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Abstract: Leaf Area Index (LAI) is a fundamental indicator of plant growth status in agronomy and
environmental research. With the rapid development of drone technology, the estimation of crop LAI
based on drone imagery and vegetation indices is becoming increasingly popular. However, there is
still a lack of detailed research on the feasibility of using image texture to estimate LAI and the impact
of combining texture indices with vegetation indices on LAI estimation accuracy. In this study, two
key growth stages of winter wheat (i.e., the stages of green-up and jointing) were selected, and LAI
was calculated using digital hemispherical photography. The feasibility of predicting winter wheat
LAI was explored under three conditions: vegetation index, texture index, and a combination of
vegetation index and texture index, at flight heights of 20 m and 40 m. Two feature selection methods
(Lasso and recursive feature elimination) were combined with four machine learning regression
models (multiple linear regression, random forest, support vector machine, and backpropagation
neural network). The results showed that during the vegetative growth stage of winter wheat, the
model combining texture information with vegetation indices performed better than the models
using vegetation indices alone or texture information alone. Among them, the best prediction result
based on vegetation index was RFECV-MLR at a flight height of 40 m (R2 = 0.8943, RMSE = 0.4139,
RRMSE = 0.1304, RPD = 3.0763); the best prediction result based on texture index was RFECV-RF at
a flight height of 40 m (R2 = 0.8894, RMSE = 0.4236, RRMSE = 0.1335, RPD = 3.0063); and the best
prediction result combining texture and index was RFECV-RF at a flight height of 40 m (R2 = 0.9210,
RMSE = 0.3579, RRMSE = 0.1128, RPD = 3.5575). The results of this study demonstrate that combining
vegetation indices and texture from multispectral drone imagery can improve the accuracy of LAI
estimation during the vegetative growth stage of winter wheat. In addition, selecting a flight height
of 40 m can improve efficiency in large-scale agricultural field monitoring, as this study showed that
drone data at flight heights of 20 m and 40 m did not significantly affect model accuracy.

Keywords: leaf area index (LAI); UAV; multispectral; feature selection; machine learning; winter
wheat; texture

1. Introduction

As a fundamental variable in agronomic and environmental studies, leaf area index
(LAI) is often used as a key biophysical indicator of vegetation [1]. LAI is widely used in

Remote Sens. 2023, 15, 5715. https://doi.org/10.3390/rs15245715 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs15245715
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0001-8322-1316
https://orcid.org/0009-0008-1112-6676
https://doi.org/10.3390/rs15245715
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs15245715?type=check_update&version=1


Remote Sens. 2023, 15, 5715 2 of 24

the study of plant photosynthesis [2], nitrogen fertilizer management [3] and water use [4].
LAI also plays a crucial role in practical applications of precision agriculture, including crop
growth diagnostics, biomass estimation, and yield prediction. Wheat, as a vital component
of the global human diet, provides a substantial source of carbohydrates, proteins, and
fiber. Hence, the timely and accurate monitoring of winter wheat LAI information holds
significant importance for its growth management and production forecasting.

Traditional methods for studying seasonal variations in vegetation LAI primarily
involve direct and optical instrument-based approaches, which rely on intermittent LAI
data for seasonal dynamics analysis [5]. Direct methods of measurement include destructive
sampling, litterfall method, and point-quadrat method. They are relatively accurate but
require a large amount of work and time, are labor-intensive, and can cause damage to
vegetation. They cannot obtain continuous LAI data for the same vegetation. Indirect
methods utilize optical principles to obtain LAI, with common instruments including LAI-
2200, AccuPAR, SunScan, and TRAC, offering advantages such as ease of operation and
non-destructiveness. In contrast to more expensive instruments, the fisheye camera method
(DHP) is widely used due to its cost-effectiveness and ease of application [6]. However,
the use of DHP is subject to external factors like weather and terrain, limiting its ability to
collect continuous long-term LAI data. In summary, both direct and indirect methods have
various limitations and are unable to provide spatial distribution information for LAI at a
regional scale.

On the other hand, satellite platforms provide extensive remote sensing (RS) data.
Remote sensing data can capture the reflectance of crop canopies, leading to widespread
research on rapid and non-destructive LAI estimation at different perceptual scales using
RS technology [7]. However, precision management during the growth season requires a
large amount of timely multi-temporal data, and satellites are often constrained by factors
such as revisit cycles and weather conditions, making it difficult to obtain a sufficient
quantity of high-quality satellite data across multiple crop growth stages.

In recent years, the development of Unmanned Aerial Vehicles (UAVs) and their
applications in remote sensing have provided new solutions for LAI estimation. Due to
their flexibility in data acquisition and higher temporal and spatial resolutions, the use of
UAV platforms for LAI research has gained widespread attention in the global academic
community. For example, Zhu et al. [8] investigated lookup tables based on reflectance
and vegetation indices at individual growth stages of wheat. Zhu et al. [8] evaluated
the performance of different lookup tables for LAI retrieval in wheat. Lee et al. [9] used
UAV imagery to estimate rice growth and found no significant correlation between LAI
and vegetation indices after rice heading, indicating the challenge of establishing an LAI
model that is applicable to multiple growth stages. Gong et al. [10] used several common
vegetation indices based on drone imaging and found that using the product of vegetation
index and canopy height can estimate LAI throughout the entire rice growing season.
Unfortunately, the estimation error of the model reached 24%, and Gong et al. [10] did not
consider the influence of drone flight altitude. Zhang et al. [11] established a general model
for the jointing stage, heading stage, and grain-filling stage of winter wheat based on UAV
hyperspectral data. Zhang’s research considered both the vegetative growth stage (jointing
stage) and reproductive growth stage (heading stage and grain-filling stage) of wheat,
showing strong applicability. However, Zhang’s study did not reflect the significant changes
in LAI during the entire growth period of wheat (from the greening stage to the jointing
stage), and Zhang et al. [11] also did not consider the influence of UAV flight altitude.

The above studies indicate that research on crop LAI using UAV platforms has gar-
nered attention, but there is still a lack of remote sensing monitoring research on LAI
throughout the entire vegetative growth period of crops. In addition, the choice of UAV
flight altitude when utilizing UAVs for crop LAI estimation was not explored in previous
studies, and most of the altitude choices in the existing studies were single and always
empirically determined. Different UAV flight altitudes are closely related to the endurance
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time of the UAV and the estimation accuracy of the model, so the selection of different
flight altitudes is necessary.

Estimating LAI based on spectral information is the approach used in most studies, and
does not fully exploit UAV image information. In remote sensing science, the combination of
spectral and texture information is complementary, providing rich information, enhancing
classification accuracy, and interpreting image content [12]. Texture information has a close
relationship with crop LAI [13].

Texture analysis is an image processing technique used to measure the variability
in pixel values between adjacent pixels within a defined analysis window. It was ini-
tially applied in image classification and forest biomass estimation [14] in remote sensing
images. Later, based on the texture information of remote sensing images, research on
forest leaf area index (LAI) was conducted. Pu et al. [15] proposed a pixel-based sea-
sonal LAI regression model using four seasonal Pleiades satellite images and correspond-
ing LAI measurements, selecting a set of selected spectral and texture features. Pu and
Cheng et al. [16] found that texture-based features extracted from the same WorldView-
2 data had a better ability to estimate and map forest LAI compared to spectral-based
features. Bolivar-Santamaria et al. [17] combined field vegetation structure measurements
with Sentinel-2 images and used spectral and texture variables derived from Sentinel-2
images to predict LAI. The above studies explored the correlation of forest LAI based on
satellite image texture information. Texture information has also been studied in crop
growth monitoring. Eckert et al. [13] found that combining spectral features and texture
measurements improved biomass estimation compared to using spectral or texture mea-
surements alone. Zheng et al. [18] mounted a six-band spectral camera on an unmanned
aerial vehicle (UAV) for rice biomass estimation. Zheng et al. [18] demonstrated that the
Normalized Difference Texture Index (NDTI) based on the mean texture of the 550 nm and
800 nm band images outperformed the other texture variables and spectral indices. Sub-
sequently, more studies demonstrated that texture predicted biomass better than spectral
variables [19,20]. However, there have been few studies on the use of texture information
from UAV multispectral images to estimate crop LAI.

The green-up and jointing stages correspond to the 25–30 and 30–32 stages of the
Zadoks [21] scale, respectively. The green-up stage is the second tillering peak of winter
wheat, and the jointing stage is a critical period for wheat’s vegetative growth, reproductive
growth, and spike differentiation. During the entire reproductive period of winter wheat,
the green-up and jointing stages are one of the most significant periods in which the leaf
area index changes. In the middle and lower reaches of the Yangtze River, the phenomenon
of ‘late spring cold’ occurs frequently [22], the leaves of winter wheat will suffer damage
due to the lowering temperature, and large areas of yellowing and wilting may appear. The
decrease in the leaf area index of winter wheat seriously affects the crop’s conversion of
sunlight energy and its nitrogen utilization efficiency, which in turn affects the future growth
rate and final yield of wheat. In this study, we chose this stage (green-up and jointing), and
the objective was to explore the predictive performance of the UAV multispectral image-
based vegetation index and texture features in winter wheat LAI estimation by collecting
UAV multispectral data and wheat canopy hemispherical photography at different flight
altitudes. In turn, different feature selection methods were combined with different machine
learning algorithms to construct a model that is suitable for LAI estimation of winter wheat
at the vegetative growth stage. In addition, to improve the generalization ability of the
model, several wheat varieties were introduced to the study.

2. Materials and Methods
2.1. Experimental Site and Design

During the winter of 2022–2023, we conducted our study at the Integrated Demon-
stration Base of Modern Agricultural Science and Technology in Jiangyan District, Taizhou
City, Jiangsu Province, China. The demonstration site is in the middle and lower reaches of
the Yangtze River, with a flat topography, and is where the ‘late spring cold’ phenomenon
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occurs. The study area was divided into 72 plots (as shown in Figure 1), each with a
planting area of 12 m2 and a planting spacing of 25 cm between rows, of which 24 plots
were used for experiment I and the remaining 48 plots were used for experiment II. Both
experiments focused on the management of nitrogen fertilizer in winter wheat, and the
method of nitrogen fertilizer application and treatment protocols were the differences
between these two experiments.
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Figure 1. The location of the study area and the spatial distribution of 72 experimental plots.

The first 24 plots (Experiment 1) focused on the growth of winter wheat under different
methods of N fertilizer application. The wheat varieties were Yangmai 39 (YM 39) and
Yangmai 22 (YM 22). Urea and resin-coated urea were selected for nitrogen fertilizer, and
the four different methods of nitrogen fertilizer application were spreading application,
inter-row mix, inter-row application, and inter-row mix. The fertilizer application rate was
240 kg per hectare. The application rate of N fertilizer was 240 kg/ha. The experiment
was conducted in a split-zone design with variety as the main block, fertilizer type as the
sub-block, and fertilizer application method as the sub-sub-block. The experiment was
conducted using different wheat varieties and different fertilizer types according to the
different fertilizer application methods, with three replications, and the target plant density
was set at 240,000 plants per hectare. Others were managed as per standard cultivation.

The latter 48 plots (Experiment II) were planted with four varieties of wheat: Yangmai
25 (YM 25), YM 39, Ningmai 26 (NM 26) and YM 22. Different wheat varieties have different
nitrogen utilization efficiencies (YM 22 and NM 26 are nitrogen-inefficient utilizers, and YM
25 and YM 39 are nitrogen-efficient utilizers). This leads to strong differences in leaf area
index at all growth stages of these four winter wheat varieties. These findings will have a
positive impact on the generalizability of the research results. During the experiment, four
different nitrogen fertilizer treatments of 0 kg/ha, 150 kg/ha, 240 kg/ha and 330 kg/ha
were used. The experiment was replicated three times for different nitrogen fertilizer
treatments. Nitrogen fertilizer was applied in the ratio of 5:1:2:2 in accordance with the
base, tillering, jointing, and heading fertilizers, respectively. The basal fertilizer is applied
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before rotary tillage and sowing, the tillering fertilizer is applied when wheat grows to the
three-leaf stage, and the jointing fertilizer is applied when wheat leaf residue reaches 2.5.
The tasseling fertilizer is applied when wheat leaf residue drops to 0.8. Phosphorus and
potash fertilizers were applied in the form of P2O5 and K2O, and, for all treatment groups,
pure phosphorus, and potassium were applied at a rate of 135 kg per hectare and applied
as a one-time basal fertilizer. In the experiment, wheat was planted with a 25 cm inter-row
spacing using manual furrow sowing. The area of each plot was 12 m2 and the experiment
was replicated three times. Plant counts were conducted when the wheat reached the
two-leaf stage to achieve the target plant density of 240,000 plants per hectare. Other field
management practices followed standard farm practices.

2.2. Data Collection and Processing
2.2.1. UAV Image Acquisition and Processing

A DJI P4M drone was chosen for the experiment, which can collect reflectance in five
bands (Blue (B), Green (G), Red (R), Rededge and Near Infrared (NIR)). Unlike common
RGB cameras on the market, the DJI P4M drone camera carries five spectral bands to
provide a basis for calculating commonly used vegetation indices, while data collection
was carried out in the morning with clear weather to avoid cloud shadows and shadows
in the multispectral images. Route planning was performed with DJI Ground Station Pro
2.0 software (https://www.dji.com/cn/ground-station-pro (accessed on 17 May 2023)).
Two diffuse reflectance standard plates representing 0.5 and 0.75 were placed on the
ground before takeoff for radiometric calibration. The specific settings of the UAV flight
parameters are shown in Table A1 in Appendix A. After the flight was completed, we
processed the images using DJI Terra 2.3 software (https://enterprise.dji.com/cn/dji-terra
(accessed on 22 May 2023)) to produce a final single-band reflectance image. Based on
the UAV acquisition content, the images were categorized using eCognition 9.0 software
(https://geospatial.trimble.com/en (accessed on 19 May 2023). The images were categorized
into soil, shadow, and vegetation, and the same categories were merged and masked for
soil using ArcMap (ESRI Inc.; Redlands, CA, USA).

2.2.2. Field Leaf Area Index Measurement

The measurement of the Green Plant Area Index (PAI) for the winter wheat canopy
was conducted on the same day as the acquisition of the UAV multispectral images. PAI
was determined using the Digital Hemispherical Photography (DHP) method. DHP is
known for its simplicity, non-destructive nature, and wide application in vegetation studies.
Shang et al. [6], for example, used DHP to assess the spatiotemporal variation in crop
growth PAI while studying the interactions between plants and environmental conditions.
Dong et al. [23], based on DHP measurements of LAI for spring wheat and rapeseed,
developed a universal LAI estimation algorithm using red-edge vegetation indices for
different crops. In the field measurements, a 10.5 mm fisheye lens and a Nikon D7500
camera were used to capture canopy images. The Nikon D7500 can be equipped with a
fisheye lens, which has a very wide field of view, a prerequisite for the digital hemispherical
photography method of calculating crop LAI. During each sampling event, uniform photos
were taken over the winter wheat canopy. Given the relatively low height of the wheat
canopy during the study period, the camera lens was positioned 0.5 m above the canopy,
facing downward [24]. Fourteen photos were taken for each experimental plot during the
data collection process, ensuring full coverage of the plot. These images were processed in
the laboratory using the CanEye 6.495 software [25], which was used to calculate both the
Effective Plant Area Index (PAI) and the Total Plant Area Index (PAI). Total PAI is defined
as half of the total surface area of plant tissue per unit ground area [26,27]. For wheat, the
Green Effective PAI is equivalent to the Leaf Area Index (LAI).

https://www.dji.com/cn/ground-station-pro
https://enterprise.dji.com/cn/dji-terra
https://geospatial.trimble.com/en
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2.2.3. Extracting Texture and Vegetation Indices

In this study, 40 common vegetation indices were selected to estimate the leaf area
index (LAI) (Table 1). These indices provide information on vegetation growth, health,
etc., such as the Normalized Vegetation Index (NDVI), calculated using reflectance values
between the infrared and visible bands, where higher values indicate more lush vegetation;
the Green Chlorophyll Index (Cigreen) calculated using reflectance values between the
green and red bands correlates with the chlorophyll content because of the relatively high
absorption of green light by chlorophyll; and the Optimized Soil Adjusted Vegetation Index
(OSAVI), a variant of the Soil Adjusted Vegetation Index (OSAI), which is more likely to
provide stable results in areas with highly variable soil types.

Common texture indices, which include contrast, correlation, energy, and homogene-
ity, were computed based on the Gray-Level Co-occurrence Matrix (GLCM). GLCM is a
classic method introduced by Haralick et al. [28] in 1973 for extracting texture features.
These texture indices were independently extracted for each sample area based on GLCM,
computed for their average characteristics, and the temporal variations of different growth
stages’ texture indices were obtained. In this study, eight texture features were extracted
from the multispectral images using the “Co-occurrence Measures” function in ENVI 5.3
software, including mean (ME), variance (VA), homogeneity (HO), contrast (CO), dissimi-
larity (DI), entropy (EN), second moment (SE), and correlation (COR) (Table 2). A window
size of 7 × 7 was chosen based on previous research [29] and multiple trials to ensure clear
differentiation between soil and wheat pixels, while other parameters were kept at their
default values.

Table 1. Forty spectral variables used for LAI estimation in this study.

NO. VI Formula Reference

1 R R -
2 G G -
3 B B -
4 NIR NIR -
5 Rededge Rededge -
6 INT (R + G + B)/3 [30]
7 IKAW (R − B)/(R + B) [31]
8 IPCA 0.994|R − B| + 0.961|G − B| + 0.914|G − R| [32]
9 ExR 1.4R − G [33]
10 ExG 2G − R − B [34]
11 ExGR 2G − R − B − (1.4R − G) [33]
12 MGRVI (G2 − R2)/(G2 + R2) [35]
13 RGBVI (G2 − B × R)/(G2 + B × R) [35]
14 NDVI (NIR − R)/(NIR + R) [36]
15 GNDVI (NIR − G)/(NIR + G) [37]
16 RVI (NIR/R) [38]
17 NDREI (NIR − RE)/(NIR + RE) [39]
18 EVI 2.5 × (NIR − R)/(1 + NIR − 2.4 × R) [40]
19 OSAVI (NIR − R)/(NIR − R + 0.16) [41]
20 MCARI [(RE − R) − 0.2 × (RE − G)] × (RE/R) [42]
21 TCARI 3 × [(RE − R) − 0.2 × (RE − G) × (RE/R)] [43]
22 NRI (G − R)/(G + R) [44]
23 TVI Sqrt (NDVI + 0.5) [45]
24 MSR ((NIR/R) − 1) × sqrt (NIR/R + 1) [46]
25 SIPI (NIR − B)/(NIR + B) [47]
26 PSRI (R − B)/NIR [48]
27 CI_re NIR/R − 1 [49]
28 SAVI (NIR − R)/(NIR + R + 0.5) × 1.5 [50]
29 CRI 1/G + 1/NIR [51]
30 NLI (NIR × NIR − R)/(NIR × NIR + R) [52]
31 RDVI (NIR − R)/sqrt (NIR + R) [53]
32 CI_green NIR/G − 1 [49]
33 MTCI (NIR − RE)/(RE − R) [54]
34 MTVI1 1.2[1.2(NIR − G) − 2.5(R − G)] [55]
35 MTVI2 (1.5 × (1.2(NIR − G) − 2.5(R − G)))/sqrt((2 × NIR + 1)2 − (6 × NIR − 5 × sqrt(R)) − 0.5) [55]
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Table 1. Cont.

NO. VI Formula Reference

36 VARI (G − R)/(G + R − B) [49]
37 ExB 1.4 × B − G [56]
38 WI (G − B)/(R − G) [34]
39 GLA (2 × G − R − B)/(2 × G + R + B) [36]
40 VEG G/RaB(1−a), a = 0.667 [57]

Note: B, G, R, rededge, and NIR are the raw values for the five bands of the UAV.

Table 2. Eight texture variables used for LAI estimation in this study.

Textural Indices Formula Reference

Mean µi = i
N−1
∑

ij=0
Pij; µj = j

N−1
∑

ij=0
Pij

[28]

Variance σ2
i = ∑N−1

i,j=0 Pij(i− µi)
2; σ2

j = ∑N−1
i,j=0 Pij

(
j− µj

)2 [28]

Homogeneity N−1
∑

i,j=0

Pi,j

1+(i−j)2
[28]

Contrast N−1
∑

i,j=0
Pi,j(i− j)2 [28]

Dissimilarity N−1
∑

i,j=0
Pi,j|i− j| [28]

Entropy N−1
∑

i,j=0
Pi,j(− ln Pi,j)

[28]

Second Moment N−1
∑

i,j=0
Pi,j

[28]

Correlation N−1
∑

i,j=0
Pi,j

(i−µi)(j−µj)

1+(i−j)2
[28]

2.3. Feature Variable Screening

Feature selection is particularly important when there is a high degree of correla-
tion among features. Highly correlated features can introduce multicollinearity issues.
Therefore, two effective feature selection methods were employed in this study, namely
L1 regularization Least Absolute Shrinkage and Selection Operator (Lasso) and Recursive
Feature Elimination (RFE).

While in ordinary least squares regression, the objective is to fit the model parameters
by minimizing the squared error between the actual observations and the predicted values,
Lasso’s [58] regression introduces an additional L1 penalty into the objective function (the
second term in Equation (1), the first term being the objective function of ordinary least
squares). With the L1 penalty, the tendency is to set the coefficients of the unimportant
features to zero, thus automating feature selection. This can help prevent overfitting and
improve the generalization ability of the model. Alpha parameter selection can then be set
through cross-validation. Thus, Lasso effectively reduces the number of features on which
a given solution depends, which is important in the field of compressed perception.

min
ω

1
2nsamples

‖Xω − y‖2
2 + α‖ω‖1 (1)

The Recursive Feature Elimination (RFE) method [59] utilizes an external estimator
that assigns weights to features and selects features by recursively considering smaller
and smaller feature sets. Firstly, the estimator is trained on the initial feature set, and
the importance of each feature is obtained through specific attributes or callable methods.
Subsequently, the least important features are pruned from the current feature set. This
process is recursively repeated on the pruned feature set until the desired number of selected
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features is achieved. The modeling process employed a cross-validated RFE methodology
in which the ridge regression algorithm was used as the evaluation coefficient.

2.4. Machine Learning Regression Algorithms

In this study, models for estimating the Leaf Area Index (LAI) of winter wheat during
its vegetative growth stages (green-up and jointing stages) were developed. At flight
altitudes of 20 m and 40 m, feature selection was performed using two different methods
on three different datasets. Subsequently, four different machine learning algorithms
were employed to fit the data, resulting in a total of 48 regression models. The model
parameters in the study (except for MLR) were constructed using a grid search combined
with 5-fold cross-validation. The four algorithms used in the study were Multiple Linear
Regression [60], Random Forest [61], Support Vector Machine [62], and Backpropagation
Neural Network [63]. The first three of the four machine learning algorithms have been
frequently used in previous studies and include linear models as well as nonlinear models.
With the use of deep learning algorithms in the field of agriculture, back propagation neural
networks were also chosen for fitting in this study so that the comparison and selection of
different models can be carried out.

2.4.1. Multiple Linear Regression

Linear regression is a commonly used machine learning algorithm for prediction and
modeling, employed to analyze the linear relationship between variables. The fundamental
principle is to establish the relationship between input features and output targets by
finding the best-fitting line (or plane). Multivariate linear regression (MLR, as shown in
Equation (2)) is more than univariate regression; it takes full advantage of the practical
application of multivariate inputs, and presents strong interpretability while having a
simple form.

LAI = β0 + β1X1 + β2X2 + β3X3 + · · ·+ βnXn (2)

2.4.2. Random Forest

Random forests are composed of the autonomous resampling method (Bootstrap) pro-
posed by Breiman et al. [61] and the random subspace method introduced by Kam et al. [64].
They find application in various tasks, such as classification, regression, and clustering.
In Random Forest, decision trees are constructed using random subsets of the training
data. The ensemble of multiple decision trees in Random Forest aggregates their prediction
results through methods like voting or averaging. This aggregation yields more stable and
accurate results, reducing the risk of model overfitting.

2.4.3. Support Vector Machine

Support Vector Machine (SVM) is proposed based on the principle of structural risk
minimization. The application of SVM to regression prediction is called Support Vector
Regression (SVR). To solve the nonlinear problem, SVR transforms the nonlinear problem
into a linear problem in a high-dimensional space, and then uses a kernel function instead
of the inner product operation in the high-dimensional space. The parameters of SVR
include the “gamma” (kernel parameter) and C (penalty coefficient). In the study, a linear
kernel function is used to find the optimal parameter C through a grid search.

2.4.4. Backpropagation Neural Network

In the groundbreaking paper published in 1986 by David Rumelhart, Geoffrey Hinton,
and Ronald Williams [65], the backpropagation training algorithm was introduced. This
algorithm provided significant assistance in training multilayer perceptrons and led to the
rapid development of backpropagation neural networks. It is an efficient technique for
automatically computing gradient descent. The backpropagation algorithm is capable of
calculating the gradient of network error with respect to each model parameter in just two
passes through the network (one forward pass and one backward pass). In other words, it
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can determine how each connection weight and bias should be adjusted to minimize the
error. Once these gradients are obtained, it follows the standard gradient descent steps
and repeats the entire process until the network converges to a solution. Backpropagation
neural networks typically consist of an input layer, an output layer, and several hidden
layers. Neurons in each layer are connected to neurons in the next layer, transmitting
information. In each neuron, the output value of the previous layer of neurons is linearly
weighted as the input value, which is processed by a nonlinear activation function and
used as the input value of the next layer of neurons.

2.4.5. Cross-Validation and Grid Search

The main idea of cross-validation is to divide the dataset into K parts, where K-1 parts
are used as the training set and the remaining 1 part is used as the validation set. In the
study, the value of K was set to 5. Grid search is a method of tuning model parameters
by exhaustive search and is usually combined with cross-validation to optimize model
parameters. In selecting all candidate parameter combinations, the estimates of model CVs
under each parameter combination were obtained by loop traversal, and the parameter
combination with the best estimates was the final selected parameter. In the study, the RF
model was optimized with the parameter “n-estimators”, the SVR model was optimized
with the parameter “C”; the BP neural network model, the optimized parameters were
“n-estimators” and “learning rate”.

2.5. Statistical Analysis

The post-data collection statistical analysis process is summarized in Figure 2’s
flowchart. Samples with the same height from two periods were merged (n = 144), and
the overall dataset was divided into training and testing datasets in an 8:2 ratio. Given the
significant differences in winter wheat leaf area index under different nitrogen application
levels, a stratified sampling approach was employed to partition the training and testing
datasets. This was to avoid potential imbalances in sample counts for certain categories due
to random sampling, which could affect model training and performance. Most features
covering different experimental treatments were used to construct and fine-tune multiple
regression models, including Multivariate Linear Regression (MLR), Random Forest (RF),
Support Vector Machine Regression (SVM), and Backpropagation Neural Network (BPNN)
regression models, using selected vegetation indices, texture, or a combination of both as
inputs. Overfitting is prone to occur with a limited dataset. When the model adapts to the
noise in the training data and the characteristics of a particular sample, the generalization
performance of the model can be drastically reduced. Cross-validation can be employed
to more comprehensively assess the model’s performance and generalization ability. The
training process involved 5-fold cross-validation combined with grid search to find the
optimal model hyperparameters and the final predictive performance was evaluated us-
ing the testing dataset. The evaluation metrics included the coefficient of determination,
determined through cross-validation (R2, Equation (3)), root mean square error (RMSE,
Equation (4)), and relative root mean square error (rRMSE, Equation (5)). R2 measures the
extent to which the model explains the variability of the target variable, and its value ranges
from 0 to 1. The closer it is to 1, the better the model fits the data. RMSE measures the
difference between the model’s predicted value and the actual value; the smaller the value
is, the better the model fits the data. The relative root–mean–square error (rRMSE) takes
into account the scaling of the observations on top of the root–mean–square error (rRMSE)
which makes the error metrics easier to interpret and compare. In addition, considering
the balance between the predictive performance of the model and the variability of the
data, the the ratio of the standard deviation of the measurements to the RMSE (RPD) was
calculated in this paper. Rossel et al. [66] showed that a 1.8 ≤ RPD < 2.0 indicates that it
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can be used for general prediction tasks, 2.0 ≤ RPD < 2.5 indicates that it can be used for
accurate prediction tasks, and RPD ≥ 2.5 indicates very high prediction accuracy.

R2 = 1− ∑n
i=1(yi − ŷi)

2

∑n
i=1 (yi − yi)

2 (3)

RMSE =

√
1
n ∑n

i=1(yi − ŷi)
2 (4)

rRMSE =

√
1
n ∑n

i=1(yi − ŷi)
2/y (5)
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3. Results
3.1. Variability of Winter Wheat Leaf Area Index

The Leaf Area Index (LAI) of winter wheat exhibits significant variations, as antici-
pated, influenced by factors such as nitrogen fertilizer dosage, crop varieties, and growth
stages (Table 3). Across the three principal growth stages encompassing the vegetative
growth phases of winter wheat, both the training and testing datasets reveal an increasing
LAI trend. In the training dataset, LAI values during the green-up and jointing growth
stages range from 0.56 to 5.52, while in the testing dataset, the range extends from 0.73
to 4.96. Furthermore, substantial variability is observed in LAI during these two growth
stages, indicating the potential coverage of a wide range of scenarios. This variability also
renders the estimation of winter wheat LAI using remote sensing and unmanned aerial
vehicle (UAV) data feasible.
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Table 3. Descriptive statistics of Leaf Area Index (LAI) in the training and testing datasets.

Growth Stage Samples LAI

Min Max Mean SD CV (%)

Training Dataset

Green-up and Jointing 115 0.56 5.52 3.38 1.12 34.07

Test Dataset

Green-up and Jointing 29 0.73 4.96 3.17 1.27 40.13

3.2. Feature Selection

The heat map (Figure A1 in Appendix A) illustrates that during the vegetative growth
stages of winter wheat, namely the green-up and jointing stages, there exists a high degree
of correlation among some of the predictive factors, whether they are vegetation indices
(VIs) or texture indices. This suggests a potential issue of overfitting when utilizing all
VIs or texture indices. High correlations among features can diminish the interpretability
of the model, making it challenging to understand the factors influencing predictions.
Through feature selection, we can choose the most representative features, reduce feature
dimensionality, and enhance both model interpretability and generalization performance.

When employing Lasso linear regression for feature selection, a crucial hyperparam-
eter needs adjustment, namely the regularization parameter (also known as the penalty
parameter), typically denoted as α (alpha). α controls the strength of the L1 regularization
term, thereby influencing the feature selection process. A larger α value results in more
feature coefficients becoming zero, thereby enhancing the effectiveness of feature selection,
while a smaller α value reduces sparsity in feature coefficients, retaining more features in
the model. There is no universal rule for selecting the alpha parameter, and it is determined
based on cross-validation to minimize the root–mean–square error (Figure 3).
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The Recursive Feature Elimination (RFE) method is based on the idea of iteratively
removing features that contribute less to the model’s performance. In this study, ridge
regression (RR) was selected as the evaluation criterion for RFE. The optimal number of
predictive factors was determined based on cross-validation to minimize RMSE (Figure 4).
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Figure 4. RMSE varies with the increasing number of features for vegetation indices (a), texture
indices (b), and the combination of vegetation and texture indices (c). The optimal number of
predictive factors is selected based on the minimum RMSE.

As shown in Table 4, after the Lasso feature selection method, at a flight height of
20 m, 5 spectral variables were retained and 4 texture variables were retained; for spectral
variables plus texture variables, 9 were retained. At a flight height of 40 m, 4 spectral
variables were retained and 6 texture variables were retained; for spectral variables plus
texture variables, 9 were retained. After the RFECV feature selection method, at a flight
height of 20 m, 17 spectral variables were retained and 15 texture variables were retained;
for spectral variables plus texture variables, 10 were retained. At a flight height of 40 m,
2 spectral variables were retained and 23 for texture variables were retained; for spectral
variables plus texture variables, 3 were retained.

Table 4. Variable selection results.

Variable

20 m 40 m

Lasso RFECV Lasso REFCV

VI TI VI + TI VI TI VI + TI VI TI VI + TI VI TI VI + TI

NIR
√

ExR
√ √

MGRVI
√ √ √ √

RGBVI
√ √ √

NDVI
√

GNDVI
√

NDREI
√

EVI
√

OSAVI
√ √

MCARI
√ √

TCARI
√ √

MSR
√

SAVI
√

NLI
√ √ √ √ √ √

RDVI
√

MTCI
√ √

MTVI1
√ √

GLA
√ √ √ √

VEG
√ √ √ √

r-mean
√ √ √ √ √ √

r-homogeneity
√

r-contrast
√ √

r-dissimilarity
√ √

r-entropy
√ √

r-second moment
√

r-correlation
√ √ √
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Table 4. Cont.

Variable

20 m 40 m

Lasso RFECV Lasso REFCV

VI TI VI + TI VI TI VI + TI VI TI VI + TI VI TI VI + TI

g-mean
√

g-variance
√ √ √ √

g-homogeneity
√ √

g-contrast
√

g-dissimilarity
√ √

g-entropy
√ √

g-second moment
√ √ √

g-correlation
√ √ √ √

b-variance
√ √

b-homogeneity
√ √

b-contrast
√ √

b-dissimilarity
√ √

b-entropy
√

b-second moment
√

b-correlation
√ √ √

n-mean
√ √ √ √

n-variance
√ √

n-homogeneity
√

n-contrast
√

n-dissimilarity
√

n-entropy
√

n-correlation
√ √ √ √

re-dissimilarity
√

re-entropy
√

re-correlation
√

Note: The variables listed in the table are those selected through feature selection.

Under different flight altitudes and feature selection methods, there are significant
differences in the types and quantities of optimal variable selection. However, there are
also some features that are not affected by flight altitude and feature selection methods
in a single dataset. For example, texture indices r-mean and n-mean are selected multiple
times under different altitudes and different feature selection methods. There are also some
features that do not appear repeatedly, such as NIR and re-correlation, which are only
selected once as optimal variables.

3.3. The Best Model for Predicting Winter Wheat LAI
3.3.1. The Best Model Based on Vegetation Indices

The model based on the vegetation index (Table 5) shows that the RF model and MLR
model have the best predictive performance under different flight heights and feature
selection methods. At a flight height of 20 m and with Lasso feature selection, the RF
model performs as follows on the training set: R2 = 0.9171, RPD = 3.4742, RMSE = 0.3227,
and RRMSE = 0.0981. On the test set, R2 = 0.8912, RPD = 3.0313, RMSE = 0.4201, and
RRMSE = 0.1324. At a flight height of 40 m and with RFECV selection, the MLR model per-
forms as follows on the training set: R2 = 0.8512, RPD = 2.5923, RMSE = 0.4324, and
RRMSE = 0.1315. On the test set, it performs as follows: R2 = 0.8943, RPD = 3.0763,
RMSE = 0.4139, and RRMSE = 0.1304. Specifically, when estimating the LAI of winter
wheat during the vegetative growth stages (green-up stage and jointing stages) based on
the vegetation index, the RFECV-MLR model at a flight height of 40 m is considered the
best model.
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Table 5. Model results based on vegetation index-selected variables.

Height Model
Train Test

R2 RMSE RRMSE RPD R2 RMSE RRMSE RPD

20 m

Lasso

MLR 0.8664 0.4097 0.1246 2.7360 0.7129 0.6823 0.2150 1.8664
RF 0.9171 0.3227 0.0981 3.4742 0.8912 0.4201 0.1324 3.0313

SVM 0.8474 0.4379 0.1331 2.5599 0.7939 0.5781 0.1822 2.2028
BPNN 0.8925 0.3774 0.1136 3.0500 0.6132 0.7655 0.2452 1.6078

RFECV

MLR 0.8863 0.3780 0.1149 2.9657 0.6658 0.7361 0.2320 1.7299
RF 0.9423 0.2692 0.0818 4.1638 0.8896 0.4231 0.1333 3.0095

SVM 0.8711 0.4025 0.1223 2.7854 0.7845 0.5912 0.1863 2.1539
BPNN 0.8646 0.4235 0.1275 2.7178 0.7568 0.6069 0.1944 2.0279

40 m

Lasso

MLR 0.8538 0.4286 0.1303 2.6153 0.8877 0.4268 0.1345 2.9837
RF 0.9269 0.3031 0.0921 3.6982 0.8814 0.4385 0.1382 2.9041

SVM 0.8493 0.4351 0.1323 2.5763 0.8812 0.4389 0.1383 2.9016
BPNN 0.8688 0.4170 0.1255 2.7604 0.8688 0.4458 0.1428 2.7607

RFECV

MLR 0.8512 0.4324 0.1315 2.5923 0.8943 0.4139 0.1304 3.0763
RF 0.9002 0.3542 0.1077 3.1653 0.8710 0.4574 0.1441 2.7842

SVM 0.8500 0.4342 0.1320 2.5819 0.8943 0.4140 0.1305 3.0759
BPNN 0.8734 0.4096 0.1233 2.8104 0.8731 0.4384 0.1404 2.8076

Note: the best results are in bold.

3.3.2. The Best Model Based on Texture Indices

The model based on texture index (Table 6) shows that the RF model has the best pre-
dictive performance under different flight heights and different feature selection methods.
Under Lasso feature selection at a flight height of 20 m, the RF model exhibits the follow-
ing performance indicators: training set R2 = 0.9131, RPD = 3.3923, RMSE = 0.3304, and
RRMSE = 0.1005; test set R2 = 0.8792, RPD = 2.8770, RMSE = 0.4426, and RRMSE = 0.1395.
Under RFECV feature selection at a flight height of 40 m, the RF model exhibits the follow-
ing performance indicators: training set R2 = 0.9061, RPD = 3.2633, RMSE = 0.3435, and
RRMSE = 0.1044; test set R2 = 0.8894, RPD = 3.0063, RMSE = 0.4236, and RRMSE = 0.1335.
Specifically, when estimating the LAI of winter wheat during the vegetative growth stages
(green-up and jointing stages) based on the texture index, the RFECV-RF model at a flight
height of 40 m is considered the best model.

Table 6. Model results based on texture index-selected variables.

Height Model
Train Test

R2 RMSE RRMSE RPD R2 RMSE RRMSE RPD

20 m

Lasso

MLR 0.8601 0.4193 0.1275 2.6736 0.8576 0.4805 0.1514 2.6501
RF 0.9131 0.3304 0.1005 3.3923 0.8792 0.4426 0.1395 2.8770

SVM 0.6174 0.6934 0.2108 1.6167 0.5426 0.8612 0.2714 1.4786
BPNN 0.8810 0.3971 0.1195 2.8987 0.8313 0.5054 0.1619 2.4350

RFECV

MLR 0.8908 0.3704 0.1126 3.0268 0.8757 0.4490 0.1415 2.8361
RF 0.9284 0.3001 0.0912 3.7359 0.8785 0.4439 0.1399 2.8683

SVM 0.8607 0.4183 0.1272 2.6797 0.8349 0.5174 0.1630 2.4613
BPNN 0.8477 0.4492 0.1352 2.5627 0.8035 0.5456 0.1748 2.2559

40 m

Lasso

MLR 0.8871 0.3900 0.1223 2.9759 0.8293 0.4445 0.1244 2.4201
RF 0.9381 0.2886 0.0905 4.0205 0.8471 0.4207 0.1177 2.5572

SVM 0.6336 0.7025 0.2203 1.6520 0.3419 0.8727 0.2442 1.2327
BPNN 0.8726 0.4109 0.1237 2.8014 0.8652 0.4518 0.1447 2.7239

RFECV

MLR 0.9018 0.3512 0.1068 3.1919 0.8725 0.4547 0.1433 2.8002
RF 0.9061 0.3435 0.1044 3.2633 0.8894 0.4236 0.1335 3.0063

SVM 0.8422 0.4453 0.1354 2.5174 0.8014 0.5675 0.1789 2.2437
BPNN 0.8516 0.4434 0.1335 2.5961 0.8429 0.4878 0.1562 2.5233

Note: the best results are in bold.
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3.3.3. The Best Model Based on a Combination of Vegetation Indices and Texture Indices

The model based on the vegetation index and texture index (Table 7) shows that the
RF model has the best predictive performance under different flight heights and feature
selection methods. Under the RFECV feature selection at a flight height of 20 m, the RF
model exhibits the following performance indicators: training set R2 = 0.9437, RPD = 4.2145,
RMSE = 0.2660, and RRMSE = 0.0809; test set R2 = 0.9073, RPD = 3.2842, RMSE = 0.3877,
and RRMSE = 0.1222. Under the RFECV feature selection at a flight height of 40 m, the RF
model exhibits the following performance indicators: training set R2 = 0.9366, RPD = 3.9724,
RMSE = 0.2822, and RRMSE = 0.0858; test set R2 = 0.9210, RPD = 3.5575, RMSE = 0.3579,
and RRMSE = 0.1128. Specifically, when estimating the LAI of winter wheat during the
vegetative growth stages (green-up and jointing stages) based on the vegetation index and
texture index, the RFECV-RF model at a flight height of 40 m is considered the best model.

Table 7. Model results based on vegetation and texture index-selected variables.

Height Model
Train Test

R2 RMSE RRMSE RPD R2 RMSE RRMSE RPD

20 m

Lasso

MLR 0.8774 0.3925 0.1193 2.8563 0.8086 0.5571 0.1756 2.2857
RF 0.9343 0.2874 0.0874 3.9008 0.9071 0.3882 0.1223 3.2805

SVM 0.7414 0.5701 0.1733 1.9663 0.7994 0.5703 0.1797 2.2329
BPNN 0.8922 0.3779 0.1137 3.0463 0.7876 0.5672 0.1817 2.1700

RFECV

MLR 0.8835 0.3827 0.1163 2.9294 0.6891 0.7100 0.2237 1.7935
RF 0.9437 0.2660 0.0809 4.2145 0.9073 0.3877 0.1222 3.2842

SVM 0.8734 0.3989 0.1213 2.8099 0.7245 0.6683 0.2106 1.9053
BPNN 0.8802 0.3984 0.1199 2.8893 0.7225 0.6484 0.2077 1.8982

40 m

Lasso

MLR 0.8776 0.3922 0.1192 2.8585 0.9059 0.3906 0.1231 3.2600
RF 0.9388 0.2773 0.0843 4.0426 0.8806 0.4400 0.1387 2.8943

SVM 0.8642 0.4131 0.1256 2.7134 0.8780 0.4447 0.1401 2.8634
BPNN 0.8697 0.4156 0.1251 2.7698 0.8707 0.4425 0.1417 2.7814

RFECV

MLR 0.8527 0.4302 0.1308 2.6056 0.8998 0.4032 0.1271 3.1584
RF 0.9366 0.2822 0.0858 3.9724 0.9210 0.3579 0.1128 3.5575

SVM 0.8493 0.4352 0.1323 2.5756 0.8812 0.4389 0.1383 2.9013
BPNN 0.8726 0.4108 0.1236 2.8022 0.8701 0.4436 0.1421 2.7746

Note: the best results are in bold.

A scatter plot is plotted based on measured LAI versus predicted LAI (Figure 5).
The data points in the plot are distributed around the neighborhood of the diagonal line,
indicating that the model has a high prediction accuracy.
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Figure 5. The best LAI estimation models in the test set are as follows: (a) Lasso-RF with 20 m
VIs as input. (b) Lasso-RF with 20 m TIs as input. (c) RFECV-RF with 20 m VIs and TIs as inputs.
(d) RFECV-MLR with 40 m VIs as input. (e) RFECV-RF with 40 m TIs as input. (f) RFECV-RF with
40 m VIs and TIs as inputs.
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4. Discussion
4.1. Best LAI Inversion Model

This study involved four wheat varieties, four N application rates and five N ap-
plication methods in 72 plots. There are significant differences in LAI from plot to plot,
and there is a complex relationship between LAI and spectral variables. Therefore, this
paper, based on machine learning, simultaneously considers texture variables and spectral
variables. Four models were constructed under different flight heights (20 m and 40 m) and
different datasets (spectral variables, texture variables, and spectral variables combined
with texture variables). The results showed that the best model was obtained by using a
nonlinear model after adding texture variables (RFECV-RF, R2 = 0.9210, RMSE = 0.3579,
RRMSE = 0.1128, RPD = 3.5575). According to the research of Viscarra Rossel et al. [66],
Lasso-RF (RPD = 3.5575) achieved an accurate estimation of wheat LAI. Although this study
involved multiple wheat varieties and nitrogen application levels and methods, RFECV-RF
based on texture and spectral variables can achieve high accuracy in LAI estimation.

This study provides enough spectral and texture variables for feature screening, while
previous studies often artificially select a limited number of spectral variables, and the
Pearson correlation coefficients between the quantitative spectral variables and the agro-
nomic parameters are simply calculated in the study to determine the correlation of the
variables to the parameters. It can be affirmed that when the relationship between the
agronomic parameters and the spectral variables is linear, this practice can construct the
model with excellent performance. However, when the relationship between agronomic
parameters and spectral variables is nonlinear, then the accuracy when constructing the
model will be limited. In this study, a comparison of different feature screening methods
was conducted while providing a rich set of variables, so that RFECV-RF achieved an
excellent performance.

In addition, this study was conducted during the vegetative growth stages of wheat
(green-up stage and jointing stage). Unlike models established in single growth stages
in previous studies, models spanning multiple growth stages have higher practicality in
agricultural production, as they can more accurately predict the overall trend and changes
in wheat LAI values while saving time and resources in production.

4.2. Model Comparison

This article presents the final results of using four machine learning algorithms to build
models (considering two flight altitudes, three variable dataset inputs, and two variable
selection methods). The results show a certain regularity; that is, in the comparison of
models under different flight altitudes and different selection methods, RF or MLR becomes
the most accurate model in most cases, while SVM and BPNN are not as outstanding as RF
and MLR.

BPNN usually consists of an input layer, a hidden layer and an output layer. Each
layer that makes up a BPNN contains multiple neurons. The different layers of a BPNN are
connected to each other by weighting parameters. Thus, the complexity and performance of
a BPNN depends on the number of neurons and layers, and how the weighting parameters
are tuned. When the dataset is large, BPNN can adjust its parameters to better capture
complex patterns and features in the input data. In this study, the reason BPNN performs
worse than simple multiple linear regression may be that when the dataset is small, the
parameters cannot be adjusted to the optimal values, leading to overfitting and an inability
to improve the model’s generalization ability. In comparison, multiple linear regression
has stronger robustness.
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The MLR model improves the number of input variables based on simple linear
regression, but if all VIs or TIs are used as input variables, this may lead to overfitting
problems due to the complex model structure. To avoid this problem, this article conducts
feature selection based on previous research. The selected variables greatly reduce the risk
of model overfitting while retaining the advantages of linear models. The established linear
model has strong interpretability, high computational efficiency, and wide applicability.
However, MLR also has limitations and cannot capture nonlinear relationships.

The RF model achieves the best prediction results with the minimum RMSE value
among all input processing, which is consistent with the research by Tang et al. [67]. RF
is a powerful machine learning algorithm formed by integrating decision trees. Decision
trees divide data at nodes in a nonlinear way, which means that RF can capture complex
nonlinear relationships between input features. RF uses bootstrap sampling to extract
multiple subsets from the original samples, constructs independent decision trees for each
subset, and then combines the prediction results from multiple decision trees, overcoming
overfitting problems while dealing with outliers or noise. Previous studies have also shown
that RF models tend to achieve high accuracy due to their stability and robustness in
handling large amounts of data.

4.3. The Combination of Vegetation Indices and Texture Information for Crop LAI Estimation

The spectral reflection characteristics provide the basis for monitoring crops. This
study analyzed the applicability of 40 common spectral variables in constructing an LAI
estimation model for winter wheat. After LASSO and RRECV feature selection, the pre-
dictive models have high accuracy, which validates the research results of Liu et al. [68]
and Fu et al. [69]. Texture can be obtained from multispectral images and serves as a key
spatial feature, containing information about the canopy surface for crop phenotype stud-
ies. Therefore, texture information has been increasingly selected in research (Li et al. [70];
Lu et al. [14]; Sarker and Nichol [71]). Hlatshwayo et al. [29] found that the texture of the
red and near-infrared bands is more significantly related to LAI than some vegetation
indices. Pu and Cheng et al. [16] found that texture-based features extracted from the
same WorldView-2 data have a better ability to estimate and map forest LAI compared to
spectral-based features.

For winter wheat LAI, we also constructed machine-learning models based on 40 texture
features. The results showed that the accuracy of the texture model is lower than that of
vegetation indices. Additionally, the number of texture features is greater than that of
vegetation indices under different flight heights and feature selections. Vegetation indices
are often combinations of multiple bands, while texture features are pixel statistics in a
single band, which limits their predictive ability for vegetation parameters. Observations of
the selected vegetation indices reveal that most of them are correlated with the NIR band,
which has been shown to be effective in responding to the dynamics of LAI [11]. Examples
include NDREI, which analyzes the red and near-infrared bands and correlates with
changes in chlorophyll content, leaf area, and background soil. MSR reduces observational
noise by analyzing both the near-infrared and green light bands. These reasons may lead
to a better predictive performance of vegetation indices compared to texture indices alone.
Texture analysis, which extracts color-independent spatial information, helps to identify
objects or regions of interest in an image. The selection of appropriate bands and texture
information is critical for crop LAI monitoring. Previous studies have shown that combining
texture indices and vegetation indices can improve performance. Zheng et al. [18] reported
that combining vegetation indices and texture improved the accuracy of rice biomass
estimation. Hlatshwayo et al. [29] combined vegetation indices (VI), color indices (CI), and
texture indices (TI) using the random forest (RF) method to improve the estimation accuracy
of LAI and leaf dry mass (LDM). The results of this study also confirm this point. The
best model based on texture variables, the RFECV-RF model (R2 = 0.8894, RMSE = 0.4236,
RRMSE = 0.1335, RPD = 3.0063), has significantly lower accuracy than the RFECV-RF model
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combining vegetation and texture indices (R2 = 0.9210, RMSE = 0.3579, RRMSE = 0.1128,
RPD = 3.5575).

4.4. The Impact of Different Flight Heights on Winter Wheat LAI Prediction

Previous studies have often neglected the effects of different flight altitudes when
predicting LAI. To investigate the accuracy of winter wheat LAI estimation based on
multispectral UAV models in response to different spatial resolutions, different flight
altitudes of 20 m (resolution of 1.06 cm) and 40 m (resolution of 2.12 cm) were used in this
study. Despite the twofold difference in spatial resolutions at various flight altitudes, the
results of winter wheat LAI estimation indicated no significant difference in the accuracy
of the model when predicting LAI at 20 m and 40 m flight altitudes. This suggests that the
resolution of the image and the accuracy of the model are not proportional when making
winter wheat LAI predictions, a finding that is consistent with that of Broge et al. [45].
Zhang et al. [72] also considered the scale effect of calculating vegetation indices and texture
indices, and their impact on the estimation of wheat growth parameters (LAI and LDM)
using machine learning algorithms. They extracted textures from unmanned aerial images
at different heights during the wheat jointing stage, with pixel resolutions of 8 cm (80 m
height), 10 cm (100 m), 12 cm (120 m), 15 cm (150 m), and 18 cm (180 m). The results
showed that the texture at 80 m height was highly correlated with LAI and LDM, and the
correlation remained generally stable at heights of 100 m, 120 m, and 150 m, despite some
minor fluctuations. However, the correlation significantly decreased at a height of 180 m.
This may be because when the pixel resolution is reduced to a certain extent, there are too
many mixed pixels, making it difficult to distinguish between soil and vegetation, resulting
in poor performance in crop growth monitoring. Although this study only explored flight
heights of 20 m and 40 m, the research results on flight heights have important guiding
significance for practical production. For example, the DJI P4M drone used in this study
required 45 min to cover the entire study area (0.3 ha) at a height of 20 m, and the battery
needing changing halfway. However, at a flight height of 40 m, it only took 15 min to cover
the entire study area without the need to change the battery. In addition, not only can long
flights deplete the battery, but the drone may also capture photos under different lighting
conditions (caused by changes in solar zenith angle and cloud movement). This leads to
uneven lighting between images, which affects subsequent data analysis and processing,
ultimately affecting the prediction of LAI [73].

4.5. Limiting Factors and Future Research Prospects

When collecting multispectral images, the choices of UAV flight altitude were 20 and
40 m. Higher flight altitudes will be explored in the future to further study the effect of the
spatial resolution of UAV multispectral images on the remote sensing monitoring of winter
wheat LAI.

Furthermore, this study utilized data from four different winter wheat varieties at the
vegetative growth stages (green-up and jointing stages) and 72 experimental plots. Future
research can collect data from a broader range of winter wheat varieties across multiple
growth stages, employing larger datasets, and establishing models that cover the entire
growth cycle. This approach will better accommodate various growth stages, and enhance
model applicability and reliability.

5. Conclusions

In this study, the feasibility of predicting winter wheat LAI based on three scenarios,
namely, the vegetation index, texture index, and the combination of vegetation index
and texture index, was investigated at different flight altitudes (20 m and 40 m) during
the vegetative growth stages (green-up and jointing stages) of winter wheat. The results
showed that a combination of different feature screening methods and machine learning
algorithms can be constructed to estimate winter wheat LAI with high accuracy. The model
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accuracy of the combination of texture index and vegetation index was higher than that of
the vegetation index model alone and the texture index model alone.

In this study, it was found that accurate models for winter wheat estimation could be
established at both 20 m and 40 m flight altitudes. Therefore, in practice, we could choose a
flight altitude of 40 m. This reduces the flight time relative to the 20 m flight altitude, which
results in fewer battery changes and improved image quality.

In this study, a high-accuracy model for estimating the LAI of winter wheat was
established by optimizing the UAV flight strategy, as well as combining the multi-feature
selection method and machine learning algorithm. The model is applicable to the key stage
phases of winter wheat vegetative growth (green-up and jointing stages), as well as to
multiple winter wheat varieties, with high generalizability and practicality.

With different datasets, screening methods, and flight altitudes, the prediction accu-
racy of the RF model was almost always higher than that of the other machine learning
algorithms when looking at the four machine learning methods (MLR, RF, SVM, BP) used
in this study. However, further enhancement of the database and improvements in the
quality of the model are needed to accurately capture the growth metrics of different crops
on large-scale agricultural fields and improve the generalizability of the study results across
geographic regions and crops.
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Appendix A. Settings of UAV Flight Parameters, and Correlation Analysis Heatmaps

Table A1. Settings of UAV flight parameters.

Parameters Setting 1 Setting 2

Flight altitude 20 m 40 m
Flight speed 3 m/s 3 m/s

Heading overlap rate 80% 80%
Sideways overlap 80% 80%

Resolution 1.06 cm 2.12 cm
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Figure A1. Correlation heatmaps. (a) LAI and vegetation indices plus texture indices at 20 m alti-
tude. (b) LAI and vegetation indices plus texture indices at 40 m altitude. 
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