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Abstract: In the past several decades, drought events have occurred frequently around the world.
However, research on the propagation of drought events has not been adequately explored. This
study investigated the drought propagation process from meteorological drought to agricultural
drought (PMAD) and from meteorological drought to hydrological drought (PMHD) using a 72-year
reanalysis dataset in the tropical Lancang–Mekong River Basin. Firstly, we used a new method—
Standardized Drought Analysis Toolbox—to construct drought indices. Then, a linear method
(Pearson correlation analysis) and a nonlinear method (mutual information) were used to investigate
the drought propagation process. Cross-wavelet analysis and wavelet coherence analysis were
employed to explore the statistical relationship among the three drought types. Finally, the random
forest method was applied to quantify the major factors in drought response time (DRT). The
results revealed the following: (1) both linear and nonlinear methods exhibited strong temporal
and spatial consistency for both PMAD and PMHD, with linear relationships being stronger than
nonlinear ones. (2) The DRTs of PMAD and PMHD were around 1–2 months and 3–5 months,
respectively. Significant differences existed in the DRT between the dry season and the rainy season.
(3) A divergent spatial pattern of the proportion of DRT was observed between PMAD and PMHD.
(4) Significant statistical correlations between meteorological drought and agricultural drought and
between meteorological drought and hydrological drought were observed in specific periods for each
sub-region; (5) Hydrometeorological factors contributed the most to DRT, followed by terrain factors
and the land cover types. The findings of this study deepened our understanding of the spatial–
temporal relationship of multiple drought propagation types in this transboundary river basin.

Keywords: drought propagation; meteorological drought; agricultural drought; hydrological drought;
Mekong River

1. Introduction

Drought is defined as a recurring phenomenon with an abnormal status of hydro-
climatic and eco-hydrological elements [1]. As global warming intensifies, meteorological
drought events are becoming increasingly frequent, leading to soil moisture drought,
hydrological (runoff) drought, and other related issues as a result of the propagation
through the water cycle [2,3]. This has led to widespread negative impacts on various
aspects, including agriculture [4–7], water resources [8–10], and natural ecosystems [11–13],
as well as socioeconomic aspects [14,15]. While large negative effects have been ever-lasting,
the spatiotemporal patterns of drought propagation and its major influencing factors are
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largely unknown [16]. Thus, it is of great importance to understand the spatial–temporal
patterns of drought propagation and its major influencing factors.

Drought propagation refers to the process of transmission from one drought type to
another [17]. Previous research has demonstrated that meteorological droughts are often
asynchronous with other types of droughts, meaning that agricultural droughts or hydro-
logical droughts often lag behind meteorological droughts by a certain period [18–20]. Prop-
agation between different drought types can be summarized into three categories: (1) The
first is the propagation from meteorological drought to agricultural drought (PMAD): the
response of soil moisture to precipitation and potential evapotranspiration primarily drives
this type of propagation. (2) The second is the propagation from meteorological drought to
ecological drought (PMED): the response of vegetation to meteorological drought primarily
drives this type of propagation. Vegetation indicators such as Vegetation Condition Index
(VCI), Vegetation Health Index (VHI), and Normalized Difference Vegetation Index (NDVI)
have been explored and widely used for investigating the impact of meteorological drought
on vegetation growth and dynamics [21–25]. (3) The third is the propagation from meteoro-
logical drought to hydrological drought (PMHD): the response of hydrological elements
(i.e., surface runoff, surface water, groundwater, and streamflow) primarily drives this type
of propagation. Previous studies summarized this propagation into four patterns: lagged
(presence of a time lag from meteorological drought to hydrological drought), aggregated
(multiple meteorological drought events merging into one hydrological drought event),
extended (prolonged duration from meteorological drought to hydrological drought), and
attenuated (weakening or amelioration of hydrological drought severity due to human
activities such as reservoir storage) [16,26]. Though numerous studies have investigated
the propagation of various types of droughts mentioned above, the drought response time
(DRT) varied with the study region and methodology employed (summarized in Table 1).

Table 1. The review of previous drought propagation research.

Reference Study Area Propagation Type 1 Method 2 Result

[27] China PMAD CA 3.4 months
[28] Heihe River Basin PMAD CA Average 8 months

[29] Northeast Asia PMAD CA 1–3 months in summer and 5–12 months
in winter

[24] North China Plain PMED CA 1.33 months in summer and 2.67 months
in winter

[23] China PMED CA 2.67 months in summer and 7 months in
winter

[25] China PMAD, PMED CA 1–2.5 months under PMAD and no delay
under PMED

[30] Tarim River Basin PMHD CA 2–21 months

[31] India PMAD, PMHD CA 4–5 months under PMAD and 1 month
shorter than that under PMHD

[32] Global PMAD, PMHD CA 5.7 months under PMAD and
3.5–14.47 months under PMHD

[33] Longchuan River Basin PMAD, PMHD, PHAD CA Approximately 2 months under three
types of propagation

[34] Yangtze River Basin PMAD, PMHD CA Less than 2 months under PMAD and
2–6 months under PMHD

[35] China PMAD CA 1–2 months in summer and 2–7 months in
the next spring

[36] Xijiang River Basin PMHD RT Less than 3 months, with the maximum
being 78 days

[37] Yangtze River Basin PMAD CA 48 days

[38] Luanhe River Basin PMHD CA 1–7 months in rainy season and
7–12 months in dry season

[39] Huaihe River Basin PMHD RT 1–47 days
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Table 1. Cont.

Reference Study Area Propagation Type 1 Method 2 Result

[40] South Korea PMAD, PMHD RT 2.83 months under PMAD and
4.34 months under PMHD

[41] China PMHD CA 2–4 months
1 Propagation Type: PMAD represents the propagation from meteorological drought to agricultural drought,
PMHD represents the propagation from meteorological drought to hydrological drought, PMED represents
the propagation from meteorological drought to ecological drought, PHAD represents the propagation from
hydrological drought to agricultural drought; 2 Method: CA represents correlation analysis, RT represents
run theory.

Generally speaking, the drought propagation process is complicated as it is deter-
mined by a lot of factors such as climate conditions, catchment characteristics, and human
activities [16]. For example, Zhou et al. [42] investigated the driving mechanisms of PMHD,
and their results showed that climate and land use changes were the main factors affect-
ing the propagation process. Han et al. [43] found that soil evaporation and watershed
elevation were the main factors influencing the propagation threshold from meteorolog-
ical drought to groundwater drought in the Xijiang River Basin. Li et al. [29] found that
the precipitation and vegetation were major impactors of PMAD in spring, summer, and
autumn in Northeast Asia, and the DRT was negatively correlated with precipitation,
evapotranspiration, soil moisture and NDVI. Dai et al. [44] investigated the propagation
characteristics and mechanism of PMAD and found that an increase in temperature and
decreases in soil moisture and precipitation strongly affected the propagation dynamics.
In summary, these findings underscore the complexity of understanding and addressing
drought propagation, emphasizing the need for comprehensive and integrated strategies
in mitigating its impacts.

Extensive studies have been conducted on drought propagation in tropical
regions [32,41,45–49]. Yet factors driving the drought propagation in tropical regions
were found to be highly complex and divergent for different regions and land cover types.
Thus, more research is needed to deepen our understanding of the occurrence and develop-
ment of drought propagation in tropical regions. As the largest transboundary river basin
in Southeast Asia, the Lancang–Mekong River Basin (LMRB) has experienced frequent
drought events in recent decades. Quite a lot of studies have assessed the spatiotemporal
characteristics of drought in the LMRB [50–55]. However, there is a relative scarcity of
studies examining the propagation and response of drought, especially for the propagation
of multiple drought events. Therefore, there is a need for further in-depth research into
the propagation responses of multiple types of drought events in this region. This study
aims to investigate the propagation processes of meteorological drought to agricultural
drought and hydrological drought in this region and intends to address the following
questions: (1) Are there significant differences in the drought propagation time between the
two different methods? (2) How long was the DRT of PMAD and PMHD in the study area?
Do the two drought propagation types exhibit a significant difference? (3) What factors
mainly drive the DRT of the two drought propagation types?

2. Materials and Methods
2.1. Study Area

The tropical Lancang–Mekong River Basin (TRLM) is located in the southeastern part
of Asia, encompassing a total area of 795,000 km2. Serving as a paradigmatic transboundary
area, this region spans various nations’ territories, including Xishuangbanna in China,
northeastern Myanmar, eastern Thailand, most regions of Laos and Cambodia, and partial
regions of southern Vietnam (Figure 1a). Geographically, the TRLM exhibits a large spatial
heterogeneity of altitude pattern with higher elevations in the north, lower elevations in
the south, and intermediate elevations in the east and west (Figure 1b). The region is
primarily influenced by a tropical monsoon climate with distinct dry and wet seasons.
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The rainy season lasts from May to October, primarily influenced by the southwestern
monsoon, accounting for more than 85% of the total annual rainfall. The dry season persists
from November to the next April, predominantly influenced by the northeastern monsoon.
During this period, the temperature is lower, and precipitation is relatively scarce. Land
cover types in the study region are diverse, with mountainous regions dominated by
tropical seasonal rainforests and subtropical evergreen broad-leaved forests and plain
regions consisting of farmland, orchards, wetlands, shrubs, bodies of water, and artificial
grasslands (Figure 1c). Based on the spatial heterogeneity of topography and vegetation
distribution, we further divided the study region into six sub-regions from north to south:
Lower Lancang River, Northern Highlands, Korat Plateau, Annan Mountains, Tonle Sap
Lake Basin, and Mekong Delta Region (Figure 1a).
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2.2. Data Description
2.2.1. Meteorological Reanalysis Data

The meteorological data were sourced from the ERA5-Land reanalysis dataset (Table 2).
Compared to the ERA5 dataset, ERA5-Land demonstrates a superior capability in repre-
senting elements of the water cycle [56]. In addition, previous research had indicated that
ERA5-Land exhibited a higher accuracy in comparison to most other reanalysis datasets
(i.e., MERRA-2, JRA-55, GLDAS) [57–59]. In this study, precipitation, soil moisture, and
runoff data from the ERA5-Land dataset were employed to calculate three drought in-
dices, namely the Standardized Precipitation Index (SPI), Standardized Soil Moisture Index
(SSMI), and Standardized Runoff Index (SRI). The data had a monthly temporal resolution
and a spatial resolution of 0.1◦ (~10 km), covering the period from 1950 to 2021.

2.2.2. Land Cover Data

The land cover data originated from the GlobeLand30 dataset (Table 2). This dataset
is a globally comprehensive land cover dataset with a spatial resolution of 30 m [60].
GlobeLand30 was mapped using a pixel–object–knowledge-based classification algorithm
based on multiple satellites, including Landsat TM5, ETM+, OLI, and Chinese HJ-1 satellite
images. The 2020 version used in this study also incorporated high-resolution multispectral
images from the GaoFen-1 satellite with a resolution of 16 m. With an overall accuracy of
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more than 85% globally, this dataset has been extensively utilized in global and basin-scale
studies [61–65].

Table 2. Summary of the dataset used in this study.

Data Type Spatiotemporal
Resolution Time Span Data Source

ERA5-Land reanalysis data 0.1◦ (~10 km), monthly 1950–2021

https://cds.climate.copernicus.eu/
cdsapp#!/dataset/reanalysis-era5

-land-monthly-means?tab=overview
(accessed on 4 October 2022)

GlobeLand30 land cover 30 m, yearly 2020 httes://www.globallandcover.com
(accessed on 12 July 2023)

GIMMS_3g NDVI 1/12◦ (~8 km), 15 days 1981–2015 https://ecocast.arc.nasa.gov/data/
pub/gimms/ (accessed on 27 July 2023)

SRTM DEM 30 m 2000 https://earthexplorer.usgs.gov/
(accessed on 8 September 2022)

2.2.3. Vegetation and Terrain Data

The vegetation dataset was derived from the GIMMS NDVI3g dataset (Table 2),
which features a temporal resolution of 15 days and a spatial resolution of 1/12◦ (~8 km).
Covering the period from 1981 to 2015, it is one of the longest-existing NDVI remote
sensing datasets [66]. This dataset has been extensively employed in the assessment
of long-term trends in vegetation activity [67–69]. The terrain dataset utilized in this
study was obtained from the Shuttle Radar Topography Mission (SRTM) (accessed by
https://earthexplorer.usgs.gov/ (accessed on 8 September 2022)). The spatial resolution
of the SRTM is 30 m. The vegetation and terrain data were employed in conducting the
driving factor analysis of DRT.

2.3. Methods
2.3.1. Standardized Drought Indices

The SPI, SSMI, and SRI were employed to characterize meteorological drought, agri-
cultural drought, and hydrological drought, respectively. The conventional methodology of
developing these three drought indices often relies on comparing representative parameter
probability distribution functions. However, such probability distribution functions often
lack spatial universality, making it difficult to apply them in continental- or global-scale
studies [70]. The Standardized Drought Analysis Toolbox (SDAT), developed by Farah-
mand and AghaKouchak [71], is a new method for deriving non-parametric univariate
and multivariate standardized drought indices. This approach does not require parame-
ter estimation and goodness-of-fit evaluation, which makes it much more efficient when
conducting large-scale (continental or global) studies [71]. In this study, we used SDAT to
construct time series of SPI, SSMI, and SRI drought indices spanning from 1950 to 2021.
The formulations involved are outlined as follows:

p(xi) =
i − 0.44
n + 0.12

(1)

SI =

−
(

t − c0+c1t+c2t2

1+d1t+dt2+d3t3

)
, 0 < p ≤ 0.5

+
(

t − c0+c1t+c2t2

1+d1t+dt2+d3t3

)
, 0.5 < p ≤ 1

(2)

t =


√

ln 1
p2 , 0 < p ≤ 0.5√

ln 1
(1−p)2 , 0.5 < p ≤ 1

(3)

where SI is the standardized drought index, x is the time series data for hydrometeorological
variables, n is the sample size, i denotes the rank of non-zero precipitation (or soil moisture

https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land-monthly-means?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land-monthly-means?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land-monthly-means?tab=overview
www.globallandcover.com
https://ecocast.arc.nasa.gov/data/pub/gimms/
https://ecocast.arc.nasa.gov/data/pub/gimms/
https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
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or runoff) data from the minimum, and p(xi) is the corresponding empirical probability.
As for the constants, c0 = 2.515517, c1 = 0.802583, c2 = 0.010328, d1 = 1.432788, d2 = 0.189269,
and d3 = 0.001308.

In this study, SPI, SSMI, and SRI were calculated at a 1-month time scale using the
Equations (1)–(3). Namely, we also defined SPI-n using the first n months’ hydrometeo-
rological variables to calculate SPI. For example, SPI-3 denotes a 3-month precipitation
accumulation period.

2.3.2. Determination of DRT

Previous studies have demonstrated that both linear and nonlinear relationships
jointly govern the drought propagation process [72]. Therefore, we simultaneously utilized
linear and nonlinear methods to investigate the PMAD and PMHD. The Pearson correlation
coefficient (PCC) has been widely employed as a fundamental tool for elucidating linear
relationships between different drought types and can effectively show the response inten-
sity and time [73]. The integration of mutual information, originating from information
theory and entropy theory, was adopted in capturing nonlinear relationships [74,75].

1. The linear method—Pearson correlation coefficient

The cetermined by the time scales with the largest PCC calculated for each SPI-n
(n = 1, 2,..., 12) and SSMI. Similarly, the linear DRT of PMHD was determined by the time
scales with the largest PCC calculated for each SPI-n (n = 1, 2,..., 12) and SRI. The specific
calculation process is as follows:

PCCX,Y =
cov(X, Y)

σXσY
=

E(XY)− E(X)E(Y)√
E(X2)− E2(X)

√
E(Y2)− E2(Y)

(4)

rn = PCCSPIn ,SSMI or SRI , 1 ≤ n ≤ 12 (5)

MPCC = max(rn), 1 ≤ n ≤ 12 (6)

DRTlinear = N (rN = MPCC) (7)

where rn represents the PCC between SPI and SSMI or SRI for a given time scale n
(1 ≤ n ≤ 12), MPCC is the maximum value among the 12 rn values, and the corresponding
time scale n associated with the MPCC indicates the linear DRT of PMAD or PMHD. The
PCC value ranges between −1 and 1, where a larger absolute value indicates a stronger
correlation.

2. The nonlinear method—mutual information

In the process of drought propagation and evolution, various meteorological factors
and basin characteristics can collectively influence the spread of drought, potentially
leading to nonlinear relationships that cannot be adequately addressed through Pearson
correlation analysis. To address this limitation, mutual information (MI) was used to
quantify the nonlinear correlations between meteorological drought and agricultural or
hydrological drought. The calculation of MI is as follows:

MIX,Y = ∑Y ∑X p(x, y) log
(

p(x, y)
p(x)p(y)

)
(8)

rn = MISPIn ,SSMI or SRI , 1 ≤ n ≤ 12 (9)

MMI = max(rn), 1 ≤ n ≤ 12 (10)

DRTnon−linear = N (rN = MMI) (11)
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where p(x, y) is the joint probability distribution function of X and Y; p(x) and p(y) are
the marginal probability density functions of X and Y respectively; rn represents the MI
between SPI and SSMI for PMAD or between SPI and SRI for PMHD at a given time scale
n (1 ≤ n ≤ 12); MMI is the maximum value among the 12 rn values; and the corresponding
time scale n associated with the MMI indicates the nonlinear DRT of PMAD or PMHD.

2.3.3. Determination of the Relationship between Different Types of Droughts

This study employed cross-wavelet transform (XWT) and wavelet coherence (WTC)
to explore the relationships between meteorological drought and agricultural drought or
hydrological drought. Cross-wavelet analysis is one of the most effective tools based on
cross-spectral analysis and wavelet analysis to investigate the correlation between two time
series [76–78]. It builds upon continuous wavelet analysis to analyze significant periods,
corresponding time spans, phase relationships, and time lags between two sets of time
series. XWT can elucidate coherence and phase relationships between different time series,
while it may lack precision in terms of consistency in some conditions. WTC overcomes
this limitation, providing accurate results about coherence relationships [79]. The range
of WTC values is from 0 to 1, where values closer to 1 indicate stronger correlations
between two time series. Both of these methods have been extensively employed in various
meteorological and hydrological studies [19,79,80]. In this study, the MATLAB r2022b
wavelet analysis toolbox (accessed by https://atoc.colorado.edu/research/wavelets on 15
October 2022) developed by Grinsted et al. [76] was used.

2.3.4. Variable Importance Based on Random Forest

The random forest method has been widely used to measure the variable importance
in previous research [81,82]. It was also employed in this study to quantify the importance
of nine hydrometeorological and environmental factors: precipitation, runoff, soil moisture,
temperature, elevation, slope, and proportions of three major land cover types (i.e., forest,
shrub, and crop). The sum of all the importance values is 1, and a larger importance value
indicates that a variable plays a more important role in affecting drought propagation.

3. Results
3.1. Spatial and Temporal Characteristics of the Three Drought Types

Figure 2 shows the Theil–Sen linear regression of each drought index. The SPI, SSMI,
and SRI exhibited a high degree of spatial and temporal consistency in their trends, showing
a distinct spatial heterogeneity with an insignificant decreasing trend dominating in most
parts of the upper region and an insignificant upward trend dominating in most parts of
the lower region. Specifically, regions with insignificant upward trend of three drought
indices included the southwestern part of the Korat Plateau, the southern part of the Annan
Mountains, the southeastern and southwestern parts of the Tonle Sap Lake Basin, and most
areas of the Mekong Delta. This suggested a lower likelihood of these regions experiencing
drought events. Regions with a decreasing trend of three drought indices included the
Lower Lancang River, the Northern Highlands, and most portions of the Korat Plateau.
Notably, the downward trend was more pronounced in the Lower Lancang River and the
northeastern part of the Korat Plateau, implying a drier climate and a higher probability
of drought events occurring in these regions. Across most of the study area, trends of the
three drought indices were relatively insignificant.

3.2. The Process of PMAD and PMHD

The results from both linear correlation and nonlinear methods indicated a signif-
icant spatial heterogeneity of the correlation relationship between meteorological and
agricultural droughts and between meteorological and hydrological droughts (Figure 3).
Taking the PMAD for example, the spatial pattern revealed high MPCC and MMI values
in plateaus, lake basins, and deltas, while mountainous regions exhibited relatively low
values. For instance, the MPCC and MMI values between meteorological and agricultural

https://atoc.colorado.edu/research/wavelets


Remote Sens. 2023, 15, 5678 8 of 25

droughts exceeded 0.75 and 0.50, respectively, in sub-regions such as the Korat Plateau,
Tonle Sap Lake Basin, and Mekong Delta. Conversely, the MPCC and MMI values in
regions like the Lower Lancang River, the Northern Highlands, and the southern part of the
Annan Mountains were below 0.70 and 0.40, respectively (Figure 4(a1,a2)). As for PMHD,
similarly, the spatial pattern revealed high linear correlation and MI values in lake basins
and deltas, while plateau regions exhibited relatively low values. Furthermore, it can be
observed that results from both linear and nonlinear methods had good spatial consistency
for both PMAD and PMHD. Regions with higher MPCC values also tended to have higher
MMI values (Figure 3(a3,c3)).
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corresponding significance of trends (a2–c2), and slope of different sub-regions (a3–c3) for the SPI,
SSMI, and SRI during 1950–2021, respectively. Sub-region I: Lower Lancang River, sub-region
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V: Tonle Sap Lake Basin, and sub-region VI: Mekong Delta Region.
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Figure 3. Analysis of drought relationships and spatial–temporal distribution under PMAD and
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(a3), linear DRT (b1), nonlinear DRT (b2), and DRT difference between linear and nonlinear methods
(b3) under PMAD; spatial distribution of MPCC (c1), MMI (c2), correlation analysis of MPCC and
MMI (c3), linear DRT (d1), nonlinear DRT (d2), and DRT difference between linear and nonlinear
methods (d3) under PMHD. Sub-region I: Lower Lancang River, sub-region II: Northern Highlands,
sub-region III: Korat Plateau, sub-region IV: Annan Mountains, sub-region V: Tonle Sap Lake Basin,
and sub-region VI: Mekong Delta Region.
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Figure 4. The correlation coefficient and DRT in each sub-region. Note: boxplot of MPCC (a1),
MMI (a2), and the DRT under linear method (b1) and nonlinear method (b2) of PMAD; boxplot of
MPCC (c1), MMI (c2), and the DRT under linear method (d1) and nonlinear method (d2) of PMHD.
Sub-region I: Lower Lancang River, sub-region II: Northern Highlands, sub-region III: Korat Plateau,
sub-region IV: Annan Mountains, sub-region V: Tonle Sap Lake Basin, and sub-region VI: Mekong
Delta Region.

The DRT of PMAD and PMHD produced by both linear and nonlinear methods
also exhibited strong spatial consistency (Figure 3(b1–b3,d1–d3)). More than 80% of the
study area showed identical DRTs of PMAD and more than 70% of the study area showed
identical DRTs of PMHD under the two methods. As for PMAD, the remaining 20% of
the region exhibited less DRT from the linear method than from the nonlinear method,
indicating a potentially more complex agricultural drought propagation process in these
areas (Figure 3(b3)). For example, a significant difference between the linear and nonlinear
propagation times can be observed in the Annan Mountains and the Northern Highlands.
In the Annan Mountains, most areas showed 1 month of DRT from the linear method
(Figure 3(b1)), while the area proportions of 1 month and 2 months were approximately
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the same for the DRT from the nonlinear method (Figure 3(b2)). Considering the PMHD,
the remaining 30% of the region exhibited various DRT differences, with 14% of the region
exhibiting less DRT from the linear than nonlinear method, and 16% of the region showed
the opposite distribution, indicating a potentially more complex hydrological drought
propagation process in these areas (Figure 3(d3)). For example, a significant difference
between the linear and nonlinear DRTs can be observed in the Northern Highlands and a
large part of the Korat Plateau and Annan Mountains.

Both methods revealed that the DRT was between 1 and 2 months of PMAD in the
study area and 1 and 8 months of PMHD in most areas except for the Korat Plateau, for
which the DRT ranges between 1 and 12 months (Figure 3(b1,b2,d1,d2)). Areas with an
agricultural DRT of 2 months were mainly located in the Lower Lancang River, Northern
Highlands, and Korat Plateau, while areas with a DRT of 1 month were predominantly
situated in the southern part of the Annan Mountains, Tonle Sap Lake Basin, and Mekong
Delta (Figure 3(b1,b2)). Meanwhile, areas with a hydrological DRT of 1–3 months were
mainly located in the Lower Lancang River, Northern Highlands, and central Annan
Mountains, while areas with a DRT of 4–6 months were predominantly situated in most
of the Tonle Sap Lake Basin and Mekong Delta region. It is worth noting that the Korat
Plateau exhibited remarkable spatiotemporal differentiation with a hydrological DRT of
1–12 months, indicating an extremely complex hydrological drought propagation process
in this region (Figure 3(d1,d2)).

The proportion of the DRT in each sub-region shown in Tables 3 and 4 indicated that
notable differences were found between the proportion of the agricultural DRT while minor
differences existed in the proportion of hydrological DRT for the linear method and that
for the nonlinear method. Taking the DRT of PMAD for example (Table 3), the Northern
Highlands and the Annan Mountains exhibited the greatest proportion gaps between the
linear and nonlinear DRTs, with 24.5% and 32.71%, respectively. The smallest difference
in the DRT proportion between the two methods was observed in the Korat Plateau and
the Mekong Delta, with 8.43% and 4.72%, respectively. Significant differences can also be
observed between the proportion of 1 month and 2 months in most regions. In general,
the agricultural DRT proportion of 2 months was larger than that of 1 month in the upper
sub-regions (i.e., the Lower Lancang River, the Northern Highlands, and the Korat Plateau)
while the proportion of 2 months was smaller than that of 1 month in the lower sub-regions
(i.e., the Annan Mountains, Tonle Sap Lake Basin, and Mekong Delta). As for the DRT
of PMHD (Table 4), the largest proportion gap between the linear and nonlinear DRTs
was 6.4% in the Annan Mountains with a DRT of 4–6 months. Significant differences can
also be observed between the proportion of various DRTs in most regions. For example,
the proportion of 1–3 months was larger than that of 4–6 months in the Lower Lancang
River, the Northern Highlands, and the Annan Mountains, while it was smaller than that
of 4–6 months in the Korat Plateau, Tonle Sap Lake Basin, and Mekong Delta.

Table 3. The DRT proportion in each sub-region under PMAD.

Sub-Region Method 1 Month 2 Months 3 Months or More

Sub-region I linear 33.02% 66.98% 0
nonlinear 15.41% 84.59% 0

Sub-region II linear 39.91% 60.09% 0
nonlinear 15.41% 84.59% 0

Sub-region III linear 41.39% 58.61% 0
nonlinear 32.96% 67.04% 0

Sub-region IV linear 83.33% 16.67% 0
nonlinear 50.62% 49.38% 0

Sub-region V linear 64.07% 34.91% 1.02%
nonlinear 49.03% 49.77% 1.2%

Sub-region VI linear 71.39% 28.61% 0
nonlinear 66.67% 33.33% 0
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Table 4. The DRT proportion in each sub-region under PMHD.

Sub-Region Method 1–3 Months 4–6 Months 7–9 Months 10–12 Months

Sub-region I linear 70.76% 29.24% 0 0
nonlinear 76.42% 23.58% 0 0

Sub-region II linear 80.48% 18.91% 0.61% 0
nonlinear 78.26% 21.07% 0.67% 0

Sub-region III linear 15.26% 50.11% 28.91% 5.72%
nonlinear 12.18% 49.73% 28.83% 9.26%

Sub-region IV linear 68.91% 30.25% 0.84% 0
nonlinear 62.92% 36.67% 0.41% 0

Sub-region V linear 36.13% 53.25% 9.61% 1.01
nonlinear 35.34% 51.26% 9.91% 3.49%

Sub-region VI linear 32.77% 64.84% 1.68% 0.71%
nonlinear 33.26% 62.21% 1.92% 2.61%

Figure 5 displays the DRTs of PMAD and PMHD in the dry and rainy seasons for
two different methods. The DRT in most sub-regions was relatively consistent under the
two methods. Taking the DRT of PMAD into consideration (Figure 5(a1,a2)), it is evident
that the DRT in the rainy season was generally 1 month across the six sub-regions. However,
during the dry season, the DRT was generally longer, predominantly 2 months. For most
sub-regions, the linear and nonlinear DRTs were consistent for two seasons. For instance, in
the Lower Lancang River, Northern Highlands, Korat Plateau, and the Annan Mountains,
the linear and nonlinear DRTs were 1 month during the rainy season and 2 months during
the dry season. There are also notable differences between the two methods in some
regions. For example, in the Tonle Sap Lake Basin and the Mekong Delta, the linear DRTs
were both 1 month during the dry and rainy seasons, while the nonlinear DRTs were 1
month during the dry season and 2 months during the rainy season. This suggests that
the process of PMAD was more complex in these two sub-regions during both dry and
rainy seasons. Additionally, both the MPCC and MMI values of the dry season were
substantially greater than those of the rainy season. This indicates that meteorological
and agricultural droughts were more strongly linked during the dry season. As for the
DRT of PMHD (Figure 5(b1,b2)), it is evident that the DRT of the dry season was generally
1 month across the six sub-regions, while it was generally longer during the rainy season,
predominantly 3–5 months. For most sub-regions, the linear and nonlinear DRTs were
consistent for both seasons. For instance, in the Lower Lancang River, Northern Highlands,
Annan Mountains, and the Tonle Sap Lake Basin, the linear and nonlinear DRTs were both
4 months (except for Northern Highlands with a 3-month DRT) during the rainy season
and 1 month during the dry season. Similar to the PMAD, both the MPCC and MI values
during the dry season were notably greater than those during the rainy season. This also
indicates that meteorological and hydrological droughts were more strongly linked during
the dry season.

Given that both the linear and nonlinear methods showed the effective estimation of
DRT in the study area, the final DRT of each sub-region was determined by the maximum
MPCC and MI values among all 12 MPCC and MI values separately calculated for SPI-
n and the one-month scaled SSMI (for PMAD) or SRI (for PMHD) (Table 5). The results
showed that the linear DRTs of PMAD were 2 months in the Lower Lancang River, Northern
Highlands, and Korat Plateau and 1 month in the Annan Mountains, Tonle Sap Lake Basin,
and Mekong Delta Region. Correspondingly, the nonlinear DRTs in the above-mentioned
sub-regions were 2 months and 1 month, respectively. It is obvious that the linear DRT
and nonlinear DRT are the same almost in all the sub-regions except for the Tonle Sap
Lake Basin, where the former was shorter than the latter. Given that the MPCC was much
larger than the MMI value in the Tonle Sap Lake Basin, we suggest that the linear method
is more suitable for predicting the process of the PMAD. It is worth noting that the linear
and nonlinear DRTs of PMHD were consistent in all sub-regions. Therefore, the final DRTs
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of PMHD were 3 months, 3 months, 5 months, 3 months, 4 months, and 4 months in the
six sub-regions sequentially.
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Table 5. The DRT in each sub-region under PMAD and PMHD.

Sub-Region
PMAD PMHD

Linear Method Nonlinear
Method Linear Method Nonlinear

Method

Sub-region I 2 months 2 months 3 months 3 months
Sub-region II 2 months 2 months 3 months 3 months
Sub-region III 2 months 2 months 5 months 5 months
Sub-region IV 1 month 1 month 3 months 3 months
Sub-region V 1 month 2 months 4 months 4 months
Sub-region VI 1 month 1 month 4 months 4 months
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3.3. The Relationship between Meteorological Drought and Other Two Drought Types

The cross-wavelet power spectra (XWT) and wavelet coherence (WTC) analyses were
conducted based on the SPI-n (n was determined based on DRT) and the SSMI or SRI of
each sub-region. These two methods allow us to investigate the relationships between me-
teorological drought and agricultural drought, as well as between meteorological drought
and hydrological drought.

3.3.1. The Relationship between Meteorological Drought and Agricultural Drought

The results of XWT and WTC showed that significant statistical correlations between
agricultural drought and meteorological drought can be observed for each sub-region,
but the significant periods for each sub-region were different (Figure 6(a1–f1)). Specifi-
cally, for the Lower Lancang River, significant correlations can be observed mainly during
1959–1970 and 1972–1980, with periods of 28–40 months and 48–72 months, respectively.
The Northern Highlands showed significant correlations primarily during 1955–1966, with
a period of 40–60 months. The Korat Plateau sub-region exhibited significant correlations
during 1965–1968, 1975–1980, and 1995–2005, with periods approximately ranging from 8
to 48 months. The Tonle Sap Lake Basin exhibited significant correlations during 1970–1984
and 1995–2005, with a period of 16–48 months. The Annan Mountains exhibited signif-
icant correlations during 1995–2005, with a period of 16–64 months. The Mekong Delta
exhibited significant correlations during 1992–2006, with a period of 12–64 months. It is
noteworthy that all the sub-regions exhibited a substantial amount of short-period wavelet
power. Furthermore, the cross-wavelet power duration of the low-frequency range between
SPI-n and SSMI was relatively short at the 95% confidence level, indicating an unstable
relationship between meteorological and agricultural drought. It should be noted that
both SPI-n and SSMI showed significant co-variability at each time scale. The WTC plots
(Figure 6(a2–f2)) indicated that SPI-n and SSMI exhibited significant coherency in most
parts of each sub-region. This demonstrated that meteorological drought was the main
driver of agricultural drought in this study region.

3.3.2. The Relationship between Meteorological Drought and Hydrological Drought

The results of XWT and WTC showed that significant statistical correlations between
hydrological drought and meteorological drought can be observed for each sub-region, but
the significant periods for each sub-region were different (Figure 7(a1–f1)). For example, in
the Lower Lancang River, significant correlations can be observed mainly during 1952–1956
and 1966–1972, with periods of 4–16 months. The Northern Highlands showed significant
correlations primarily during 1952–1956, with a period of 6–16 months. The Korat Plateau
sub-region exhibited significant correlations during 1965–1968 and 1998–2002, with periods
approximately ranging from 12 to 32 and 32 to 48 months, respectively. The Tonle Sap Lake
Basin exhibited significant correlations during 1974–1982 and 1995–2002, with a period of
32–48 months. The Annan Mountains exhibited significant correlations during 1960–2010
and 1995–2005, with periods of 64–160 and 32–64 months, respectively. The Mekong Delta
exhibited significant correlations during 1992–2006 and 1980–2010, with periods of 20–48
and 112–160 months, respectively. Note that all the sub-regions exhibited a substantial
amount of short-period wavelet power. Furthermore, the cross-wavelet power duration of
the low-frequency range between SPI-n and SRI was relatively short at the 95% confidence
level, indicating an unstable relationship between meteorological and hydrological drought.
Both SPI-n and SRI also showed significant co-variability at each time scale. The WTC plots
(Figure 7(a2–f2)) indicated that SPI-n and SRI exhibited significant coherency in most parts
of each sub-region, implying that meteorological drought was a key driver of hydrological
drought.
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wavelet; and the black arrow, which points to the left (right) to denote an anti-phase (in-phase) signal,
represents the relative phase relationship. Note: sub-region I: Lower Lancang River, sub-region
II: Northern Highlands, sub-region III: Korat Plateau, sub-region IV: Annan Mountains, sub-region
V: Tonle Sap Lake Basin, and sub-region VI: Mekong Delta Region.
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Figure 7. Cross-wavelet power spectra (a1–f1) and wavelet coherence (a2–f2) between SPI-n and
SRI in each sub-region. The thick black lines represent the 95% significant confidence level; the
influence cone is shown as a lighter shade; the color bar at the right represents the power of the cross
wavelet; and the black arrow, which points to the left (right) to denote an anti-phase (in-phase) signal,
represents the relative phase relationship. Note: sub-region I: Lower Lancang River, sub-region
II: Northern Highlands, sub-region III: Korat Plateau, sub-region IV: Annan Mountains, sub-region
V: Tonle Sap Lake Basin, and sub-region VI: Mekong Delta Region.

4. Discussion
4.1. Reasons for the DRT Variations in Each Sub-Region

Figure 8 presents the influence of hydrometeorological and environmental factors
on the DRT of PMAD. It was found that higher precipitation, soil moisture, and runoff
typically corresponded to shorter agricultural DRTs. This may imply that wetter regions
exhibit shorter DRTs of PMAD. In contrast to the above hydrometeorological factors, areas
with slightly higher elevation presented longer agricultural DRTs than those with lower
elevation. This may be attributed to the high-elevation areas which generally have a
faster surface runoff and soil water movement. We also found temperature and slope
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exhibited a small difference in different DRTs. This implies that these two factors had
subtle influences on the DRT of PMAD. Meanwhile, the land cover type also served as an
important factor, with a low proportion of cropland and a high proportion of forest tending
to have shorter DRTs of PMAD. This may be attributed to forest-dominated regions often
having higher evapotranspiration and the water resources being consumed more, thus
leading to a relatively shorter DRT [83], while in cropland-dominated regions irrigation
measures are often adopted to stabilize the soil moisture when faced with meteorological
drought events, further prolonging the propagation process.
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Figure 9 presents the influence of hydrometeorological factors and basin characteristics
on the DRT of PMHD. Aligning with the findings for PMAD, regions with abundant
precipitation, runoff, and soil moisture tended to have shorter hydrological DRTs. This also
implies that wetter regions exhibited shorter DRTs of PMHD. Compared with water-related
factors, temperature presented a contrasting result: regions with higher temperatures
showed slightly longer DRTs of PMHD. Regions with higher elevations and slopes tended
to exhibit shorter DRTs of PMHD, implying that topography played a crucial role in
affecting the DRT of PMHD. Similar to PMAD, land cover types displayed a consistent
result: areas with a low proportion of cropland and a high proportion of forest tend to
have a shorter DRT of PMHD, indicating that land cover type significantly influences the
hydrological propagation process.

The hydrometeorological factors were further quantified by using the random forest
method. As illustrated in Figure 10, apart from the factors that directly influence the
propagation process (soil moisture for PMAD and runoff for PMHD), precipitation was
the component that contributed the most to DRT. This is reasonable as precipitation is
the major source of soil moisture and surface runoff [84]. Overall, the meteorological
factors contributed the most to DRT, followed by terrain factors, and the land cover types
contributed the least. It is worth noting that the terrain factors were more important than
land cover types for both drought propagation types.
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4.2. Comparison with Previous Research

In this study, it is observed that the DRT under PMAD and PMHD was 1–2 months
and 1–9 months, respectively, in most areas (Figure 3(b1,b2,d1,d2)). The DRT exhibited
a spatiotemporal distribution pattern of shorter in the north and longer in the south.
Meanwhile, among the six sub-regions, sub-region III (Korat Plateau) displayed significant
spatiotemporal differentiation, which is consistent with previous research [55,85,86]. The
results also indicated that the DRT was shorter during the dry season and longer during
the rainy season, which was highly consistent with previous studies [41,45,84]. However,
inconsistent results can also be found in some other previous studies. For example, Wang
et al. [87] explored the propagation process of meteorological and hydrological drought to
socioeconomic drought. The result showed the DRT and correlation of meteorological and
hydrological drought with socioeconomic drought in the wet season were higher than those
in the dry season. Xu et al. [38] found the DRT of PMHD was shorter in the rainy season
(1–7 months) and longer in the dry season (7–12 months) in the Luan River Basin. Zhu
et al. [88] also showed a similar pattern. Overall, the factors affecting drought propagation
are complex.

4.3. Uncertainties, Limitations, and Future Direction

The hydrometeorological elements from the ERA5-Land reanalysis dataset inevitably
introduced certain errors compared to ground-based measurements. However, ERA5-Land
offers a higher spatiotemporal resolution and better hydrological representation compared
with other remote sensing and reanalysis datasets, making it widely applied in global
and regional drought research [89–92]. For instance, Dergunov et al. [93] compared the
temperature data of ERA5-Land, Climate Research Unit gridded time series (CRU TS),
and the Global Forecast System (GFS) and found that although the three products had a
high correlation with temperature, the ERA5-Land dataset was more suitable for capturing
small changes due to its higher spatiotemporal resolution. The evaluation of soil moisture
and surface runoff data by previous studies indicated the outperformance of the ERA5
product [94]. Specifically, Li et al. [94] evaluated the soil moisture from 25 networks of situ
observations and 5 reanalysis products (IRA-55, CFSR, ERA-Interim, ERA5, and MERRA-2).
The result showed that the ERA5 soil moisture had a higher consistency and closer intensity.
Harrigan et al. [95] evaluated the surface runoff data of ERA5-Land and the Global Flood
Awareness System (GloFAS) on a global scale. The findings indicated that runoff from
ERA5-land was highly credible in 86% of the global discharge stations. Additionally, Bain
et al. [96] assessed three surface runoff products from ECMWF (i.e., ERA-Interim, ERA5,
and ERA5-Land) in the Mississippi River Basin and found that ERA5-Land had the smallest
runoff data bias and the highest correlation with model-simulated runoff. In terms of
precipitation, we compared the applicability of the ERA5-Land and CRU TS 4.06 datasets
with gauged precipitation data in the study area (Figure A1). The results showed that the
root mean square error (RMSE) and R2 of ERA5-Land precipitation were 23% lower and
0.24 higher than those from CRU TS, respectively, indicating the superiority of ERA5-Land
over the CRU TS product.

Current widely used methods for studying drought propagation mainly include corre-
lation analysis, run theory, and nonlinear response function methods. The advantage of
run theory lies in its applicability to different drought indices based on a drought threshold.
However, agricultural and hydrological drought events may respond to meteorological
drought at different time scales (i.e., monthly, seasonal, yearly), which would potentially
lead to significant discrepancies when based on fixed-time-scale drought indices. Addition-
ally, the determination of drought thresholds lacks a unified protocol. This often leads to
different drought propagation results for the same research [16,97]. The nonlinear response
function method can simulate the nonlinearity in drought propagation processes. Thus,
it can reveal the internal connections among different types of droughts. However, the
construction of response functions is subjective and lacks generality. Correlation analysis
simultaneously accounts for both linear and nonlinear relationships between two objective
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drought types. It also considers the entire time series cycle of wet and dry conditions.
Moreover, it is simple in calculation and is widely applicable (Table 1).

This study investigates the propagation characteristics of drought based on monthly
meteorological, agricultural, and hydrological drought indices. However, it is important to
acknowledge that drought propagation may occur at finer temporal scales. The occurrence
and spread of agricultural drought, for instance, may take place on the weekly scale. In
such cases, an analysis based on monthly agricultural drought indices may not adequately
capture the response of crops during specific critical periods. Therefore, future research
can employ drought indices with a finer temporal resolution [16]. Moreover, due to the
lack of 72-year land cover data, we only used the land cover data for 2020. This would
undoubtedly bring some uncertainty to this study, but the uncertainty is limited. The reason
is that the proportion of land cover change in this basin was small (5.27% between 1997 and
2010) in recent decades according to Sam et al. [98]. Future research needs to concentrate
more on the impact of land cover change on drought propagation. Additionally, this study
did not explore the process of propagation occurrence and development. Subsequent
research could enhance the understanding of the evolution of drought by employing
relevant hydrological models.

5. Conclusions

This study investigated the propagation process from meteorological drought to
agricultural drought (PMAD) and from meteorological drought to hydrological drought
(PMHD) in the TRLM based on the ERA5-Land reanalysis dataset. The results revealed
the following:

(1) The SPI, SSMI, and SRI exhibited a high degree of spatial and temporal consistency
in their trends with an insignificant decreasing trend dominating in most parts of
the upper region and an insignificant upward trend dominating in most parts of the
lower region. Moreover, the SRI displayed the most significant variation, with most
regions showing a significant increasing/decreasing trend.

(2) Both linear and nonlinear methods exhibited strong temporal and spatial consistency
under PMAD and PMHD, with linear relationships being stronger than nonlinear
ones. More than 80% and 70% of the study area showed identical DRTs for the
two methods for PMAD and PMHD, respectively.

(3) The DRTs of PMAD and PMHD were around 1–2 months and 3–5 months, respectively.
Significant differences existed in the DRT between the dry season and the rainy season.
For agricultural drought, the DRT was 1 month in the dry season and 1–2 months in
the rainy season. Regarding hydrological drought, the DRT was 1–3 months in the
dry season and 3–5 months in the rainy season.

(4) Divergent spatial patterns of the proportion of DRT were observed between PMAD
and PMHD. The upper sub-regions with a larger proportion of areas showed a longer
DRT of PMAD but a shorter DRT of PMHD, while the lower sub-regions with a larger
proportion of areas showed a shorter DRT of PMAD but a longer DRT of PMHD.

(5) Significant statistical correlations between meteorological drought and agricultural
drought and between meteorological drought and hydrological drought were ob-
served in specific periods for each sub-region. Significant coherence was exhibited
between SPI-m (m represents the DRT under PMAD in each sub-region) and SSMI
and between SPI-n (n represents the DRT under PMHD in each sub-region) and SRI
in most parts of each sub-region. This suggests that meteorological drought is the key
driver of agricultural and hydrological drought.

(6) Hydrometeorological factors and environmental characteristics collectively influenced
the DRT. The hydrometeorological factors contributed the most to DRT, followed by
terrain factors, and the land cover types contributed the least. Specifically, the areas
with increased precipitation, soil moisture, or runoff had a shorter DRT, and the
regions with higher elevations and slopes tended to exhibit a longer DRT of PMAD
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and a shorter DRT of PMHD, while the areas with a low proportion of cropland and
high proportion of forest tended to display shorter DRTs.
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