
suitable for our research. They have a spatial resolution of 2 m and a size of 16,384 pixels ×
16,384 pixels. The detailed information of the labels, as mentioned above, only focuses on
the changes that our experiment concerns, such as buildings, construction sites, and mining
areas. To sum up, the overall dataset is distributed in two areas: one is the urban area
(take Figure 1b as an example), where construction sites and newly added/removed roads
and buildings are labeled. The other one is the Eco-redline area (take Figure 1c as an
example), where the newly added/removed buildings and mining areas are labeled. These
samples are combined to train the network, aiming to finally realize the target of intelligent
information extraction of changes in Eco-redline areas.

2.3. Dataset Prepocessing

To facilitate the experiment, the samples need to be preprocessed to meet the needs of
our network. In this task, we crop the four-band raw remote sensing images of 16,384 pixels
× 16,384 pixels, TIFF format into three-band JPG images of 1024 pixels × 1024 pixels
(we remove the near-infrared band in this process). The bands represent the three color
channels of RGB, and the value range is (0, 255). At the same time, the corresponding
manually labeled shapefiles are converted and cropped into 1024 × 1024 size, single-band
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grayscale images. This single band represents the label value, including only two values
of 0 and 1. After that, we make a detailed check and retain 3660 groups of samples with
apparent changes, and remove the other 11,956 groups of samples without any variation.
This work is to ensure the samples’ equilibrium by reducing the proportion of backgrounds.
The pre-phase, post-phase, and labels are named as A, B, and label, respectively. A and B
are both three-band (RGB color channels) tensors when input into the network, and label
is a single-band (label value) tensor when input into the network. We allocate these data
into three datasets according to the ratio of 8:1:1, which are used for training, validation,
and test, respectively.

3. Proposed Methods

In this work, we propose a deep learning network called SWUNet-CD for the change
detection of the Eco-redline in Hebei Province using the GF-1 satellite images. Moreover,
we devise a special pooling module and a dual-stream self-supervised network to improve
its performance further. The detailed information is listed below.

3.1. SWUNet-CD

We convert the Swin-UNet into Siamese form for change detection, and apply the
designed SPPM (mentioned in Section 3.2) to it. The main network structure of SWUNet-
CD is shown in Figure 2a,b is a statistical summary of the names of different modules in it.
The backbone of the network has four downsampling layers; each contains two consecutive
Swin-T blocks, as shown in Figure 2c. Each Swin-T block consists of a normalization
layer (LayerNorm), a MSA, a residual connection, and a Multilayer Perceptron (MLP).
Among them, the Swin-T block in the front part uses W-MSA, and the latter part uses
SW-MSA. The two consecutive Swin-T blocks can be expressed by the following formula:

x̂2n = W_MSA(LayerNorm(x2n−1)) + x2n−1, (1)

x2n = MLP(LayerNorm(x̂2n)) + x̂2n, (2)

x̂2n+1 = W_MSA(LayerNorm(x2n)) + x2n, (3)

x2n+1 = MLP(LayerNorm(x̂2n+1)) + x̂2n+1, (4)

Attention(Q, K, V) = So f tMax(
QKT

√
Dimension

+ Bias)V, (5)

among them, n represents the nth downsampling process, which includes the (2n− 1)th
Swin-T block and the 2nth Swin-T block. x̂2n−1 represents the output of the (2n− 1)th MSA
in the Swin-T Block, and x2n−1 represents the output of the (2n− 1)th MLP in the Swin-T
Block. Self-attention is calculated as shown in Formula (5), where Q, K, and V denotes the
query, key, and value matrixes, respectively. Dimension represents the dimension of the
query or key, and the values in Bias are obtained from the bias matrix.

The functions of each module in the network are as follows: The function of the Patch
Partition layer is to divide the input tensor into smaller pieces and then concatenate them
in channel dimensions to shorten the tensor’s length and width. The role of the Linear Em-
bedding layer is to transform the channel size of the feature map obtained in the previous
step to the size required by the network. The function of the Patch Merging module is to
reduce the length and width of the feature map by half and double its channel size to form
multi-level features. The Patch Merging module and the two consecutive Swin-T blocks
jointly constitute a downsampling layer. The role of SPPM is to trim the downsampling
results to remove the influence of overfitting while preserving the features as much as
possible. The function of the Patch Expanding module is to double the length and width
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of the feature map and reduce the channel size by half to restore the feature map hierar-
chically. The Patch Expanding module and the two consecutive Swin-T blocks together
form an upsampling layer, where the feature information is fused by the corresponding
downsampling layer through a skip connection. The role of the Linear Projection layer is to
convert the feature map to a single channel for pixel-level change detection.

(a)

(b) (c)

Figure 2. (a) The overall structure of SWUNet-CD; (b) the name of each layer; (c) the schematic
diagram of two consecutive Swin-T blocks.

The overall process of our network is as follows: we input the pre- and post-phase
images into the network. During the process of forward propagation, four downsampling
operations and an SPPM-based pooling operation are performed on them, respectively.
As a result, we obtain the features with downsampling four times, eight times, sixteen
times, and thirty-two times. We then fuse the features of the same stage and use them
as the input of the upsampling part. It is worth mentioning that the SWUNet-CD adopts
the information fusion method of feature-level fusion instead of simple data-level fusion.
Although this does increase a certain amount of parameter calculations, it can use deeper
features to better train the network for the shallow features of remote sensing images that
may usually be hard to detect and identify.
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3.2. Swin-Based Pyramid Pooling Module

The idea of multi-scale fusion is innovative and has been proven to work well on
the improvement work of the pooling layer, such as the Pyramid Pooling module (PPM)
and the Atrous Spatial Pyramid Pooling (ASPP) [36,37]. Based on the multi-scale fusion
idea and the excellent performance of W-MSA, we devise a Swin-based pyramid pooling
module (SPPM), as shown in Figure 3. The pyramid consists of four feature extraction
layers and one Linear Projection layer. Each feature extraction layer consists of a Patch
Partition layer, a Linear Embedding layer, and two consecutive Swin-T blocks. The overall
process of the entire SPPM is as follows: The Patch Partition layer downsamples the input
feature map by two times, four times, eight times, and sixteen times, respectively. After that,
these feature maps will go through the Linear Embedding layer in which their channel size
will be transformed to C, 2 × C, 4 × C, and 8 × C (C is defined by the hyperparameter as a
channel size that the module can accept), respectively. These preprocessed feature maps are
then input into the two consecutive Swin-T blocks, where the self-attention calculation is
conducted on a window with a length and width of 7 × 7, defined by hyperparameters for
each feature map. The windows’ working mechanism is as follows: firstly, a self-attention
calculation for a standard window is done. After that, another self-attention calculation
is done for different partitions after the window is moved. The purpose is to achieve
information exchange between different locations to maintain the utilization of global
information after partitioning. Secondly, a mask calculation is used so that the self-attention
between the moved part and the original part will not be taken into account. After passing
through the Swin-T block, the output feature map of each layer structure will restore the
length and width to the input size by reshaping operation. Later, they will be concatenated
in the channel dimension. At the end of the module, the concatenated feature map goes
through a Linear Projection layer to restore the channel size to the input size. In this way,
SPPM can retain more deep features extracted by the network during the downsampling
process, thus, avoiding losing some important information.

Figure 3. The schematic diagram of Swin-based Pyramid Pooling Module (SPPM).

In the SWUNet-CD built for our change detection experiment, we use this SPPM in
its bottleneck layer. The purpose is to use the excellent performance of the self-attention
mechanism in the field of feature extraction to make greater use of local and global infor-
mation to retain multi-level information. As a matter of fact, we expect that this structure
can further improve the function of the network compared with typical multi-scale fusion
modules (such as PPM, ASPP, etc.) and obtain experimental results with higher accuracy.

3.3. Pre-Trained Model Obtained by Self-Supervised Network

Although our team has done some labeling work, it is still very scarce when compared
to the overall remote sensing data. Therefore, we consider designing a self-supervised
learning method. This method aims to construct several reasonable artificial labels for the
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unlabeled remote sensing images and guide the network to learn more feature expressions
that are helpful for the overall experimental task [38–42].

There exist two kinds of methods when constructing the self-supervised network: the
generative method as well as the contrastive method. The former has many redundant
parameters and is hard to optimize, so we adopt the latter. The contrastive method does not
require pixel-by-pixel reconstruction of the input data. It only needs that the model can dis-
tinguish between different inputs in the feature space. Therefore, the network constructed
in this way does not need a decoder. In fact, only a fully connected layer is acquired to
judge the features obtained by the encoder. To better fit the downstream task, we construct
a weight-sharing Siamese network, using Swin-T as its encoder, as shown in Figure 4. We
construct artificial labels based on data augmentation. This idea is mainly derived from the
phenomenon that the ground objects (forest, mining areas, illegal buildings, etc.), which
are the objects of the study, are more distinguishable in color and texture. The original data
and the augmented data are used as the dual-stream input of the Siamese self-supervised
network. After acquiring both feature maps and comparing the differences, the predictive
ability of the network is trained. Ultimately, the network can improve its ability to express
features and produce a pre-trained model for the latter task.

Figure 4. The schematic diagram of the duel-stream self-supervised network.

The contruction method is as follows: we use four data enhancement parameters
as the judgment criteria, namely Hue, Saturation, Rotation, and Flip. Hue represents
the relative lightness and darkness of the image, and its value ranges from 0° to 360°.
Five types of transformation are used for Hue, and the ranges are (−5◦, 5◦), (−10◦,−5◦) ∪
(5◦, 10◦), (−15◦,−10◦)∪ (10◦, 15◦), (−20◦,−15◦)∪ (15◦, 20◦), (−25◦,−20◦)∪ (20◦, 25◦), re-
spectively. These five types of ranges are labeled as 1–5. Saturation represents how close a
color is to a spectral color when viewed as the spectral color mixed with white, and its value
ranges from 0° to 100°. Five types of transformations are used for Saturation, and the ranges
are (−5◦, 5◦), (−10◦,−5◦) ∪ (5◦, 10◦), (−15◦,−10◦) ∪ (10◦, 15◦), (−20◦,−15◦) ∪ (15◦, 20◦),
(−25◦,−20◦) ∪ (20◦, 25◦), respectively. These five types of ranges are labeled as 1–5. Rota-
tion represents the rotation of the image by a certain angle. Four different rotation angles
are used, namely 0°, 90°, 180°, and 270°. These four types of ranges are labeled as 1–4. Flip
stands for flipping the image left and right. There are only two cases, including not flipping
and flipping. These two types of ranges are labeled as 1 and 2.

The training process of the network is as follows: the original image and the data-
augmented image are input synchronously into the network. After the down-sampling
operation of Swin-T, two feature maps of the same size can be obtained. They are concate-
nated in the channel dimension to obtain the change information, which represents the
data augmentation, and then this mixed feature map passes through a 1 × 1 size adaptive
average pooling layer to extract the global information. Finally, four different classification
results are acquired through four different fully connected layers. The results are four
distinct probability distributions, corresponding to the transformations of Hue, Saturation,
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Rotation, and Flip. We use them as criteria to compute the loss function, enabling backprop-
agation and parameter tuning. Finally, we obtain a set of parameters with high accuracy
that can be a perfect fit for the latter training of SWUNet-CD. Therefore, we use this set
of parameters as a pre-trained model to replace the normal one, hoping to achieve better
experimental results for change detection in the research area.

4. Experimental Results
4.1. Experimental Settings

The initial learning rate for model training is set to 3× 10−4 The exponential decay
learning rate schedule is used, and the learning rate is reduced to 95% every ten epochs.
The total number of epochs is 200. One of the most famous optimization algorithms, Adam,
is chosen to optimize the network’s ability. The pre-trained model is obtained through the
self-supervised learning method mentioned above. As for the loss, we choose the mean
of the Cross-Entropy loss and the Dice loss. The reason is that the foreground has taken a
much smaller place than the background, and this disproportion will lead to more missing
detection problems. Therefore, we apply the Dice loss to solve this problem and extract
more foreground information. However, the prediction error of some pixels will cause
the Dice loss to fluctuate wildly and lead to bad results, so the Cross-Entropy loss that
averages the whole is used to reach a compromise. In addition, this experiment uses a
large number of data augmentation methods, which can play an important role in avoiding
overfitting, improving the robustness of the model, and improving the expression ability of
the model. The following methods are mainly used: random cropping with a crop size of
512 pixels × 512 pixels, random flip, random transposition, random HSV transformations
that enhance the three dimensions of the color space (hue, saturation, value), random affine
transformations including translation, deflation, and rotation, random optical distortion,
and random Gaussian noise. All the data augmentation functions above are applied with a
probability of 0.3. In addition, our experiment also adopts the method of training weight
decay, which is set to 1× 10−3. The overall experiments are conducted on two RTX 3090
GPUs (24 GB memory).

4.2. Accuracy Evalucation

The prediction results on the test dataset usually produce four different types of pixels,
namely, the truly positive pixels (TP), the false negative pixels (FN), the truly negative
pixels (TN), and the false positive pixels (FP), as shown in Table 2. To evaluate the results,
we adopt four widely recognized accuracy evaluation metrics, which are calculated by
different strategies using the above four sorts of pixels. Precision Rate (Pre) represents the
ratio of the predicted real-change pixels to the predicted overall change pixels (Formula (6)).
The Recall Rate (Rec) represents the ratio of the predicted real-change pixels to the actual
overall change pixels (Formula (7)). The F1 score is the harmonic mean of the contradictory
precision evaluation indicators of Pre and Rec, which is used to combine both to make an
overall evaluation (Formula (8)). The Intersection over Union (IoU) represents the ratio
of the intersection to the union of the real-change pixels and the predicted change pixels,
which measures the similarity between the predicted situation and the actual situation
(Formula (9)). Each index may focus on different performances through various methods,
so they need to be judged comprehensively.

Precision =
TP

TP + FP
, (6)

Recall =
TP

TP + FN
, (7)

F1 =
2× Precision× Recall

Precision + Recall
=

2TP
FP + FN + 2TP

, (8)
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IoU =
Precison× Recall

Precision + Recall − Precision× Recall
=

TP
FP + FN + TP

, (9)

Table 2. four kinds of pixels.

Label True Label False

Test True TP (True Positive) FP (False Positive)
Test False FN (False Negative) TN (True Negative)

4.3. Ablation Study

In this section, we devise an ablation study to explore and verify the influence of
different factors on the performance of the proposed network. The results of the ablation
experiments are shown in Table 3, where the bold values represent the maximum values
in the same index. We also predict six groups of images to help show our network’s
performance, each of which represents a representative set of test data. Four colors are
used to make the different pixels clearer: (1) the white part represents the TP pixel; (2) the
black part represents the TN pixel; (3) the red part represents the FN pixel; (4) the blue part
represents the FP pixel.

The overall ablation study includes the following two aspects: one is to explore the
function of the improved pooling module SPPM compared with the traditional pooling
layer, the traditional multi-scale fusion modules such as PPM and ASPP through experi-
ments, as shown in Figure 5. The other one is to verify the performance of the pre-trained
model obtained through the self-supervised network in comparison with the normal pre-
trained model, as shown in Figure 6.

Table 3. Ablation Study.

Backbone PPM ASPP SPPM Self-Supervised Pre Rec F1 IoU

4 0.6676 0.6834 0.6754 0.5099
4 4 0.6722 0.6975 0.6846 0.5205
4 4 0.6856 0.6746 0.6801 0.5152
4 4 07223 l0.7136 0.7179 0.5600
4 4 0.7116 0.6777 0.6942 0.5317
4 4 4 0.7340 0.7133 0.7235 0.5668

4.3.1. Effects of Different Pooling Modules

This section mainly compares the accuracy of four different experimental results
obtained with no pooling layer, with PPM, with ASPP, and with SPPM. No pooling layer is
set as the base case, it can be used to more intuitively observe the ability of different pooling
modules to improve the network’s performance. PPM, ASPP, and the proposed SPPM are
all advanced pooling modules that employ the idea of multi-scale fusion. Their difference
mainly lies in the method of sampling. PPM is first proposed in the PSPNet for semantic
segmentation tasks, which acquires multi-scale features through four adaptive average
pooling layers of different sizes. As for ASPP, it is firstly proposed in the DeepLabV2
for semantic segmentation tasks, which extracts multi-scale features by constructing four
atrous convolutional layers of unequal sizes. Much different from the previous methods,
we make a difference by using a transformer. Our SPPM builds four W-MSA/SW-MSA
feature extraction layers of different sizes to obtain multi-scale features. Considering the
great performance of the transformer, we think this improvement will add to the ability of
our network. Therefore, we conduct ablation experiments using the GF-1 dataset in Hebei
Province for the above four cases to help prove its performance and verify our thoughts.
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Figure 5. Six groups of images using different pooling methods. (a) Buildings in Eco-redline areas.
(b) Buildings in Eco-redline areas. (c) Mines in Eco-redline areas. (d) Mines in Eco-redline areas.
(e) Mines in Eco-redline areas. (f) Buildings in rural areas.

It can be seen from Table 3 that all the networks using the multi-scale fusion pooling
module have significantly improved their accuracy compared to the case without the
pooling module. Among them, PPM and ASPP have mutual advantages and disadvantages
in the improvement of precision rate and recall rate. PPM has a higher recall rate, while
ASPP has a higher precision rate, but both of them have improved the whole accuracy.
However, through the bold numbers, it is not difficult to see that SPPM is much better at
improving the network in both precision rate and recall rate, both surpassing 0.7, while the
previous situation is all below 0.7. Correspondingly, its F1 score and IoU are also higher,
reaching 0.7179 and 0.5600. Based on these evaluation indicators, we can partly conclude
that the pooling module can help improve the network’s ability in our change detection
task, and our SPPM has a more obvious improvement in the network’s overall performance
than PPM and ASPP.

Moreover, we can also see intuitively from Figure 5 that the network with PPM has
fewer red parts and more blue parts, which represents its relatively high recall rate and
relatively low precision rate. While with ASPP, the results have more red parts and fewer
blue parts, which represents its relatively low recall rate and relatively high precision rate.
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As a matter of fact, our SPPM has both fewer red parts and blue parts, which also proves
its good performance.
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Figure 6. Six groups of images using different pre-trained models. (a) Buildings in Eco-redline areas.
(b) Buildings in Eco-redline areas. (c) Mines in Eco-redline areas. (d) Mines in Eco-redline areas.
(e) Mines in Eco-redline areas. (f) Buildings in rural areas.

4.3.2. Effects of Self-Supervised Study

This section mainly compares and analyzes the ability of our network using different
pre-trained models, the normal one and the one obtained by the self-supervised learning
method mentioned above. The overall experiments are carried out in two distinct environ-
ments: the basic network and the network with SPPM. As a matter of fact, the differences
between the two pre-trained models lie mainly in two aspects: one is about the data
source, and the other one is about the supervised method. As for data source, the normal
pre-trained model is acquired by training public datasets, while our pre-trained model is
obtained by a self-supervised network using GF-1 remote sensing images in Hebei Province.
It is obvious that our dataset directly focuses on the research areas, which can help our net-
work function better on our research target. However, from the perspective of supervised
methods, the former pre-trained model has an advantage over the latter. Since the public
dataset is of high quality and has good labels, it adopts the supervised learning method.
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Our pre-trained model is obtained using the unsupervised method, with remote sensing
images without labels. Therefore, both models have mutual advantages and disadvantages,
and is hard to tell which performs better.

So we calculate the accuracy and do the prediction, according to Figure 6 and Table 3.
The result turns out that whether it is the backbone or the network using SPPM, the accuracy
values after using our pre-trained model are significantly improved compared with the
values acquired using the normal pre-trained model. SWUNet-CD with SPPM and Self-
supervised method even reaches 0.7340 in precision rate and 0.7133 in recall rate, the best
result and the second best result. This result also helps to explain that our self-supervised
method helps the network identify more changes in the research area, and its lack of label
also leads to the problem of more wrong predictions. In fact, since its F1 score and IoU both
reach the highest, it demonstrates that our self-supervised learning method can further
optimize our experimental task. Moreover, the less blue and red parts compared with
others in Figure 6 also help to prove the demonstration.

In general, the ablation study in this section conducts experiments and analytical
verifications on the role of the pooling layer and the impact of the self-supervised learning
method and finally draws the following conclusions:

• SPPM combining W-MSA/SW-MSA and the idea of multi-scale fusion can not only
effectively improve the performance of the basic network but also has significant
advantages compared to other multi-scale fusion modules such as ASPP and PPM.

• Self-supervised learning method can obtain a pre-trained model that is more suitable
for the research area than the normal pre-trained model, which can further improve
the performance of the network and optimize the prediction results without adding
additional data labeling work.

4.4. Comparison with Other Neural Networks

To better verify the effect of SWUNet-CD on the target change detection task, some
related well-performed change detection networks are chosen for comparison. These
networks are as follows:

• Fully Convolutional Early Fusion (FC-EF) [43,44]: The most basic data-level fusion
change detection network. It is constructed based on the U-Net structure, and the data
of different phases are fused before entering the network.

• Fully Convolutional Siamese Concatenation network(FC-Siam-Conc) [43,44]: A Siamese
change detection network designed based on FC-EF. This network uses the idea of
feature-level fusion and builds on the structure of U-Net. It concatenates different
feature maps obtained after down-sampling in the channel dimension.

• Fully Convolutional Siamese Difference network(FC-Siam-Diff) [43,44]: A Siamese
change detection network designed based on FC-EF. Different from FC-Siam-Conc,
it pays more attention to the difference of the images and does not stitch the feature
maps but calculates their absolute difference.

• Deeply-Supervised image fusion network (DSIFN) [45]: A change detection network
for high-resolution remote sensing images. It uses VGG-16 as the backbone to down-
sample and obtain the image’s features and then fuses multi-level depth features
and image features through a difference discrimination network using an attention
mechanism.

• CDNet [46]: A network first used in building change detection. It combines point
cloud data of different phases with orthophotos. The two inputs of the final net-
work are the height differences of ALS-DSM and DIM-DSM, and the corresponding
orthophoto data.

• BiT [47]: A small and efficient change detection network. It uses the improved ResNet-
18 as the backbone [48], designs, and adds a bitemporal image Transformer between
the upsampling and downsampling modules. Its aim is to extract the real difference
between high-dimensional semantic tokens.
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• Siamese NestedUNet (SNUNet-CD) [49]: A Siamese network for change detection
designed and proposed based on the idea of NestedUNet [50]. It has two main
characteristics, which are listed as follows: (1) there exist highly dense connections
distributed in the network, including a large number of skip connections between
encoders and decoders. Such a structure can allow it to ensure high-resolution and
fine-grained representation, and alleviate the loss of localization information in the
deep layers of the neural network. (2) A deep monitoring method with an ensembled
channel attention module (ECAM) is proposed. This module can aggregate and refine
features from multiple semantic levels, suppressing semantic gaps and localization
errors to a certain extent.

We conduct various experiments and compare the results of these seven outstanding
change detection networks with our network, SWUNet-CD, which aims to better verify the
performance of our method on the target task. Moreover, all networks are performed under
the same experimental conditions and hyperparameters to obtain the best comparative results.

Table 4 shows the accuracy evaluation results obtained by different networks, and Figure 7
exhibits six groups of selected representative change detection results in the prediction dataset.

Table 4. Comparison with other networks.

Network Precision Recall F1 Score IoU

FC-EF 0.6621 0.6596 0.6608 0.4935
FC-Siam-Conc 0.6857 0.6633 0.6743 0.5087
FC-Siam-Diff 0.7072 0.6678 0.6869 0.5232

DSIFN 0.8140 0.6284 0.7093 0.5495
CDNet 0.7081 0.6913 0.6996 0.5380

BiT 0.7237 0.6940 0.7085 0.5486
SNUNet-CD 0.7344 0.6719 0.7018 0.5405
SWUNet-CD 0.7340 0.7133 0.7235 0.5668

Table 4 summarizes the four accuracy evaluation indicators of all experiments. The max-
imum value of each accuracy evaluation index is marked in bold. It can be seen intuitively
from this that since the early three FC network structures are relatively simple, their
accuracy is generally lower than that of the later networks. However, the accuracy of
FC-Siam-Conc and FC-Siam-Diff, which use feature-level fusion, are also significantly
improved compared to FC-EF, which uses data-level fusion. The other five networks with
more complex structures all have more significant improvements in various indicators.
Overall, their precision rate, recall rate, F1 score, and IoU all generally reach 0.70, 0.67, 0.70,
and 0.54, respectively. From a specific analysis, it is not difficult to see that although BiT has
the highest accuracy in the precision rate, reaching 0.8140, the highest accuracy value of the
other three indexes is all achieved by the SWUNet-CD. In fact, BiT does achieve a higher
precision rate, but its recall rate only reaches 0.6284, which is the lowest among all networks.
It means that BiT’s missing detection problem is very serious, and its F1 score and IoU
also intuitively reflect the shortcomings of the BiT. Moreover, other complex networks are
also inferior to SWUNet-CD in various accuracy indicators. To be specific, SWUNet-CD
achieves 0.7 evenly in both precision rate and recall rate, and also has significant advantages
over other networks in F1 score and IoU, which intuitively reflects its superior performance
in our experiments.
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Figure 7. Six groups of images using different change detection networks. (a) Buildings in Eco-redline
areas. (b) Buildings in Eco-redline areas. (c) Mines in Eco-redline areas. (d) Mines in Eco-redline
areas. (e) Mines in Eco-redline areas. (f) Buildings in rural areas.
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Figure 7 has six columns in total, and each represents a representative set of test data.
The first two rows represent pre-phase data and post-phase data, respectively. The third
row represents the corresponding change patch. Starting from the fourth row are the
prediction results of each network. To show the results more intuitively, we use four
colors to represent different predictions of pixels. The white part represents the TP pixel,
the black part represents the TN pixel, the red part represents the FN pixel, and the blue
part represents the FP pixel. Each group of data has been arranged according to different
objects of interest. The first two columns mainly focus on the changes in illegal buildings
in the ecological protection red line area: the demolition of illegal buildings appears in
the first set of data. It can be seen that all networks are basically able to detect changes
well, but our network has almost no false detections. The second set of data mainly focuses
on the construction of illegal buildings. Some networks are unable to accurately identify
the new buildings, while the other networks that are able to detect the changes have a
more serious problem of false detection. Our network seems to perform best among them.
The following three columns mainly focus on the changes in mining areas and quarries
in the Eco-redline areas, which are very hard to detect. The overall identification of the
third group is generally poor, and the problem of missed detection is very serious. Some
networks nearly fail to detect the changes. Although our method also misses a large number
of changes, it still provides the best prediction result among all networks by comparison.
In the fourth group, from the size of the blue parts and red parts, it is not difficult to judge
that our network has better performance considering both missed detections and false
detections. Then in the fifth group, our network can still identify a part of the whole mining
area while the other networks are almost unable to do the job. At the same time, there
exists nearly no false detection problem, which proves that our network shows a significant
advantage in this set of cases. The sixth column is about the building change in a cultivated
area. This set of data is to test whether the model obtained in our experiment can also have
a great ability to identify changes within the non-Eco-redline areas. From this column, it
can be seen intuitively that SWUNet-CD also has a better recognition effect for changes in
other regions.

Combining the results of Table 4, Figure 7, and the analysis above, we can firmly draw
the following conclusions: (1) SWUNet-CD can detect more changes than other networks,
especially the changes in mining areas which are very hard to detect. (2) SWUNet-CD can
also ensure not to make more false detections. To be specific, it means that while ensuring
a higher precision rate, the recall rate is also significantly improved so that the F1 score and
IoU can be much higher when compared to other networks.

4.5. Intersection Analysis of Network Extracted Spots and Manually Extracted Spots

Table 5 and Figure 8 can be obtained by predicting some large-scale remote sensing
images in the Eco-redline areas and making an intersection analysis between the results and
the corresponding manually extracted objects. This evaluation result reflects the network’s
ability to locate the changing area, which verifies the validity of this experiment from
another perspective. Therefore, we choose our network and three other well-performed
networks to test and make a comparison, and the results are presented in a table and four
figures. Table 5 records the overall intersection of prediction results and labels, in which
4 represents the intersection area while 8 represents the non-intersect area. Figure 8a
shows the overall extent of the test region. The following four figures produce a more
intuitive result, in which the green spots represent the detected change areas while the
red spots represent the undetected change areas. The detailed information is as follows:
Figure 8b represents the results of SWUNet-CD. There are a total of 411 + 39 = 450
manually extracted spots, 411 correct spots extracted by the network, and the recall rate is
91.33%. Figure 8c represents the results of SNUNet-CD. There are a total of 389 + 61 = 450
manually extracted spots, 389 correct spots extracted by the network, and the recall rate
is 86.44%. Figure 8d represents the results of DSIFN. There are a total of 388 + 62 = 450
manually extracted spots, 388 correct spots extracted by the network, and the recall rate is
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86.22%. Figure 8e represents the results of BiT. There are a total of 391 + 59 = 450 manually
extracted spots, 391 correct spots extracted by the network, and the recall rate is 86.89%.
According to the data, SWUNet-CD has also surpassed other networks in this study, which
strongly supports its performance in practical application.

Table 5. Intersection Recall Calculation.

Network Prediction Label Spots
Number Proportion Recall

SWUNet-CD

4 4 411 91.33%
91.33%8 23

8 39 8.67%

SNUNet-CD

4 4 389 86.44%
86.44%8 26

8 61 13.56%

DSIFN

4 4 388 86.22%
86.22%8 24

8 62 13.78%

BiT

4 4 391 86.89%
86.89%8 28

8 59 13.11%

(a) extent of the test area

Figure 8. Cont.
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(b) SWUNet-CD (c) SNUNet-CD

(d) DSIFN (e) BiT

Figure 8. (a) The extent of the test area. (b) Intersection spots by SWUNet-CD. (c) Intersection spots
by SNUNet-CD. (d) Intersection spots by DSIFN. (e) Intersection spots by BiT.

5. Conclusions

The change detection method combining remote sensing data with neural networks
is a useful and necessary research direction in the current society. At present, it has been
widely used in urban construction, disaster assessment, nature protection, and other fields.
In our study, we used this kind of method to detect changes in Eco-redline area, aiming to
meet the urgent needs of environmental monitoring.

To get better results, we have adopted three methods. Firstly, we constructed a Siamese
network called SWUNet-CD. This structure will pay more attention to the use of deeper
features in remote sensing images, which will help to learn the differences that cannot be
easily identified. Secondly, we devised a special pooling module called SPPM. This module
is used to maintain features of different levels, which will ensure that the network does
not miss any key information. Finally, we constructed a self-supervised network based on
the contrastive method, and trained it to obtain a pre-trained model. This model is used
to partly solve the uneven distribution problem due to large negative samples and small
positive samples, and will be more suited to remote sensing research. It can preliminarily
be seen from the experimental results that our research method has achieved good results,
reaching an F1 score of 0.7235 and 0.5668 in IoU, which is much better than the baseline
and other comparable networks. Moreover, we continue to verify the performance through
practical ways, predicting and calculating intersection spots which can serve as the direct
basis of Eco-redline monitoring. By reaching 91.33% in its intersection recall rate, this stage
also proves the great performance of our method.

However, there still exist some drawbacks that cannot be overlooked: (1) the change
detection results of mining areas are much worse than the results of the buildings. To solve
the problem, we have thought about two ways. Firstly, we can investigate more about the
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types of mining areas. For example, some are located on the ground while others are below,
and some may be accompanied by water. So it may be very meaningful to make a precise
subdivision about the mining areas. Secondly, we can improve the self-supervised network.
By manually adding some mining areas to the image, we can insert some supervised
information, helping to improve the network’s ability to identify the mining areas. (2)
The performance of the pre-trained model. Although we have thought of ways to obtain
a model which better fits the remote sensing images and our change detection task, it
still lacks a degree of change information, and, therefore, its ability may be prohibited.
(3) The quality and the usability of the data. We need more supervised data to train the
network, but the labeling work is a huge and hard task and will be easily disturbed by the
nearby environment.

Therefore, our future research will mainly focus on the following aspects: (1) doing
more research about the type of mining areas and applying it in the labeling work; (2) study-
ing other self-supervised methods and trying to obtain a pre-trained model, especially, for
change detection task; (3) bringing in other datasets and testing our network’s ability to
detect changes in other research areas like rural areas and urban areas.
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Abbreviations
The following abbreviations are used in this manuscript:

ECL Ecological redline
CNN convolutional neural network
ViT Visual Transformer
Swin Shifted Window-based Self-attention
FN False negative
FP False positive
TP True positive
TN True negative
PPM Pyramid Pooling Module
ASPP Atrous Spatial Pyramid Pooling
IoU Intersection over Union
SWUNet-CD Siamese Swin-UNet for change detection
FC-EF Fully Convolutional Early Fusion
FC-Siame-Conc Fully Convolutional Siamese-Concatenation
FC-Siam-Diff Fully Convolutional Siamese-Difference
Swin-T Hierarchical Vision Transformer using Shifted Windows
Swin-UNet Unet-like Pure Transformer for Medical Image Segmentation
DSIFN Deeply supervised image fusion network for change detection
SNUNet-CD Siamese NestedUNet
AIFM Attention Information Module
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ECAM Ensembled Channel Attention Module
PCA Principal component analysis
ICA Independent component analysis
MAD Multivariate alteration detection
SPPM Swin-based Pyramid Pooling Module
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