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Abstract: Water supply is a critical component of tree physiological health, influencing a tree’s
photosynthetic activity and resilience to disturbances. The climatic regions of the western United
States are particularly at risk from increasing drought, fire, and pest interactions. Existing meth-
ods for quantifying drought stress and a tree’s relative resilience against disturbances mostly use
moderate-scale (20–30 m) multispectral satellite sensor data. However, tree water status (i.e., water
stress) quantification using sensors like Landsat and Sentinel are error-prone given that the spectral
reflectance of pixels are a mixture of the dominant tree canopy, surface vegetation, and soil. Uncrewed
aerial systems (UAS) equipped with multispectral sensors could potentially provide individual tree
water status. In this study, we assess whether the simulated band equivalent reflectance (BER) of a
common UAS optical multispectral sensor can accurately quantify the foliar moisture content and
water stress status of individual trees. To achieve this, water was withheld from groups of Douglas-fir
and western white pine saplings. Then, measurements of each sapling’s foliar moisture content
(FMC) and spectral reflectance were converted to BER of a consumer-grade multispectral camera
commonly used on UAS. These bands were used in two classification models and three regression
models to develop a best-performing FMC model for predicting either the water status (i.e., drought-
stressed or healthy) or the foliar moisture content of each sapling, respectively. Our top-performing
models were a logistic regression classification and a multiple linear regression which achieved a
classification accuracy of 96.55% and an r2 of 82.62, respectively. These FMC models could provide
an important tool for investigating tree crown level water stress, as well as drought interactions with
other disturbances, and provide land managers with a vital indicator of tree resilience.

Keywords: drought; conifer foliar moisture; drone; UAV

1. Introduction

Foliar moisture content (FMC) is a key indicator of vegetation health and influences
individual plant resilience to weather, climatic variability, and disturbances such as insects,
disease, and fire [1,2]. Further, foliar moisture content changes seasonally and daily based
on evapotranspiration and water loss, or through precipitation and water uptake [1–3].
Beyond indicating the relative ratio of dry and wet plant material, foliar moisture content
informs estimates of fire risk and rate of spread [4]. Additionally, foliar moisture plays
a key role in the feedback loops of disturbances, such as bark beetles, by influencing the
likelihood of infestation and resources available for defense following infestation [5]. Water
stress on trees in California, US, recently resulted in >100 million trees succumbing to beetle
infestation due to reduced defense mechanisms related to foliar moisture [6]. Lower limit
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thresholds of foliar moisture also indicate when vegetation is vulnerable to disturbance-
induced damage and mortality [7]. Lower foliar moisture content values are related to
decreased resilience and increased mortality from both fire and insects [8,9]. Conventional
measures of FMC require the collection of foliage from each plant and a comparison of
the foliage’s dry and wet weight [4,10], providing a sample of the data to represent an
entire population. The need to oven-dry specimens can delay the applicability of foliar
moisture observations after collection, which limits its use for rapid hazard assessment
applications [7]. Although in other parts of the fuel stratum (i.e., woody debris, duff,
and litter), there has been the development of rapid sensing systems [11] and research
to understand the drivers of moisture content [12,13], limited research has focused on
foliar moisture content [3]. As such, there is limited capacity to collect rapid, spatially
continuous measures of FMC, particularly at scales and extents relevant to management
decision-making (i.e., 10 s of hectares).

One alternative method of assessing FMC continuously and across larger areas is
the use of aircraft and satellite-based remote sensing [14]. The Normalized Difference
Moisture Index (NDMI), which uses near-infrared (NIR) and short-wave infrared (SWIR)
spectral bands, is used to monitor drought because of the index’s sensitivity to changes
in plant water content [15]. Originally, this index was named the Normalized Difference
Water Index (NDWI) but is generally referred to by NDMI following the development
of a different NDWI index by McFeeters (1996) [16]. The NDMI was developed using
laboratory measurements of reflectance and has since demonstrated its utility in charac-
terizing vegetation drought stress in diverse ecosystems including forested areas [15] and
peatlands [17]. At multiple scales and across several conifer species, NDMI and red edge
spectral wavelengths have been demonstrated to have a significant correlation with plant
water content [18,19]. Seong et al. (2015) used NDMI to assess drought stress in forests
in Korea and found that areas with increased NDMI values, indicative of drought-stress,
experienced large forest fires, thus showing a causal effect between low FMC and higher fire
risk [20]. From satellite observations, NDMI has been demonstrated as a better predictor
of live FMC than the more commonly applied Normalized Difference Vegetation Index
(NDVI) [21], suggesting its potential for improving coarse-scale management of drought in
forests. However, application of NDMI through satellite-based remote sensing is limited
due to its coarse spatial and temporal resolutions. Landsat and Sentinel-2 satellites collect
imagery at 30 m and 20 m spatial resolution, respectively, and at 16- and 5-day return
intervals. Quantifying FMC using moderate spatial resolution imagery can be problematic
because spectral reflectance from individual pixels is a mixture of canopy and understory
components, which makes FMC estimation at the plant level challenging. Further, the low
(relative to UAS) temporal resolution of these satellites limits the timely assessment of
FMC, which varies diurnally [1]. These limitations in resolution restrict its application to
inform management decisions that require rapid, timely information such as responding to
wildfire incidents or informing early warning systems [7].

At the other end of the spatial resolution spectrum, fine-scale laboratory and field
experiments can provide insight into stress impacts on individual plant physiology, growth,
and mortality. Several studies have used toxicological dose-response experiments to assess
how varying levels of stressors, such as drought and fire, affect conifer sapling physiology
and whether these changes can be detected using remote sensing data. Sparks et al. (2016)
evaluated the impact of increasing fire radiative energy (FRE), or the total radiative heat flux
from surface fires, on Pinus contorta var. latifolia and Larix occidentalis saplings and whether
physiological responses could be accurately quantified using foliar spectral reflectance [22].
They found that the change in NDVI (dNDVI) from pre- to post-fire could accurately
quantify metrics of physiological stress including reduced net photosynthesis and chloro-
phyll fluorescence [22]. Other spectral indices such as the Photochemical Reflectance
Index (PRI) [23] have also been shown to accurately quantify tree stress. Specifically,
Sparks et al. [24] observed that PRI accurately quantified reductions in net photosynthesis
and chlorophyll fluorescence in Pinus monticola and Pseudotsuga menziesii saplings sub-
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jected to fires of varying intensity [24]. Additionally, Partelli-Feltrin et al. [8] examined the
interaction of drought-stressed ponderosa pine (Pinus ponderosa Lawson and C. Lawson)
saplings and FRE doses in a laboratory, finding that drought-stressed saplings died at
lower FRE doses than well-watered saplings. These studies demonstrate the utility of
fine-scale laboratory experiments for examining linkages between spectral indices derived
from foliar spectral reflectance (i.e., NDVI, PRI) and plant physiological metrics (i.e., net
photosynthesis, chlorophyll fluorescence, FMC) [8]. Based on previous laboratory stud-
ies, there is a clear linkage between pre-fire conifer sapling water stress and a sapling’s
resilience to fire induced tree mortality [8,22]. However, few tree species and size classes
have been assessed, restricting the application of these findings to inform management
decision-making processes.

Uncrewed aerial systems (UAS) offer a potential bridge between fine-scale laboratory
and field sampling efforts and satellite-derived landscape-scale assessments by providing
fine-spatial resolution continuous data at the forest-stand scale [25]. Prior to 2023, UAS
were commonly described as unmanned aerial systems, but a change in terminology by the
United States Pentagon and the United States National Oceanic and Atmospheric Adminis-
tration (NOAA) in late 2022 led to the widely adopted shift from unmanned to uncrewed.
Specifically, UAS have demonstrated their ability to characterize individual tree attributes,
including stem diameter and height, in fire-adapted moderate canopy closure Pinus pon-
derosa forests and provide users with control of the temporal resolution of imagery [26]. A
growing range of UAS sensors, such as the MicaSense Dual-Camera (MicaSense, Seattle,
WA, USA), provide spectral information not available on Landsat and Sentinel, including
three red edge bands [27,28]. These narrower red edge bands can facilitate early detection
of physiological stress and improve the scale of stress-detection through increased spatial
resolution compared to satellite imagery [29]. Using high-resolution satellite imagery from
RapidEye, Eitel et al. [19] showed that a spectral index using wavelengths in the red edge
was able to accurately identify stressed trees in a pinon–juniper woodland 16 days earlier
than NDVI, highlighting the utility of red edge spectra for early stress detection. NDVI,
and other indices derived from NIR, red, green, and blue spectral bands, have strong
potential to predict stress when used as training data in random forest and support vector
machine classification models [30]. When comparing a UAS-derived NDVI and National
Agricultural Imagery Program imagery for classifying trees into five health classes, the
UAS data out-predicted NAIP by 14.97% [30]. However, while indices such as NDVI have
proven utility in detecting forest stress, these indices may not be sensitive to the rapid
changes in tree moisture that result from environmental stressors [31]. Thus, this study
examines a variety of remotely sensed indices to identify which indices may produce robust
predictions of drought stress and status.

In this study, the overall objective was to assess if band equivalent reflectance (BER) of
a consumer-grade multispectral UAS camera could be used to predict FMC and sapling
drought-stress, defined here as saplings with an FMC lower than 120%, for two western
United States conifer species: western white pine (Pinus monticola Douglas ex D. Don) and
Douglas-fir (Pseudotsuga menziessii (Mirb.) Franco var. glauca (Beissn.) Franco). To address
this objective, directly measured FMC of saplings (n = 123) at varying levels of drought
stress was collected concurrently with sapling foliar spectral reflectance acquired with a
spectroradiometer. This spectral reflectance data were used as input data for classification
and regression models to predict FMC and drought stress status.

2. Materials and Methods
2.1. Saplings and Study Treatments

Saplings were grown in a climate-controlled greenhouse at the University of Idaho,
Moscow, Idaho. Detailed information on sapling growth and storage is described by
Smith et al. [32]. A total of 62 western white pine and 61 Douglas-fir saplings were grown
for 2 years in 9.5-L pots in the greenhouse before being relocated to the Idaho Fire Initiative
for Research and Education (IFIRE) combustion laboratory. Once at the IFIRE lab, both
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species were randomly divided into a control and three drought groups to provide a range
of FMC (Table 1). Before the experiment, all seedlings were watered to field capacity daily;
then, beginning 25 days before spectral reflectance and FMC measurements, the three
drought groups had water withheld for progressively shorter intervals, while the control
was watered to field capacity daily. Specifically, water was withheld from Group 3 for
25 days, 19 days for Group 2, and 14 days for Group 1. The 25-day total water withhold
period was chosen based on a previous droughting trial that showed significant drought
induced mortality starting at this time period. There were three fewer Douglas-fir saplings
in the control group due to pre-study mortality. Prior to drought treatments, average
(±SE) root collar diameters were 1.7 ± 0.03 cm and 2.1 ± 0.05 cm, and mean heights were
0.82 ± 0.02 m and 1.0 ± 0.02 m for P. monticola and P. menziessii, respectively.

Table 1. Sample size for each drought stress group showing average foliar moisture content (SD) for
each group.

Species
Control—0 Days Group 1—14 Day Drought Group 2—19 Day Drought Group 3—25 Day Drought

FMC (%) Sample Size FMC (%) Sample Size FMC (%) Sample Size FMC (%) Sample Size

western
white pine 173.69 (17.61) 14 168.78 (19.97) 16 158.25 (18.33) 16 52.40 (55.09) 16

Douglas-fir 148.90 (10.47) 13 158.53 (19.32) 16 103.23 (57.62) 16 19.92 (15.70) 16

2.2. Data Collection and Processing

For each of the 123 saplings, we collected foliar spectral reflectance using an ASD
FieldSpec Pro spectroradiometer (Malvern Panalytical Ltd., Malvern, UK) equipped with
the mineral probe attachment. Each of these measurements represents the average of
10 measurements that the instrument rapidly collects. This spectroradiometer collects
measurements at wavelengths between 350 and 2500 nm and has a spectral resolution of
3 nm between 350 and 1000 nm and 10 nm between 1000 and 2500 nm. Prior to export,
the data are resampled to 1 nm by the instruments’ software, resulting in 2151 spectral
bands. Three measurements were acquired in the top 1/3 of the canopy of each sapling,
each being the result of 10 rapidly averaged collections by the ASD probe. For each spectral
sample, ~5 cm2 of foliage was positioned between a background object of known re-
flectance and a mineral probe attachment. Radiance measurements were calibrated using a
100% reflective Lambertian Spectralon panel (Labsphere Inc., North Sutton, NH, USA)
prior to the measurement of each new sapling, following Sparks et al. [22]. During the
processing of each sapling, ~5 g of needles were collected randomly throughout the top
1/3 of the canopy and immediately had their wet sample weight recorded (±0.01 g). These
foliar samples were then oven-dried for 24 h at 100 degrees C and weighed again to acquire
their dry weight. Finally, FMC was calculated using the difference between the dry and
wet weights of the needles (Equation (1), Figure 1) [4].

Foliar Moisture Content =
wet weight (g)− dry weight (g)

dry weight (g)
× 100 (1)

The three canopy reflectance measurements acquired for each sapling were averaged
(Figure 2) and converted to band equivalent reflectance (BER) [33,34] of the 10 spectral
bands of the MicaSense Dual-Camera system through convolving the spectra with the
percent transmissivity values associated with these bands. This transmissivity func-
tion enabled the calculation of a single reflectance value for each band representative
of the theoretical reflectance value that would be sensed by the MicaSense Dual-Camera
system [27]. Using the 10-band values for each sapling, we calculated several spectral
indices that have been demonstrated to be useful for predicting various measures of vege-
tation health (Table 2). Additionally, one novel index was tested for this study, the foliar
moisture content index (FMCI), by examining the gaps in the spectral response curves
of drought-stressed versus healthy saplings using similar methods to those employed by
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Gao (1996; Table 2, Figure 3) [15]. Specifically, we utilized the spectral separation between
healthy and drought-stressed vegetation present in the red edge 3 and NIR channels. This
provided 20 predictor variables to test in our models (tree species, 10 spectral bands, and
9 spectral indices).
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Figure 1. Boxplots of foliar moisture content (FMC; %) for each drought group and each species.
Within each boxplot, horizontal lines represent the median, the box shows the first and third quartiles,
the whiskers represent the maximum and minimum values within 1.5 times the interquartile range,
and dots represent outliers.

Table 2. Spectral indices derived from the 10 spectral bands available with the MicaSense Dual
Camera system, along with the formulation and examples of their previous application.

Index Index Name Equation Main Application

NDVI Normalized Difference
Vegetation Index (NIR − Red)/(NIR + Red) Chlorophyll content/Plant

greenness [35]

NDVI2 Normalized Difference
Vegetation Index 2 (NIR − Red2)/(NIR + Red2) Not commonly used; Chlorophyll

content/Plant greenness

GNDVI Green Normalized Difference
Vegetation Index (NIR − Green)/(NIR + Green) Photosynthetic activity/

greenness [36]

GNDVI2 Green Normalized Difference
Vegetation Index 2 (NIR − Green2)/(NIR + Green2) Not commonly used

NDRE Normalized Difference Red Edge (NIR − Red Edge1)/(NIR + Red Edge1) Plant health of mature
plants [37]

GRVI Green Ratio Vegetation Index NIR/Green Phenological indicator [38]

NDWI Normalized Difference
Water Index (Green − NIR)/(Green + NIR) Water content of water

bodies [16]

PRI Physiological Reflectance
Index (Green2 − Green)/(Green2 + Green) Crop health monitoring [39]

FMCI Foliar Moisture Content
Index (Red Edge3 − NIR)/(Red Edge3 + NIR) Developed for this study



Remote Sens. 2023, 15, 5703 6 of 16Remote Sens. 2023, 15, x FOR PEER REVIEW 6 of 17 
 

 

 

Figure 2. Spectroradiometer-measured foliar spectral reflectance of (A) two saplings in the 

droughted groups in gray (P. monticola FMC: 10.2%; P. menziesii FMC: 8.8%) and two saplings in the 

control group in yellow (P. monticola FMC: 140.5%; P. menziesii FMC: 142%). The vertical-colored 

bars show the 10 spectral bands available on the Micasense Dual-Camera sensor. The associated 

table colors match the spectral bands and report the range of wavelengths covered by each band. 

(B) Averaged spectral reflectance of each drought group for western white pine. (C) Averaged spec-

tral reflectance of each drought group for Douglas-fir. 

Figure 2. Spectroradiometer-measured foliar spectral reflectance of (A) two saplings in the droughted
groups in gray (P. monticola FMC: 10.2%; P. menziesii FMC: 8.8%) and two saplings in the control
group in yellow (P. monticola FMC: 140.5%; P. menziesii FMC: 142%). The vertical-colored bars show
the 10 spectral bands available on the Micasense Dual-Camera sensor. The associated table colors
match the spectral bands and report the range of wavelengths covered by each band. (B) Averaged
spectral reflectance of each drought group for western white pine. (C) Averaged spectral reflectance
of each drought group for Douglas-fir.
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Figure 3. Correlation between the 20 predictor variables and foliar moisture content (FMC). For
variables with >70% correlation we removed the variables with lower correlation to FMC.

2.3. Model Development

We developed classification and regression-based models to predict drought stress
and FMC using the spectral predictor variables as inputs. Prior to model development, we
examined predictor variable collinearity (Figure 3), and for predictor pairs that had a corre-
lation of >70%, we removed the variable with lower correlation with FMC. The remaining
predictors were evaluated for variable importance using the varImpPlot function in the
randomForest package [40] within R statistical software version 4.1.0 [41,42]. This two-step
process resulted in five predictor variables which included (in order of importance): NDVI2,
red edge 3, PRI, FMCI, and species. For all models, both classification and regression, input
data were randomly split into training (70%) and validation (30%) subsets.

Both a random forest classification model (RFCM) and a logistic classification model
(LCM) were developed using the training dataset to predict whether saplings were drought-
stressed or healthy based on a threshold of above or below 120% FMC. This FMC threshold
was used as it represents the approximate moisture content where shrub and tree foliage
become more receptive to fire spread [43,44]. We tested these models as the RFCM allows
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for increased model complexity while the LCM provides more interpretable results. The
RFCM was developed using the randomForest package [40] in the R statistical software.
The RFCM was run using the five selected predictor variables, with seed 1002 and using
199 decision trees. The LCM was developed using base R and the glm function [41].
Variable selection for the LCM was performed using forward and backward stepwise
selection to identify the subset of variables that minimized the Akaike Information Criterion
(AIC) in the MASS package [45]. We assessed classification accuracy using confusion
matrices calculated between the validation dataset and the model classification results.
We report three commonly used accuracy metrics: overall accuracy, omission error and
commission error.

Predictions of FMC as a continuous response were made by developing a set of simple
linear models (SLRM), a multiple linear model (MLRM), and a random forest regression
model (RFRM). For the SLRM, we compared five univariate models using each predictor
variable: NDVI2, red edge 3, FMCI, PRI, and species. For the MLRM, variable selection was
conducted using ordinary least squares forward and backstep stepwise selection to identify
the variable subset that minimized AIC from the olsrr package in R [46]. Bootstrapping with
100 repetitions was used to resample the training and validation data to avoid overfitting
for all of the SLRMs and the MLRM. The RFRM was developed following the same steps
as the classification version, with the only difference being the use of FMC as a continuous
response variable. Model performance was assessed using linear regression analysis
between the observed FMC and model predicted FMC. Residual standard error and the
coefficient of determination (r2) were computed and used to evaluate the relationship
‘goodness of fit’.

3. Results
3.1. Foliar Moisture and Spectral Variation

Visual comparison of the FMC between the species and across the drought groups
shows similar trends with a few small differences (Figure 1). The western white pine had
both wetter and more variable FMC in all but Drought Group 2 compared to the Douglas-fir.
A more continuous distribution of FMC was achieved by the Douglas-fir drought groups,
largely due to the wide range of values in Drought Group 2 (Figure 1). However, the
western white pine resulted in a wider total range of FMC, but with a notable gap in FMC
values from ~60% to ~125%.

The spectral response curves varied between species, with western white pine having
higher reflectance from ~750–1300 nm compared to Douglas-fir for all drought groups
(Figure 2B,C). However, the mean reflectance of drought groups varied more for Douglas-fir
than western white pine. Spectral separation was only apparent in the green (550–570 nm)
and green 2 (524–538 nm) bands for the longest duration drought group (Group 3). For
both species, the greatest spectral separation across the drought groups occurred in the NIR
(820–860 nm), followed by the red (663–673 nm) and red 2 (642–658 nm) bands (Figure 2).
Although outside the spectral bands tested in this study, the shortwave infrared portion of
the spectrum also exhibited strong separation of the drought groups for both species.

Evaluation of the 20 predictor variables for collinearity showed that NDVI2 was the
strongest single predictor, but that it was highly colinear with several other terms (Figure 3).
Because of high correlation (>|70%|) with NDVI2, the following predictors were removed
from analysis, including coastal blue, blue, green, green 2, red, red edge 2, NDVI, GNDVI,
GNDVI2, NDRE, GRVI, and NDWI.

3.2. Classification Models

The RFCM retained the NDVI2, PRI, red edge 3, and FMCI. In the final set of predictor
variables, species was removed due to its low variable importance. The RFCM had an R2 of
85.41 and produced a mean square error (MSE) of 0.049, with balanced classification errors
between the two classes (Table 3). When the RFCM was tested against the validation data,
the model resulted in a final overall classification accuracy of 94.44%, with drought-stressed
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saplings having an omission error of 9.09% and a commission error of 9.09%, while healthy
saplings had an omission error of 4.0% and a commission error of 4.0%.

Table 3. Confusion matrices of the predicted versus observed class for the random forest classification
model (RFCM) and logistic classification model (LCM) using the validation data. Overall accuracies
were 94.44% and 97.22% for the RFCM and LCM, respectively.

Random Forest
Reference Class

Drought-Stressed Healthy Commission Error

Predicted Class
Drought-Stressed 10 1 9.09%

Healthy 1 24 4.00%

Omission Error 9.09% 4.00%

Logistic
Regression

Predicted Class

Drought-Stressed 11 0 0.00%

Healthy 1 24 4.00%

Omission Error 8.33% 0.00%

Prediction accuracy of the LCM was 96.55% for the training data (Table 3) and, when
tested against the validation data, an overall classification accuracy of 97.22% was achieved.
Omission errors of 8.33% for the drought-stressed saplings and 0% for the healthy saplings
and commission errors of 0% for the drought-stressed saplings and 4.0% for the healthy
saplings were observed. When developing the LCM, species was the only predictor variable
removed during the stepwise variable selection process (Table 4). Since a true r2 cannot
be calculated for LCMs, we calculated McFadden’s r2, which has values ranging from 0 to
1, and achieved a value of 0.84. Any McFadden r2 values over 0.4 demonstrate a strong
model fit to the data and high predictive power [47]. The RFCM and the LCM misclassified
the same sapling, with the RFCM misclassifying an additional sapling (Table 3). One
drought-stressed Douglas-fir sapling (FMC: 112%) was confused as healthy by both models.
For the RFCM, one healthy western white pine sapling (FMC: 132%) was confused as
drought-stressed.

Table 4. Logistic classification model (LCM) coefficients. The Z-value is the regression coefficient
divided by the standard error.

Coefficient Standard Error Z-Value p-Value

Intercept 43.63 18.07 2.41 <0.05

NDVI2 −11.68 7.50 −1.55 0.12

Red edge 3 −89.16 39.14 −2.28 <0.05

FMCI −115.01 53.35 −2.16 <0.05

PRI −147.73 56.94 −2.60 <0.05

3.3. Regression Models

The best-performing SLRM used NDVI2 as the predictor variable and resulted in an
adjusted R2 of 73.41 (p < 0.05) with a residual standard error of 33.08 (Table 5). For this
model, each 0.1 increase in NDVI2 resulted in a 26.0% increase in FMC. Comparison of
predicted SLRM versus observed FMC showed strong general relationships but with the
greatest prediction errors in the middle of the range of FMC values (Figure 4A). The NDVI2
SLRM explained more than twice as much of the variation in FMC compared to any of the
other SLRMs tested.
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Table 5. Predictor variable results from five simple linear regression models (SLRM).

Predictor
Variable Intercept Coefficient

(SE) p-Value Residual
Standard Error Adjusted r2

NDVI2 13.17 267.66
(17.47) <0.05 33.08 73.41

Red edge 3 −135.46 1504.39
(223.94) <0.05 52.32 33.91

FMCI 28.13 375.90
(323.54) 0.25 63.18 0.41

PRI 158.16 1732.76
(255.01) <0.05 52.12 34.44

Species 101.56 36.28
(13.19) <0.05 61.52 7.09

The MLRM used 100 bootstrap repetitions for resampling, and the OLS stepwise
variable selection informed the removal of species. The final MLRM removed species as
a predictor and resulted in a final adjusted r2 of 82.62 (p < 0.05) with a residual standard
error of 26.77 (Table 6). When testing the model against the validation dataset, we achieved
an r2 of 84.57 (p < 0.05) with a residual standard error of 25.05. The MLRM represented
an ~19% improvement in the model residual standard error over the best SLRM. Each
of the spectral indices showed a positive response, indicating that increases in any of
the spectral index values resulted in increased FMC prediction (Table 6). Comparison
of MLRM predictions to observed values showed mostly normally distributed residuals
throughout the data range, but 3.4% of samples were predicted to have negative FMC
values (Figure 4B). The RFRM used NDVI2, red edge 3, FMCI, and PRI as predictors and
had an r2 of 75.32 and a root mean square error of 31.37 (Figure 4C). Inspection of the
RFRM predicted versus observed values showed slightly greater variation in prediction
accuracy in the middle of the dataset compared to the MLRM but eliminated the negative
predictions seen from the MLRM (Figure 4C).

Table 6. Multiple linear regression model (MLRM) output table.

Coefficient Standard Error T Value p-Value AIC

Intercept −226.61 41.18 −5.50 <0.05 -

NDVI2 138.64 21.39 6.48 <0.05 860.96

Red edge 3 611.92 149.30 4.10 <0.05 850.84

FMCI 851.31 159.19 5.38 <0.05 833.78

PRI 1039.63 202.10 5.14 <0.05 854.59

4. Discussion

The strongest-performing drought stress classification and FMC regression models
were the LCM and the MLRM, with an overall accuracy of 96.55% and r2 of 82.62, respec-
tively. Both models used NDVI2, PRI, red edge 3, and FMCI as their predictor variables.
The MLRM model explained 82.6% of the variation but produced a residual standard error
of 26.7% FMC. While this error level is fairly consistent in an absolute sense throughout the
tested range of FMC values, the relative magnitude of the error is going to be exacerbated
at lower FMC levels. While the model captures the general trend in FMC, it may struggle to
differentiate trees near the critical 120% FMC level. The high accuracy of the LCM indicates
that a consumer-grade UAV sensor, such as the MicaSense Dual-Camera, could accurately
predict the drought status of Douglas-fir and western white pine. The results also suggest
that this approach could be used to assess the drought stress status of other tree species
and potentially be scaled across landscapes in combination with coarser-resolution imagery
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with further study. The MLRM could have applications where there is a need to assess
conifer physiology, ignition risk, and/or susceptibility to insects and disease. The fact that
the tested species represent both short- and long-needle conifers, which did not impact
model performance, is promising for the potential transference of these relationships to
other conifer species. However, more studies are needed with additional conifer species in
both controlled laboratory and natural forest settings to understand if these relationships
are similar across species and scale to older and larger trees.

The models developed in this study use existing spectral indices, and combined with
the high model accuracy, suggests that UAVs equipped with similar sensors could improve
the spatial resolution and scale of FMC predictions. To the authors’ knowledge, no prior
studies exist which quantify the foliar moisture content and drought stress of conifers using
a UAS; however, Blanco et al. [48] were able to quantify cherry tree leaf water potential
(r2 = 0.67) using UAS-derived NDVI. Studies in agricultural systems have achieved root
mean square error values as low as 1% when predicting maize FMC using data from
a similar UAS multispectral sensor to that tested in this study [49]. Previous studies
predicting FMC in grasslands have achieved r2 values of 0.91 using MODIS imagery
at 500 m spatial resolution [50], while models of FMC using hyperspectral data have
predicted FMC of forest canopies using the normalized difference infrared index and
achieved an r2 of 0.9 [51]. However, these hyperspectral data, part of the NASA HyspIRI
Mission, have not yet been launched, precluding their immediate application [51]. While
a range of success has been found in predicting FMC across various ecosystems from
moderate resolution sensors [52–56], these sensors are unable to provide the individual
tree-level information needed for management decisions related to promoting resistance
and resilience to disturbances at the stand-level.

Our MLRM and LCM models both retained NDVI2, PRI, red edge 3, and FMCI as
significant predictors. NDVI2 and FMCI are not widely used indices and the authors could
not identify any papers using either index for tree health assessments. However, NDVI2 is
only slightly different from NDVI in that it uses the second red band (red 2) available on the
MicaSense Dual-Camera sensor, which is narrower and covers the lower part of the Sentinel-
2a red band. This narrowing of the band spectral range might account for the increased
performance over satellite-based observations as changes in reflectance are averaged over
smaller channels. Similar to NDVI, we would expect NDVI2 to have higher values for
vegetation with lower red reflectance, assuming NIR reflectance remains constant. NDVI2
uses lower wavelengths of red light and occurs in a region where there is a larger difference
in reflectance between healthy and drought-stressed saplings (Figure 2). This narrower
band allows us to detect smaller changes in moisture, similar to the increased accuracy seen
by Hunt et al. [51] when using hyperspectral imagery. Since FMCI was developed for this
study by examining the spectral reflectance signatures of a drought-stressed and healthy
sapling, it was expected that FMCI would help predict continuous and classified FMC
response variables. However, FMCI had lower explanatory power for predicting FMC than
the other final four predictors. This reduced explanatory power is likely due to inconsistent
shifts in the red edge 3 band between the two species across the range of FMC. PRI was
originally developed for the assessment of agricultural vegetation vigor and moisture and
appears to have significant explanatory potential for conifer tree health status [24,57]. Sensors
that incorporate short-wave infrared bands would likely result in improved accuracy in
predicting FMC as shortwave infrared reflectance is highly responsive to water content
in foliage [15,58]. However, current cameras for UAS that operate in the SWIR are costly,
potentially limiting the ability for managers to acquire such sensors. As these sensors
become more broadly available it would be worth considering SWIR bands in the prediction
of FMC from UAS platforms. Such bands when applied through hyperspectral remote
sensing have provided substantial improvements in predicting FMC [51]. Finally, the red
edge 3 band covers a spectral range not available on conventional satellite-based sensors.
This spectral range has high reflectance for healthy saplings and lower reflectance for
drought-stressed saplings but, compared to other bands and indices used in this study,
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has relatively low variance across our samples (range of 0.13). Since light is reflected by
living vegetation in this red edge 3 channel, consistent differences in reflectance represent
potential biologic indicators that can be exploited for predicting FMC.

Modeling results suggest that UAS equipped with sensors like the MicaSense Dual-
Camera system could be used for identifying vegetation stress as it relates to changes in
FMC. In prescribed fire planning and fire behavior modeling, FMC is an important input
and influences manager expectations of fire effects [59]. Additionally, drought-status has a
strong correlation in many conifer species with bark beetle susceptibility [60]. Since FMC
varies across and within vegetation types and within individual tree crowns, the flexibility
of our random forest models may be beneficial for capturing this range of conditions. While
our random forest models performed slightly worse than the logistic and multiple linear
models, most other UAS studies of foliar moisture have shown that machine-learning
strategies achieve the highest model accuracy [49]. Operational field deployment of these
methods will need to be flexible enough to overcome vertical and horizontal gradients in
FMC within individual tree crowns associated with shadowing and solar angles that impact
both reflectance and FMC. Our models were developed based on an average of three FMCs
collected randomly across sapling tree crowns. In mature forests, data summarization
strategies will need to be explored to account for variation in the multiple pixels within
a single tree crown to accurately characterize the mean or median FMC. Within western
US dry conifer forests, reasonable success has been achieved at delineating individual
tree crowns from UAS-derived canopy height models [61]. The resulting individual tree
crown polygons could be used to isolate the spectra for a single tree for applying models
similar to those developed in this study. Successful deployment of such individual tree
drought monitoring models holds potential to inform forest thinning operations aiming
to improve forest drought resilience. Future work should focus on applying a suite of
predictive models in mature forests across a range of site conditions to examine the ability
of different models to reliably predict individual tree crown FMC.

5. Conclusions

Using spectroradiometer-derived band equivalent reflectance of a multispectral consumer-
grade UAS camera, we were able to accurately predict FMC and drought stress status
(FMC < 120%) for western white pine and Douglas-fir saplings. While these models were
developed using spectroradiometer derived data, the high FMC prediction accuracy using
band equivalent reflectance of a UAS sensor suggests that accurate FMC quantification
using UAS is possible; however, this study should be repeated using UAS-collected imagery.
The logistic model developed in this study to classify stressed and non-stressed saplings
had high overall classification accuracy for both species and could be beneficial for land
managers seeking to incorporate drought status information when planning prescribed fire
or other silvicultural treatments. Similarly, the multiple linear regression model used to
predict FMC could aid efforts needing rapid and spatially extensive FMC observations of
saplings or mature trees to understand patterns of drought stress within and among forest
stands. Specifically, this model could aid in assessing tree-level physiological responses to
different growing environments or treatment designs. While the FMC results in this study
are promising, these models need further testing using UAS-derived data across a range
of tree sizes and species to determine their applicability and transferability across conifer
forests experiencing drought.
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