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Abstract: Concerns about decreases in insect population and biodiversity, in addition to the need for
monitoring insects in agriculture and disease control, have led to an increased need for automated,
non-invasive monitoring techniques. To this end, entomological lidar systems have been developed
and successfully used for detecting and classifying insects. However, the data produced by these lidar
systems create several problems from a data analysis standpoint: the data can contain millions of ob-
servations, very few observations contain insects, and the background environment is non-stationary.
This study compares the insect-detection performance of various supervised machine learning and
unsupervised changepoint detection algorithms and provides commentary on the relative strengths
of each method. We found that the supervised methods generally perform better than the changepoint
detection methods, at the cost of needing labeled data. The supervised learning method with the
highest Matthew’s Correlation Coefficient score on the testing set correctly identified 99.5% of the
insect-containing images and 83.7% of the non-insect images; similarly, the best changepoint detection
method correctly identified 83.2% of the insect-containing images and 84.2% of the non-insect images.
Our results show that both types of methods can reduce the need for manual data analysis.

Keywords: lidar; machine learning; insect detection

1. Introduction

In spite of their small size, insects play a huge role in ecosystems around the world—
outnumbering all other terrestrial species on Earth [1,2]. Reasons for detecting and mon-
itoring insects are numerous: controlling malaria [3], increasing agricultural yields [4],
investigating population decline [5], understanding changes in biodiversity [6,7], etc. Tradi-
tional monitoring methods, such as traps and netting [8], are not capable of the wide-scale
monitoring needed to understand and address global insect population decline [9]. These
traditional techniques usually kill the insects, lack precise spatial and temporal resolution,
and are labor-intensive. The downsides of traditional techniques, along with the rising
importance of wide-scale monitoring, have led to numerous calls for improved moni-
toring and data analysis methods [7,10–12], many of which rely on remote sensing and
machine learning.

Automated monitoring techniques aim to increase the ease and scale of insect mon-
itoring; they are typically based on audio [13], radar [14–16], or optical sensors, such as
lidar [15,17–21] or camera traps [22–24]. Given the large amounts of data these automated
monitoring techniques generate, machine learning has been applied to help automate
data analysis tasks. For example, computer vision has been used in many camera trap
studies [11,25–29]. In lidar studies, machine learning has been used for numerous tasks,
such as identifying gravid mosquitoes [30], estimating biodiversity [19], and classifying
species [31]. Since all the aforementioned remote sensing techniques have unique advan-
tages and disadvantages, no single sensing modality will be sufficient to solve all insect
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monitoring problems; moreover, these remote sensing techniques need to be combined
with traditional in-situ data collection to fully address ecological challenges [7].

The study presented here focuses on a lidar-based technique, which can be used for
high-resolution spatio-temporal monitoring of insects [18]. The lidar instrument was devel-
oped by the Optical Remote Sensor Laboratory at Montana State University (MSU) [18].
This paper compares supervised machine learning and unsupervised changepoint detection
techniques for detecting insects in pulsed lidar data.

Early entomological lidar development started with groups at Sandia National Labora-
tories [32] and MSU [33–35] demonstrating that lidar can detect honeybees; Shaw et al. [33]
located unexploded landmines by mapping the locations of honeybees that were trained to
locate the landmines. In the following two decades, several entomological lidar systems
have been developed using time-of-flight [18], Scheimpflug [20,36], and fluorescence [37,38]
techniques. For an overview, see the review papers by Brydegaard et al. [17] and Wang
et al. [21]. However, these entomological lidar systems produce a large amount of data, mak-
ing the data analysis time-consuming and labor-intensive. Beyond this, the measurements
contain few insects, and the background environment can vary over time and space.

Due to the variable background in lidar measurements, as well as the fact that most
measurements contain no insects, automatically detecting insects is challenging. Previous
field studies by Brydegaard et al. [20,39,40] detected insect events using variations of the
methods described by Malmqvist et al. [41]. This method determines the static background
signal via measurements when the laser is off and subtracts this background from the
signal measurements. Any samples with an amplitude above a range-dependent threshold
are considered as insect events. This method has been successful at finding insect events
in several studies [19,20,39,40,42]; however, other non-insect objects that pass through the
beam are likely to be above the detection threshold. Rather than relying on a statistical
threshold, Rydhmer et al. trained a convolutional neural network to distinguish insect
observations from non-insect observations [43]; this technique is most similar to the learning
methods presented in this paper.

Most previous entomological lidar studies that used machine learning classification
focused exclusively on feature engineering and supervised learning methods [30,31,44,45].
However, since the insects are being remotely sensed, ground truth labels are difficult to
generate or infeasible to collect. For example, ground-truth species labels in field studies are
typically unknown because researchers cannot collect the remotely sensed insects; even if
insects were collected during a field experiment, correlating individual insects to individual
measurements would be challenging. Consequently, some work has explored unsupervised
methods, such as clustering of power spectra [19,39,43]; changepoint detection is another
unsupervised method, which our research group has previously explored [46]. To the best
of our knowledge, only two studies have used end-to-end machine learning [31,43]. It is
worth noting that each entomological lidar instrument has been developed as a unique
research instrument, making direct comparisons of data and results difficult.

Although previous entomological lidar studies used a variety of machine learning
algorithms, most studies only used one algorithm or compared a small set of algorithms.
The main aim of this paper is to compare the insect-detection performance of a wide variety
of machine learning techniques. In particular, we test traditional supervised learning, deep
learning, and changepoint detection, as each method category has unique advantages and
disadvantages. To that end, we present performance comparisons of six supervised and
two changepoint methods. For supervised methods, we present four feature engineering
and two deep learning [47] approaches. We evaluate and compare these methods on a new
entomological lidar dataset, which we openly publish [48].

2. Materials and Methods
2.1. Lidar System

We collected data using the wingbeat-modulation lidar system developed by MSU’s
Optical Remote Sensor Laboratory [18]. Figure 1 shows the intuition behind detecting
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insects using wingbeat-modulation lidar. As an insect flaps its wings, the amount of
reflected light changes, which in turn leads to modulations in the lidar data. By analyzing
the changes in reflected light in the frequency domain, one can determine the insect’s
wingbeat spectrum [17,18]. The unique signal characteristics of the insect’s wingbeats can
also be used to distinguish insects from other objects. Figure 1b shows an example image
containing one stationary object and two insects: one where reflections from the insect’s
wings dominate the signal, and one where reflections from the insect’s body dominate the
signal. Figure 1c shows time series plots of the three targets. The stationary object looks like
noise. The reflection from the insect’s body creates a noticeable dip in the signal, while the
wing’s oscillations are superimposed on top of the body reflection. The wing signal in the
lower plot shows distinct periodic peaks. Figure 1d shows the frequency spectra for each
of the targets. The stationary object looks like noise in the frequency domain; the insect’s
body produced a dominant low-frequency component, while the wing signal produced
obvious harmonic structure.
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Figure 1. (a) When an insect flies through the lidar beam and flaps its wings, the amount of reflected
light changes. These changes in received intensity can be distinguished from other stationary objects.
(b) An image showing a stationary object (yellow rectangle) and two insects: one where only the
wings were in the lidar beam (dashed red rectangle), and one where the body of the insect was in the
beam (dotted orange rectangle). The white-colored returns beneath the insects are reflections from
the lidar’s wiring. (c) Time series plots showing the voltage magnitude of the three targets in (b).
(d) Frequency spectra for each of the targets.

Figure 2 shows an optical schematic of the lidar system, and Figure 3 shows a picture of
the lidar system during the experiments. The first component in the transmitting subsystem
was the JDS Uniphase NG-10320-100 532 nm laser, which had a pulse width of 0.6 ns, a
pulse energy of 3 µJ, and a pulse repetition frequency (PRF) range between approximately
2.9 kHz to 5.4 kHz. The laser was housed in a light-tight box along with a Hamamatsu
H6780-20 photomultiplier tube (PMT), the output of which was used as the trigger input
for the analog-to-digital (ADC) converter. A series of mirrors and lens tubes directed the



Remote Sens. 2023, 15, 5634 4 of 26

light out of the system at the center of the receiver telescope’s central obstruction. Before
exiting the system, the beam was expanded to have a 50.8 mm diameter and half-angle
divergence of 0.2 mrad.

(a)

(b)

Trigger PMT

Signal
PMT

Telescope

Figure 2. Optical schematic of the lidar system. (a) Top view of the transmitting optics. (b) Side view
of the transmitting and receiving optics. The PMTs are shown in yellow.

The first component in the receiving subsystem was the Meade LX200 Classic Schmidt-
Cassegrain telescope with a 305 mm diameter and a focal length of 3048 mm. At the back
of the telescope, a collimating lens, two laser line filters, and a focusing lens were housed
in a lens tube. A Hamamatsu H9305-04 PMT was attached to the end of the lens tube. The
lidar system was mounted on a MOOG QPT-130 pan-tilt mount.

The data were digitized using a Compuscope 14200 PCIe ADC with a 200 MS/s sam-
pling rate, 100 MHz bandwidth, and 14-bit resolution. The 200 MS/s sampling rate limited
the system’s range resolution to 0.75 m. The output of the H9305-04 PMT was connected to
the ADC’s input channel, and the output of the H6780-20 PMT was connected to the ADC’s
trigger input. For each laser pulse, the ADC was triggered to collect 200 samples. Due to the
transit time for the light to leave the system, as well as variance in when the ADC started
sampling, 178 samples were usable [49]. MATLAB was used to control the ADC and collect
1024 pulses, resulting in images of 178 rows (range bins) × 1024 columns (pulses). For
compatibility with the ADC, MATLAB 2015b was used. Figure 4 shows a generic example
of how the data were arranged into a matrix; the data are later visualized as false-color
images. Since the laser’s PRF was not constant, the total duration of 1024 pulses was not
constant; this resulted in images of varying durations.
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Figure 3. Picture of the lidar system during data collection.
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Figure 4. A generic example of how the data were stored. Each column in the matrix represents one
pulse of the lidar, and each row represents one range bin. Each matrix element is one sample.



Remote Sens. 2023, 15, 5634 6 of 26

2.2. Dataset

The data used for the experiments were collected in June and July 2022 at the MSU
horticulture farm. The data comprise 9977 images taken in front of the beehives. As noted
previously, the image durations vary because the laser’s PRF varied; this can be seen in
Figure 5.

For the data collection process, the lidar was mounted in the back of a van, as shown
in Figure 3, and pointed in front of the beehives, some of which are shown in Figure 6.
The data were collected with the lidar beam pointed in various discrete directions; at each
position, multiple images were collected while the lidar’s position was fixed. This was
done to create a diverse set of measurements to train the machine learning algorithms on;
having various levels of bee activity and background clutter helps avoid overfitting. The
position of the lidar beam was controlled by changing the pan and tilt angles of the pan-tilt
mount that the lidar was mounted on. The probability of bees flying through the lidar’s
beam was a function of the beam’s position, as well as the various factors that influence
bee activity (temperature, time of day, etc.).
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Figure 5. Example images of different types of bees and images found in the dataset. For visualization
clarity, the range of the images are cropped, and the colormap range is limited. The bees are
surrounded by red rectangles; reflections are surrounded by orange dashed rectangles. (a) An
example where the bee’s body dominated the return signal. (b) An example where the wing return
dominated the signal (upper right rectangle), and an example of a very short-transit event (lower left
rectangle). (c) Two examples of weak, short-transit observations. (d) An example of two long-transit
signals where both the body and wing signals are present; the image also contains stationary, non-bee
targets; the stationary objects have associated reflections, indicated by the orange dashed rectangles
The duration of the four images are not the same due to the laser’s varying PRF.

After collecting the data, we manually labeled the bounding box of each insect in each
image, then converted the bounding boxes into binary labels that indicate whether a row
contains an insect. Each potential insect was labeled with a confidence rating between 1 and
4 because some bees were more obvious than others. In general, high confidence ratings
were assigned to bee events, which have obvious harmonic structure and a prominent
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return amplitude in the time domain. Low confidence ratings were given to events with
very short transit times, such as those shown in Figure 5c. During the labeling process,
we found 4671 probable bees. All labeled bees, regardless of confidence rating, were
included in the dataset; our insect-detection algorithms did not account for confidence
ratings. Since we were not able to collect ground-truth data in the field, it is possible that
our labels are imperfect: some insects might have been missed, and some non-insects
might have been labeled as insects. Our ground truth labels are the primary source of
uncertainty. Using imperfect labels during training and validation may result in false insect
detections; on the contrary, classifiers may find insects that the ground truth labels missed.
Sections 4.1 and 4.3 provide additional discussion on the effect of imperfect labels.

Figure 6. A picture of bee activity around some of the beehives. Four out of twelve beehives
are shown. Some foliage was present near the beehive entrances, which sometimes shows up as
background clutter in the collected images.

Of the 9977 images, 3498 (35.14%) contain one or more bees. In total, the dataset
has 1,775,906 rows, 11,492 (0.647%) of which contain an insect measurement. Due to
sampling jitter in the ADC, most insects span multiple range bins, leading to an increase
in the number of rows that were labeled as containing insects. The dataset has a large
class imbalance, particularly when looking at how many rows contain insects. Large class
imbalances can cause machine learning algorithms to ignore the minority class [50], which
would result in not detecting most insects. Section 2.4.1 discusses the methods we used to
alleviate class imbalance.

Figure 5 shows four example images from the dataset containing different types of
bee activity and stationary objects. The bee signals vary depending on whether the laser
primarily hit the body or the wings of the bee. There is a low chance that the lidar pulses
only hit the body, but the return from the body often dominates the signal when the
incidence angle is such that the more specular wing reflection is not large. There are also
images containing small blips of a bee where the laser might have barely hit the bee for a
few pulses. These blips were labeled as bees but with a low confidence. When the intensity
of returned light was large, reflections showed up in the data, which resulted in positive
voltages at later range bins, as indicated by the orange dashed boxes in Figure 5. These
artifacts are undesirable because they have similar characteristics to the actual returns that
caused them. After the data were collected, we discovered that the reflections were caused
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by an impedance mismatch in the lidar’s wiring. By the time we discovered this, we could
not recollect the data. Section 2.3 discusses our method to reduce the reflection artifacts.

Figure 7a shows a histogram of the insect transit times observed in the dataset. The
shortest transit time was 744 µs, the longest transit time was 307.9 ms, and the average
transit time was 36.7 ms. Most bees were in the beam for less than 50 ms, which is about 1/5
of the average image duration of 230 ms. Note that the image durations are not all the same.
None of the recorded transit times can be longer than the associated image’s duration,
though the object may have been in the beam for longer than the image’s duration. Nine
events that were labeled as insects had transit times that lasted the entire image duration;
most of these were labeled as low-confidence insects.
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Figure 7. (a) Histogram of bee transmit times. (b) Histogram of estimated fundamental wingbeat
frequencies.

Figure 7b shows the distribution of fundamental wingbeat frequencies. Previous liter-
ature has found that honeybees’ fundamental wingbeat frequency can range from 150 Hz
to 600 Hz and varies with environmental conditions [51]. The most common wingbeat
frequencies are in the low 200 Hz region [52,53]. The fundamental frequency of each insect
observation was calculated using the harmonic product spectrum algorithm [54]. Since
most insects showed up in multiple range bins due to sampling jitter, the fundamental
frequency was estimated on the average of the insect’s range bins to increase the quality
of the insect signals. Before estimating the fundamental frequency, the insect observa-
tions were bandpass filtered to help isolate the expected wingbeat frequencies. We used
a 10th-order Butterworth filter with a passband between 50 Hz and 1200 Hz; the upper
passband frequency was chosen to ensure that the third harmonics in the spectra were left
untouched, so as to not affect the harmonic product spectrum algorithm. The wingbeat
frequency distribution shown in Figure 7b is distinctly bi-modal. In agreement with previ-
ous literature, we see a strong distribution of wingbeat frequencies between approximately
175 Hz and 250 Hz [51–53]. The other distribution of wingbeat frequencies, between 0 Hz
and approximately 125 Hz, came from the bee observations where the body dominated the
return signal and very little wingbeat motion was captured.

The data from June were used for training and validation, and the data from July were
used for testing. This split simulates the scenario of training algorithms after one field
campaign and then using the algorithms during the next campaign. The June data were
split into stratified training and validation sets, with 80% for training and 20% for holdout
validation. Table 1 shows the number of images, observations, and bees in each set.
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Table 1. Number of images, insect-containing images, rows, and insect-containing rows in the training,
validation, and testing sets. The percentage of insect-containing images and insect-containing rows
are shown in parentheses.

Dataset # of Images # of Insect Images # of Rows # of Insect Rows

Training 3295 1048 (31.81%) 586,510 3410 (0.581%)
Validation 823 261 (31.71%) 146,494 840 (0.573%)
Testing 5859 2189 (37.36%) 1,042,902 7242 (0.694%)

2.3. Preprocessing

As mentioned in Section 2.2, an impedance mismatch caused reflections in the lidar’s
wiring, which resulted in undesirable artifacts in the data. These artifacts can easily confuse
the bee detection algorithms, as they share the same characteristics as the bee that produced
them. Since the PMT output current is negative, any positive voltage values were due
to reflections. Since the samples in each row form a time-series at a particular range bin,
any large changes between subsequent samples would be caused by a moving object at
that range bin. Using this knowledge, we thresholded all positive voltage values to the
corresponding row’s average value. Figure 8 shows an example image before and after
thresholding. The thresholding reduced most of the reflections, but not all, because some of
the reflections resulted in small negative voltages near 0. Since we cannot easily distinguish
between a small negative voltage caused by a reflection and a small negative voltage caused
by a weak return from a bee or other object, we settle for leaving some artifacts in the data.
While leaving these artifacts will increase the false positive rate of the algorithms, a more
aggressive removal would result in missed insect detections.
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Figure 8. Example of an image before (a) and after (b) thresholding the PMT ringing to the mean of
the corresponding row. The ringing is highlighted by red rectangles. For visualization clarity, the
range and colormap are limited.

2.4. Supervised Methods

The supervised learning methods we used can be broken into two categories: feature
engineering and deep learning. The feature engineering methods use the features described
in Section 2.4.2 as input, whereas the deep learning methods take the raw data as input.
The methods can also be classified by whether they used rows as input or entire images
as input. The feature engineering methods, as well as the 1-dimensional deep learning
methods, predict which rows contain insects; the 2-dimensional deep learning methods
take entire images as input and predict which images contain insects. For the row-based
methods, the row predictions were aggregated to predict which images contain insects.
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The overall supervised learning process comprised tuning dataset sampling param-
eters, tuning model hyperparameters, training, and testing. While our code attempts to
make training as reproducible as possible by carefully seeding MATLAB’s random number
generator, some algorithms were still not deterministic; consequently, we ran the whole
process three times for each supervised learning algorithm.

2.4.1. Data Sampling

As mentioned previously, our dataset is highly imbalanced. To deal with this, we
used combinations of data augmentation and random undersampling [50] while training
the row-based methods. Data sampling was not performed for the image-based methods
because the image-based dataset is not highly imbalanced.

Random undersampling was used to remove rows from each image that did not
contain insects. To increase the number of insect examples used during training, we created
synthetic insects. Our augmentation procedure performs 6 transformations: (1) random
circular shifting; (2) interpolating the circularly-shifted vector; (3) decimating the circularly-
shifted vector; (4) vector reversal; (5) interpolating the reversed vector; (6) and decimating
the reversed vector. Random Gaussian noise is added to each synthetic observation. These
transformations are performed in order. Consequently, when the number of synthetic obser-
vations, N, is not a multiple of 6, the last n = N (mod 6) synthetic observations are created
using the first n transformations from the list; for example, when the number of synthetic
insects is 10, the last 4 synthetic insects are created using the first 4 transformations.

For the row-based methods, we performed a grid search over the following undersam-
pling and data augmentation parameters:

• undersampling ratio: {0, 0.25, 0.5, 0.75}
• # of synthetic insects per insect observation: {0, 1, 10, 100}

During the grid search, the Matthew’s Correlation Coefficient (MCC) [55] was used to
evaluate classification performance on the validation dataset. For each model, the sampling
parameters with the highest MCC value were chosen as the final sampling parameters.
During the grid search, the models were trained with their default hyperparameters.

2.4.2. Feature Engineering Methods

For the feature engineering methods, we trained four different types of models: Ad-
aBoost [56], RUSBoost [57], a linear support vector machine (SVM), and multilayer percep-
trons (MLP). AdaBoost and RUSBoost are both boosted decision tree ensembles, while the
MLP is a feedforward neural network. We trained MLPs with 1, 3, 5, and 7 hidden layers.

The inputs to these models were 46 hand-selected features, which were extracted from
each row in each image. From the time domain, we extracted the following features from
each row: range, standard deviation, maximum absolute first difference, maximum abso-
lute second difference, root-mean-square (RMS), impulse factor, crest factor, shape factor,
median, median absolute deviation, mean-centered skewness, mean-centered kurtosis, and
the observation mean minus the image mean. From the frequency domain, we extracted
various statistics from the normalized one-sided energy spectral density (ESD): mean,
median, median absolute deviation, standard deviation, mean-centered skewness, and
mean-centered kurtosis. Most frequency-domain features were based upon the insect’s
wingbeat frequency and harmonics, such as the height and location of each harmonic, as
well as ratios of each harmonic’s features. The fundamental frequency was estimated from
the normalized ESD using the harmonic product spectrum algorithm [54]. Before extracting
any of the frequency domain features, the signals were bandpass filtered with a 10th order
Butterworth filter with a passband between 50 Hz and 1200 Hz.

In addition to time- and frequency-domain features, we used generalized Morse
wavelets [58] to compute the continuous wavelet scalogram, from which we extracted
additional features. Across the time axis in the time-frequency plane, we computed the
average intensity for each frequency bin, then selected the maximum of those intensity
values. Similarly, we computed the standard deviation of each frequency bin and extracted
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the mean of those values. We also computed the maximum and mean values of the
scalogram, the maximum change between adjacent values in the frequency axis, and the
average skewness of the frequency bins. For a full list of features, see the feature ranking in
Figure 9 and our code [59].

0 0.005 0.01 0.015 0.02 0.025
Mutual information

Skewness
WaveletAvgRowSkewness

Kurtosis
ImpulseFactor

CrestFactor
Range

ShapeFactor
MaxFirstDiff

MaxSecondDiff
WaveletMaxRowPeak
WaveletMaxRowDiff
WaveletMaxRowStd

StdDev
WaveletAvg

RowMeanMinusImageMean
StdEsd

MeanEsd
WaveletMaxRowAvg

HarmonicHeight1
HarmonicHeight2

SkewnessEsd
HarmonicHeight3

HarmonicProminence1
RMS

MedianEsd
MadEsd

KurtosisEsd
HarmonicProminence2
HarmonicProminence3

Median
HarmonicWidth2
HarmonicWidth3

HarmonicFreq1
HarmonicFreq2

HarmonicHeightRatio13
HarmonicWidth1

HarmonicWidthRatio23
HarmonicFreq3

HarmonicWidthRatio12
HarmonicWidthRatio13

MAD
HarmonicProminenceRatio12

HarmonicHeightRatio12
HarmonicProminenceRatio13
HarmonicProminenceRatio23

HarmonicHeightRatio23

Figure 9. A list of all features ranked by their mutual information with the class labels.

Individual model hyperparameters and the cost of predicting false negatives were
tuned using Bayesian optimization [60], using MATLAB’s bayesopt function. Fifteen
iterations were used during parameter tuning. MCC was again used to select the final
hyperparameters. The search range for the false negative cost was integers between 1
and 10. For brevity, view our source code [59] for more information on the model-specific
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hyperparameter search ranges. The data sampling and model hyperparameter tuning were
performed sequentially, rather than together. Our assumption was that the optimal data
sampling parameters were independent of the individual model hyperparameters; although
this assumption is likely not 100% true, performing the two tuning steps sequentially
drastically reduces the parameter search space.

2.4.3. Deep Learning Methods

Given the rise of deep learning, we wanted to see if deep learning outperformed our
manually engineered features. To this end, we tested two deep learning algorithms: a 2D
convolutional neural network (CNN) that took the raw images as input, and a 1D CNN that
operated on each row. For both CNNs, we tested models with 1, 3, 5, and 7 convolutional
layers. Each convolution layer was followed by a batch normalization layer, a layer of
rectified linear unit (ReLU) activation functions, and a dropout layer with a 20% dropout
probability to reduce the chance of overfitting. Between the ReLU layer and the dropout
layer, the 2D CNNs included a 2-by-2 max pooling layer with a stride of 2. Each model
used weighted cross-entropy loss for the output layer. The default filter size for the 1D
CNNs was 16, and the default filter size for the 2D CNNs was 16× 2. A rectangular filter
size was chosen as the default for the 2D CNNs because insect events are typically wider
than they are tall.

All networks were trained using the Adam optimizer [61], though no efforts were
made to optimize the training parameters; 20 training epochs and a learning rate of 0.01
were used for all models; the mini-batch size was 2048 and 64 for the 1D and 2D CNNs,
respectively. The filter size, number of filters, and false negative cost for each model were
tuned using the same procedure described in the previous section. For more architecture
and training details, see our source code [59].

2.5. Changepoint Detection

The motivation for using changepoint algorithms was that bees show up as abrupt
changes in both rows and columns. The experiments were conducted using MATLAB’s
findchangepts function, a primarily statistical changepoint detection algorithm, and gf-
pop [62,63], a graph-based changepoint detection algorithm.

The findchangepts function is a part of MATLAB’s Signal Processing Toolbox and
returns the index where the input signal changes most significantly. This algorithm utilizes
a parametric global method of dividing the signal into two sections from some division
point, calculating an estimate of the desired statistical property, measuring the deviation
of the property at each point from the estimate, calculating total residual error, and then
varying the division location until the total residual error is at its minimum. In this study,
the mean was used as the statistical property. An experimentally determined minimum
threshold of 0.0025 was used; this acts as a penalty value for the changepoint and sets the
minimum improvement for the total residual error when calculating the changepoints.

The gfpop (Graph Constrained Functional Pruning Optimal Partitioning) algorithm
is a graph-based changepoint detection algorithm primarily created for applications in
fields, such as medicine, containing large sequences of data with abrupt changes. The
algorithm requires the user to input a built-in or manually created graph consisting of
nodes representing the states of the signal, edges for the transitions between states, and a
loss function to analyze the graph. The edges for the graph have a variety of parameters,
although for this application, the only parameter that was tuned was the penalty on the
edges for transitioning between states. The graph for the bee dataset, shown in Figure 10,
contained four states representing air, bees, and the increase and decrease from the air to
the bee; this graph gave better results than a binary graph of only air and bee states. The
edges transitioning from the air to an increase and from the bee to a decrease had a penalty
of 0.005. The graph penalties, as well as the procedures described below, were manually
tuned on a few images from the training dataset.
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Figure 10. gfpop graph for detecting bees in the dataset. Null edges that allow the algorithm to stay
in the same state from point to point are not shown.

For the image analysis using the changepoint detection algorithms, both the rows and
columns of the bee images were fed into the algorithms. The results were gathered based
off of analyzing only the rows, only the columns, and checking both the rows and columns
to see if they gave a changepoint within some margin.

The procedure for analyzing rows comprises the following steps: applying a heuristic
to filter out rows that obviously do not contain bees, applying the changepoint detection
algorithm to the remaining rows, then applying further heuristics to determine if the
changepoints were likely associated with a bee signal. Concretely, we first check whether
the range of the row is higher than the mean of the row. This was meant to check whether
the target row was either empty air or a stationary object, as the empty air has a low range
and a low mean, while stationary objects generally have a low range and high mean; if
the range is greater than the mean, the row is marked as potentially containing a bee. The
changepoint algorithm is then applied to these marked rows. After the algorithm is applied
to the rows, the number of changepoints is checked, and if it is more than 5, the row is
thrown out. This is because the stationary objects that pass through the first check often
contained upwards of 10 changepoints, while the true bees often only contained around 5.
The last check verifies that the voltage of the changepoint is larger than the mean of the
row. If it is, then the changepoint is classified as a valid bee.

The procedure for analyzing the columns is similar. First, the algorithm checks the
range of each row and compares it to the mean; from those results, the algorithm creates a
vector of the valid rows where an insect could be. It then iterates through each column and
checks whether the changepoints it detects are in valid rows before checking the value of
the changepoint against the mean of the row. If the changepoint fits the same criteria used
in the row analysis process, it is classified as a valid bee.

The process for checking both rows and columns involves iterating through the rows
in the same manner as before, but after detecting changepoints in a row, it then iterates
through those columns, and after finding a changepoint in the column, checks the norm
between the changepoint it detected in the row and the changepoint it detected in the
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column. If they are within a distance of 4, as calculated by the L2 norm, the changepoint is
considered to be a bee.

2.6. Evaluation Metrics

All the methods used were analyzed based on their recall, precision, and (MCC) [55]
scores. It is well known that accuracy is not an informative metric for imbalanced data [64];
thus, accuracy is not used in this paper. Recall is the percentage of the target class that the
method was able to identify and ranges from 0 to 1. Precision is the percentage of true
positives relative to the total number of positive identifications and ranges from 0 to 1.
MCC is a metric that gives a high score if the method is able to achieve an accurate value
in each of the four categories of the confusion matrix. The MCC ranges between −1 and
+1. Positive values indicate a positive correlation between the predictions and the true
labels, with +1 being perfect prediction. A value of 0 indicates that the prediction is no
better than random predictions. Negative values indicate a negative correlation between
the predictions and the true labels, with −1 indicating complete disagreement between the
predictions and the true labels.

When evaluating our methods, we consider recall more important than precision
because the focus was to identify as many of the bees as possible. However, a low precision
is not entirely outweighed by a high recall: low precision means there were many false
positives, which researchers would have to look through to validate whether bees were
present or not. Thus, a balance of recall and precision is desirable; a high MCC score
indicates a good balance of recall and precision. While the Fβ score could be used as a single
metric that combines recall and precision, we chose to use MCC because it is invariant to
which class is labeled “positive”, unlike Fβ [65].

3. Results

The work in this paper has two performance goals: find which images contain insects
and find the rows (i.e., range bins) the insects are located in. Methods that correctly detect
most insect-containing images could be used on future datasets to reduce the number of
images humans have to look through to label the insects. Likewise, methods that correctly
detect most insect-containing rows would reduce the labeling burden, as well as help
automatically compute parameters of interest, such as the number of insects and their
wingbeat frequencies. While we ultimately want to detect all insects, we also want to have
a reasonably high precision so we do not have to look through many false positives. For
the methods that take rows as input, row-based and image-based results are reported.
For the 2D CNNs, only image-based results are reported. The following sections detail
the classification performance of the feature engineering, deep learning, and changepoint
detection methods, as well as an in-depth analysis of the features described in Section 2.4.2.

3.1. Supervised Methods
3.1.1. Feature Analysis

To see which of the extracted features had the most predictive power for discriminating
between classes (“Bee” and “No bee”), we computed the mutual information [66] between
the features and the class labels. We used the mutual_info_classif function from Python’s
scikit-learn library to compute the mutual information scores; this function is based on a
k-nearest-neighbor method of computing mutual information between continuous and
discrete variables [67]. The results are shown in Figure 9. The top three features were the
time-domain skewness, the average skewness of each row in the wavelet scalogram, and
the time-domain kurtosis. Figure 11 shows a pairwise scatter plot of these three features;
none of the top three features are separable, but there are clear differences between the
“bee” and “no bee” distributions in Figure 11. The following paragraphs interpret the
discrimination ability of each of the top three features.
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Figure 11. Pairwise scatter plot of the three features with the highest mutual information with the
class labels. The main diagonal shows histograms of each feature’s distribution. The features are
ordered by descending mutual information values from top-to-bottom and left-to-right.

Skewness is a measure of asymmetry about the sample mean, with negative values
indicating a long left tail of the distribution and positive values indicating a long right tail
of the distribution. In our lidar data, insects flew through the beam for a small fraction of
the total 1024 pulses; the pulses that hit insects have a large negative value compared to the
rest of the pulses at that range bin, which results in a negative skewness. The majority of
rows that do not contain insects have a skewness close to zero, as seen in Figure 11.

The rows of the wavelet scalogram correspond to frequency bins; thus, a row repre-
sents how a particular frequency component changes over time. Observations that did not
contain any targets have little frequency content, which results in most of the scalogram
values being close to 0; this leads to a small skewness value, as can be seen in “No Bee”
distribution’s peak in the middle plot in Figure 11. When a bee is in the beam, its wings
create frequency content in the return signal; this frequency content shows up in the rele-
vant scalogram rows for a short period of time, which results in positive skewness for those
rows. This is why the “Bee” distribution tends to have higher skewness values. However,
there are also non-bee observations with high skewness, as seen in Figure 11.

Kurtosis is a measure of a distribution’s tail extremity; for the sample kurtosis, tail
extremity indicates outliers in the data [68]. Rows that contain no targets are characterized
by small amounts of noise and will have kurtosis values near 0, as seen by the peak in
the “No bee” kurtosis distribution in Figure 11. Insects flying through the beam for short
periods of time result in returns that differ significantly from their surroundings, i.e., they
are outliers; consequently, insect rows will generally have a positive kurtosis value. Other
noisy targets, such as moving blades of grass, will also tend to have positive kurtosis values.
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The low mutual information between the harmonic frequency values and the class
labels, as seen in Figure 9, is surprising given that the wingbeat-modulation lidar method
is based upon being able to determine the insects’ wingbeat spectra. This low mutual
information is due to the significant overlap in the “Bee” and “No bee” harmonic frequency
distributions, as shown in Figure 12. The distributions in Figure 12 were computed on each
row of the training dataset. As seen in Figure 12a, compared to the “No bee” distribution,
there is an extra bump in the “Bee” distribution around 200 Hz, corresponding to the
expected bee fundamental wingbeat frequency. The tails of the “No bee” distributions are
more smooth, with no increase around the expected wingbeat frequencies. The majority of
the “No bee” rows should exhibit no harmonic structure; in this case, an ideal frequency
estimation algorithm would not report erroneous harmonic structure. Our fundamental
frequency estimation algorithm looks for the largest local maximum in the harmonic
product spectrum; if any local maxima exist, our algorithm returned an estimated frequency,
otherwise the algorithm returned 0. In Figure 1d, the small peak around 100 Hz in the
stationary object’s spectrum would be interpreted as a local maxima and would thus be
considered that observation’s fundamental frequency. This behavior is problematic for the
non-bee observations and contributed to the overlap between the distributions.
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Figure 12. Class-wise distributions of harmonic frequency computed on each row in the training set:
(a) distribution of the first harmonic frequency; (b) distribution of the second harmonic frequency;
(c) distribution of the third harmonic frequency. The counts at bin 0 are from observations where no
local maximum was found in the harmonic product spectrum.

3.1.2. Data Sampling

Table 2 shows the undersampling and augmentation ratios that resulted in the best
MCC scores on the validation set. The grid search was performed three times for each
algorithm, and the results for each run are shown in Table 2. Most algorithms except
the 1D CNNs did not benefit from data augmentation; this is partly in contrast to our
previous work, where both AdaBoost and RUSBoost benefited from data augmentation [45].
Compared to our previous work, we have extracted more features, which might have
helped the classifiers learn the decision boundary without data augmentation. There is no
apparent pattern to which algorithms benefited from undersampling. Of the algorithms
that selected different optimal undersampling ratios between the three runs, the associated
MCC scores did not vary significantly, except for the SVM. However, MCC scores tended
to vary significantly over the grid search parameters. As an example, one of the 5-layer 1D
CNNs had MCC values range between 0.221 to 0.736. The data sampling results suggest
that undersampling and oversampling can affect performance but that the optimal values
are not necessarily independent of the model’s initial conditions, especially for the CNNs.
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Table 2. Undersampling and augmentation ratios that resulted in the best MCC scores on the
validation set. The results are shown for each of the three runs.

Method Undersampling Ratio Augmentation Ratio MCC

AdaBoost [0.50, 0.50, 0.50] [0, 0, 0] [0.800, 0.800, 0.800]
RUSBoost [0.25, 0.25, 0.25] [0, 0, 0] [0.648, 0.648, 0.648]
SVM [0.75, 0.75, 0.00] [1, 0, 0] [0.459, 0.215, 0.359]
MLP 1 [0.00, 0.00, 0.25] [0, 0, 0] [0.812, 0.812, 0.826]
MLP 3 [0.00, 0.00, 0.00] [0, 0, 0] [0.818, 0.818, 0.818]
MLP 5 [0.00, 0.00, 0.00] [0, 0, 0] [0.815, 0.815, 0.815]
MLP 7 [0.25, 0.25, 0.00] [0, 0, 0] [0.823, 0.819, 0.818]
1D CNN 1 [0.00, 0.25, 0.25] [1, 1, 1] [0.737, 0.730, 0.736]
1D CNN 3 [0.00, 0.00, 0.50] [1, 10, 0] [0.736, 0.764, 0.764]
1D CNN 5 [0.25, 0.50, 0.00] [1, 1, 1] [0.714, 0.745, 0.738]
1D CNN 7 [0.25, 0.00, 0.25] [1, 1, 1] [0.725, 0.751, 0.763]

3.1.3. Validation

For the row-based methods, the training set was sampled during hyperparameter
tuning using the undersampling and augmentation ratios in Table 2; data sampling was
not performed for the image-based methods. Table 3 shows the MCC scores that the tuned
models obtained on the validation set after hyperparameter tuning. For the row-based
methods, the best hyperparameters were chosen based upon the row-based MCC score.
For all methods, if the default hyperparameters performed better than all hyperparameter
combinations encountered during hyperparameter tuning, the default parameters were
used for the final training.

Table 3. Classification results on the validation set. The mean score from the three runs is shown,
and the standard deviation is shown in parentheses. The best results for each metric are shown in
bold. Methods marked with a ∗ indicate that the method achieved the same results every run.

Method Rows Images

Recall Precision MCC Recall Precision MCC

AdaBoost ∗ 0.835 (0.000) 0.786 (0.000) 0.809 (0.000) 0.854 (0.000) 0.965 (0.000) 0.870 (0.000)
RUSBoost ∗ 0.954 (0.000) 0.453 (0.000) 0.655 (0.000) 0.977 (0.000) 0.695 (0.000) 0.728 (0.000)
SVM 0.740 (0.021) 0.755 (0.042) 0.745 (0.016) 0.794 (0.031) 0.907 (0.061) 0.785 (0.032)
MLP 1 0.802 (0.010) 0.850 (0.005) 0.825 (0.003) 0.851 (0.013) 0.965 (0.007) 0.867 (0.005)
MLP 3 ∗ 0.798 (0.000) 0.851 (0.000) 0.823 (0.000) 0.866 (0.000) 0.962 (0.000) 0.876 (0.000)
MLP 5 ∗ 0.806 (0.000) 0.854 (0.000) 0.829 (0.000) 0.874 (0.000) 0.931 (0.000) 0.858 (0.000)
MLP 7 0.815 (0.013) 0.833 (0.020) 0.823 (0.004) 0.883 (0.018) 0.939 (0.016) 0.871 (0.015)
1D CNN 1 0.724 (0.051) 0.799 (0.068) 0.757 (0.009) 0.798 (0.036) 0.854 (0.083) 0.746 (0.043)
1D CNN 3 0.717 (0.051) 0.805 (0.079) 0.757 (0.012) 0.815 (0.034) 0.929 (0.036) 0.816 (0.038)
1D CNN 5 0.659 (0.035) 0.832 (0.060) 0.738 (0.007) 0.746 (0.040) 0.949 (0.010) 0.783 (0.034)
1D CNN 7 0.686 (0.040) 0.835 (0.063) 0.754 (0.007) 0.761 (0.039) 0.924 (0.048) 0.775 (0.011)
2D CNN 1 — — — 0.731 (0.002) 0.965 (0.000) 0.782 (0.002)
2D CNN 3 — — — 0.867 (0.004) 0.960 (0.009) 0.876 (0.009)
2D CNN 5 — — — 0.908 (0.004) 0.970 (0.009) 0.912 (0.004)
2D CNN 7 — — — 0.908 (0.017) 0.973 (0.008) 0.914 (0.007)

For the row-based methods, the feature-based MLPs obtained the best row-based
average MCC scores on the validation set, as seen in Table 3. RUSBoost achieved the
highest recall, at the expense of 45.3% precision. The 1D CNNs and the linear SVM all
achieved average MCC scores around 0.75.

Looking at the image-based results in Table 3, we see that RUSBoost found the most
insect-containing images, achieving the highest recall. The MLPs also performed well,
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achieving high precision scores above 93% and MCC values around 0.87. The three largest
2D CNNs achieved the top three average MCC scores, followed by the 3-layer MLP.

3.1.4. Testing

Using the best parameters found during the data sampling and hyperparameter tuning
phases, each model was trained one final time on the full training and validation datasets.
These trained models were then tested on the testing set, which was collected approximately
one month after the training data was collected. Table 4 shows the recall, precision, and
MCC scores that the models obtained on the testing set.

For the row-based methods, RUSBoost performed the best, achieving a 0.948 recall
and 0.752 MCC score. The majority of the methods did not generalize well to the training
set, achieving significantly lower recall scores. However, the majority of the row-based
methods performed well at identifying which images contained insects. This suggests that
the methods were doing some combination of

• Finding the insects but not predicting all the rows that the insects spanned.
• Predicting insects in incorrect rows but doing so in images that contain insects.
• Missing some insects in images that contain multiple insects.

Looking at the image results in Table 4, we see that RUSBoost achieved the highest
recall and MCC scores. The MLPs achieved the best MCC scores after RUSBoost. While
the 1D CNNs often achieved high average recall, their recall and precision scores often
varied significantly between the three runs, as indicated by the standard deviations in the
image-based recall and precision columns. The 2D CNNs and AdaBoost did not generalize
well to the testing set and achieved the lowest average recall and MCC scores.

Table 4. Classification results on the testing set. The mean score from the three runs is shown, and
the standard deviation is shown in parentheses. The best results for each metric are shown in bold.
Methods marked with a ∗ indicate that the method achieved the same results every run.

Method Rows Images

Recall Precision MCC Recall Precision MCC

AdaBoost ∗ 0.296 (0.000) 0.771 (0.000) 0.476 (0.000) 0.418 (0.000) 0.935 (0.000) 0.519 (0.000)
RUSBoost ∗ 0.948 (0.000) 0.600 (0.000) 0.752 (0.000) 0.995 (0.000) 0.837 (0.000) 0.856 (0.000)
SVM 0.605 (0.132) 0.636 (0.076) 0.616 (0.091) 0.895 (0.028) 0.759 (0.061) 0.705 (0.040)
MLP 1 0.541 (0.002) 0.838 (0.026) 0.672 (0.012) 0.811 (0.001) 0.919 (0.048) 0.791 (0.040)
MLP 3 ∗ 0.550 (0.000) 0.831 (0.000) 0.674 (0.000) 0.821 (0.000) 0.882 (0.000) 0.768 (0.000)
MLP 5 ∗ 0.488 (0.000) 0.860 (0.000) 0.646 (0.000) 0.753 (0.000) 0.948 (0.000) 0.771 (0.000)
MLP 7 0.663 (0.146) 0.739 (0.041) 0.696 (0.099) 0.891 (0.045) 0.826 (0.005) 0.769 (0.028)
1D CNN 1 0.600 (0.195) 0.650 (0.195) 0.602 (0.010) 0.828 (0.131) 0.785 (0.106) 0.680 (0.058)
1D CNN 3 0.697 (0.076) 0.645 (0.233) 0.654 (0.106) 0.892 (0.064) 0.780 (0.083) 0.722 (0.038)
1D CNN 5 0.700 (0.072) 0.573 (0.237) 0.620 (0.126) 0.907 (0.060) 0.815 (0.148) 0.760 (0.128)
1D CNN 7 0.329 (0.049) 0.691 (0.351) 0.466 (0.166) 0.688 (0.151) 0.857 (0.179) 0.636 (0.060)
2D CNN 1 — — — 0.291 (0.003) 0.921 (0.000) 0.414 (0.002)
2D CNN 3 — — — 0.539 (0.346) 0.861 (0.070) 0.547 (0.184)
2D CNN 5 — — — 0.488 (0.101) 0.924 (0.020) 0.564 (0.086)
2D CNN 7 — — — 0.544 (0.367) 0.907 (0.005) 0.592 (0.267)

Overall, RUSBoost achieved the best recall on both datasets and generalized to the
testing set; this might be due in part to the undersampling RUSBoost performs during
training, which creates a new undersampled dataset for each learner in the ensemble,
rather than a single undersampled dataset for each learner. However, RUSBoost’s low
precision, particularly on the validation set, is a potential downside; if one were to choose
only one row-based model based on row-based validation-set performance, RUSBoost
would not have been chosen. The feature-based MLPs performed consistently at detecting
insect-containing images in both validation and testing sets; while their row-based testing
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results did not generalize as well, the consistent image-based performance is a plus for
future applications. More discussion of model selection and algorithm recommendations
follows in Section 4.

3.2. Changepoint Detection

The results for the changepoint detection algorithms were also gathered on both an
image basis and a row basis using the testing set. For the image results shown in Table 5,
when the two algorithms are compared, MATLAB’s findchangepts achieves a higher recall
than gfpop. For the row results shown in Table 5, both algorithms struggled to achieve a
high number of true positives; both algorithms achieved higher precision when analyzing
the columns compared to analyzing the rows.

One of the main motivations for using the changepoint detection algorithms was that
the total runtime would be less than traditional machine learning algorithms, along with a
decrease in required computational power. All the variations of the two algorithms were
run with 32 CPUs and 80 GB of RAM. Since each image was independent of the other, the
algorithms could process all the images in parallel before compiling the results together.
The findchangepts function completed its workload in 21 s, 71 s, and 21 s for the rows,
columns, and both, respectively. The gfpop algorithm completed its workload in 834 s,
1205 s, and 828 s for the rows, columns, and both, respectively. In general, these runtimes
are far lower than the time it takes to train a machine learning algorithm.

Overall, the changepoint detection methods achieved lower row-based results than
the supervised methods, on average. In particular, the changepoint detection methods
achieved much lower row-based precision, indicating a higher number of false positives.
This is due to the fact that any object that moves through the laser and has a significant
return would result in a changepoint. The changepoint detection methods performed much
better on the image-based metrics than on the row-based metrics, as seen in Table 5. While
the changepoint detection methods still had worse image-based recall than RUSBoost, the
gfpop rows and gfpop columns algorithms achieved the second and third best image-based
recall, respectively. In spite of their comparable recall, the gfpop algorithms achieved lower
image-based precision and MCC scores than the comparable supervised learning methods
did; the MATLAB findchangepts “rows” and “both” methods, on the other hand, achieved
precision comparable to many of the supervised methods. Since changepoint detection is an
unsupervised method, the lower performance is not surprising: unsupervised methods do
not have a priori knowledge of the class labels like supervised methods do and thus cannot
be directly optimized to predict class labels [69]. Although the best supervised methods
achieved better results, the changepoint methods achieved similarly high recall without
needing to be trained on labeled data. This is a significant advantage for the changepoint
detection methods, as labeling data is a time-consuming process.

Table 5. Changepoint detection results on the testing set. The best results for each metric are shown
in bold.

Rows Images

Recall Precision MCC Recall Precision MCC

MATLAB Rows 0.073 0.097 0.078 0.832 0.842 0.741
MATLAB Columns 0.917 0.116 0.316 0.884 0.650 0.581
MATLAB Both 0.034 0.049 0.031 0.750 0.855 0.694
gfpop Rows 0.322 0.243 0.274 0.936 0.676 0.647
gfpop Columns 0.668 0.196 0.354 0.929 0.658 0.621
gfpop Both 0.258 0.317 0.281 0.806 0.690 0.576
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4. Discussion
4.1. Sources of Uncertainty and Error

Our ground truth labels are the primary source of uncertainty. Since we manually
labeled all insects via visual inspection, it is possible that some insects were missed and
some non-insects were labeled as insects. Without any independent ground truth to
validate our labels, we cannot easily verify that all labeled insects truly were insects;
this is especially pertinent for observations that were labeled as low-confidence insects.
The digitizer’s sampling jitter, which resulted in most insects spanning multiple 0.75 m
range bins during a single laser pulse (a physically impossible event), also contributed to
uncertainty in the labels. When labeling each insect’s bounding box, deciding exactly how
many rows the insect spanned was somewhat arbitrary because the effect of the sampling
jitter decayed over multiple range bins. This decay and smearing can be seen in Figure 5.

4.2. Effects of Confidence Ratings

As noted in Section 2.2, the bee events were labeled with confidence ratings between
1 and 4, with 4 being the highest confidence rating. High-confidence bees had obvious
signatures in both the time and frequency domains, whereas medium-confidence bees
generally had obvious signatures in only one domain. For example, the two insect examples
in Figure 1 are high-confidence bees, whereas the blips in Figure 5b,c are low-confidence
bees. Thus, the confidence ratings are tied to labelling uncertainty and data quality. There
are 73 rows with a confidence of 1, 1479 rows with a confidence of 2, 5288 rows with a
confidence of 3, and 402 rows with a confidence of 4.

Figure 13 shows recall as a function of confidence rating. For the majority of the
algorithms, the high-confidence bees are identified more often than low-confidence bees.
This makes intuitive sense because high-confidence bees should be the most distinct.
Interestingly, many of the supervised learning algorithms had higher recall for bees with
a confidence of 1 than a confidence of 2. This suggests that the algorithms may have
identified some salient features for low-confidence bees, such as the blips shown in Figure 5.
These results could also be due to labeling uncertainty in the bounding boxes, as discussed
in the following section, or imprecision of the confidence labels.
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Figure 13. Row-based recall grouped by the confidence ratings of the bee events. The average recall
is displayed for the supervised learning algorithms.

Interestingly, the gfpop “rows” and MATLAB “rows” methods exhibit the opposite
trend: recall decreases as confidence increases. The “both” methods exhibit the same
trend because they are similar to the “rows” methods. It is possible that some of the high-
confidence bee rows were discarded by the heuristic that bees typically had fewer than five
changepoints. Conversely, low-confidence bees that were in the beam for a short period of
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time would have few changepoints and would thus pass through that heuristic. The column-
based changepoint detection algorithms exhibit the expected behavior. High-confidence
bees, especially ones which had a prominent body return signal, exhibit abrupt changes
between range bins: range bins before and after the bee have a low return amplitude; this
likely contributed to the behavior of the column-based changepoint methods shown in
Figure 13.

4.3. Model Generalization

As noted in Section 3, many of the supervised methods did not perform as well on the
testing set as they did on the validation set. This suggests some amount of overfitting to
the training and validation sets, which were collected at a different time than the testing
set. Although the training/validation and testing data were collected at the same location,
the conditions were not exactly the same: ambient temperature was different, resulting
in different bee activity; height of the foliage in front of the beehives was different; and
some of the pan and tilt angles that the data were collected at were intentionally different.
These variations resulted in different bee and background characteristics between the two
datasets. Consequently, the training/validation and testing dataset distributions are not
identical, nor are either of the sets representative of the entire possible data distribution at
the data-collection location.

As was seen in Tables 3 and 4, the methods generalized better when classifying images
than classifying rows. This suggests that these methods were still detecting the insects but
not detecting every row the insect occupied due to sampling jitter; or the methods simply
missed an insect in images that contained multiple insects.

Figure 14a shows an example where a 3-layer MLP correctly found the insect but
predicted more rows than were labeled. In this case, only one row was labeled but the
insect spanned three rows, which the MLP predicted. This leads to an artificially low
row-based precision, as the human labels were imperfect and did not span all the insect’s
rows. Additionally, the MLP predicted the reflection artifacts as additional bees. Figure 14b
shows the opposite case, where the 3-layer MLP predicted fewer rows than were labeled.
Although the algorithm still found the bee, the missed rows led to an artificially low row-
based recall. The situations demonstrated in Figure 14 show that the label ambiguity caused
by the digitizer’s sampling jitter and the human-labeled bounding boxes contributed to
artificially low row-based performance metrics.
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Figure 14. Example images where a 3-layer MLP found the bee but did not achieve perfect recall or
precision. (a) An example where the algorithm predicted extra rows compared to the human-labeled
rows; the algorithm also predicted the ringing artifacts as bees. (b) An example where the algorithm
predicted one out of three of the human-labeled rows.
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Better generalization performance might have been achieved if we randomly split
the combined June and July datasets into training/validation/testing sets, rather than
using June for training/validation and July for testing. However, we wanted to model a
real-world scenario where labeled data from a previous campaign could be used to train
models for a new data collection campaign.

Overall, lack of generalization is one of the primary limitations of both the supervised
and changepoint detection methods. It is unlikely that either category of methods will
generalize to a new data-collection location or species without needing to be retrained
or have some algorithm parameters adjusted. Additionally, recent insights have shown
that CNNs with subsampled convolution and pooling operations are sensitive to small
image translations [70]; it is possible that our 2D CNNs are sensitive to the bee locations,
leading to lack of generalization, but some preliminary analysis suggests this is not the
case. Eventually, as more data are collected across various locations, seasons, and species,
the methods should start to generalize.

4.4. Algorithm Recommendations

For supervised learning, the general rule for model selection is to choose the model
with the best validation performance. Based upon the row-based MCC, which was used
during hyperparameter tuning, the 5-layer MLP would be chosen as the “best” model.
Indeed, the 5-layer MLP also performed okay on the testing set, so this would not be a bad
decision. However, RUSBoost, which had the lowest row-based MCC on the validation
set, performed best on the testing set; RUSBoost did, however, have the highest row-based
recall on the validation set, as well as the highest image-based recall on the validation set.
Most methods’ generalization ability was better for the image-based results; given this, one
might consider using the image-based validation results for final model selection, rather
than the row-based results.

In general, for the supervised methods we tested, we recommend using RUSBoost
and/or a feature-based MLP, as those methods performed consistently well across the
validation and testing sets. The 1D CNNs achieved good average performance on the
testing set but had high variability between runs; this variability indicates that the models
were not robust. The 2D CNNs did not generalize to the testing set and also had high
variability between runs. With more fine-tuned architectures, it is possible that CNNs could
perform and generalize well.

Compared to the changepoint detection methods, the higher performance of the
supervised methods comes at a cost: needing labeled data. Needing labeled data is
the major limitation of the supervised methods because the primary point of automated
detection is not having to manually detect insects. If labeled data already exist, then we
recommend using one of the supervised methods. However, if labeled data does not
exist, the changepoint detection methods are a promising place to start because they can
be tuned on a few images and still achieved high recall of insect-containing images. If
finding as many insect images as possible is paramount, and looking through false positives
is not a huge burden, then we recommend the gfpop “rows” or “both” methods; these
methods achieved image-based recall scores around 93%. If looking through many false
positive images is too large of a burden, then we recommend the MATLAB “rows” or
“both” algorithms because they achieved precision scores around 85%.

When the data are not labeled, a semi-supervised learning approach could be em-
ployed: use a changepoint detection method to create an initial set of imperfect labels, and
then use those labels to train one of the supervised learning algorithms. The data could
then be fed through the trained supervised algorithm, and any new positive predictions
that were not predicted by the changepoint detection method can be inspected and labeled.
This process can be repeated until no new insect images are found.
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4.5. Future Research Directions

While good image-based recall and precision, like that achieved in this paper, would
help reduce the amount of non-insect images requiring manual analysis, manual analysis
would still need to be performed on the insect images to obtain quantities of entomologi-
cal interest, such as the total number of insects observed. Consequently, future research
should work towards improving the row-based insect detection performance and reducing
sampling jitter; high row-based precision and recall would allow scientists to easily calcu-
late the total number of insects, their spatial and temporal distributions, their wingbeat
frequency distribution, etc. Towards this goal, the fundamental frequency estimation algo-
rithm should be improved to detect less spurious harmonics in stationary object and noise
observations. This would lead to better class separability in the harmonic features.

The sampling jitter is the biggest impediment to having an automatic count of the
actual number of insects. The smearing of insect observations across multiple range bins
limits the ability of the row-based methods to accurately detect insects and leads the row-
based methods to produce artificially large insect counts. If the sampling jitter cannot
be reduced significantly, post-processing methods should be explored. Using an image
segmentation CNN is one possible solution, as the model could be trained to predict the
insects’ bounding boxes.

Including the labels’ confidence ratings into the detection process is an interesting
avenue for future work. The confidence ratings provide extra probability information
that could prove useful. Lastly, we are also interested in trying more unsupervised and
semi-supervised methods, such as anomaly detection methods.

5. Conclusions

Automatically detecting insects is crucial for the future of “big data” in entomology.
In this paper, we present a comparison of supervised learning and changepoint detection
methods for detecting insects using wingbeat-modulation lidar. We collected and published
a new lidar dataset containing honeybee activity at various times and locations around
a line of beehives. We found that both methods would be able to successfully reduce the
need for manual data analysis: the supervised learning method with the best MCC score
on the testing set correctly identified 99.5% of the insect-containing images and 83.7% of
the non-insect images; the changepoint detection method with the best MCC score on
the testing set correctly identified 83.2% of the insect-containing images and 84.2% of the
non-insect images. In addition to comparing and recommending algorithms, we provide
an analysis of which features were relevant for insect detection, which can help guide
future development. Notably, we introduce wavelet-based features, which we have not
seen in the previous literature; the wavelet-based features were all ranked in the top 50%
of relevant features. While there is still room for improvement, the automated detection
methods we present are capable of reducing the amount of manual data analysis required
and can provide rough estimates of insect quantity and activity.
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