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Abstract: The International GNSS Service analysis centers provide orbit products of GPS satellites
with weekly, daily, and sub-daily latency. The most frequent ultra-rapid products, which include 24 h
of orbits derived from observations and 24 h of orbit predictions, are vital for real-time applications.
However, the predicted part of the ultra-rapid orbits is less accurate than the estimated part and has
deviations of several decimeters with respect to the final products. In this study, we investigate the
potential of applying machine-learning (ML) and deep-learning (DL) algorithms to further enhance
physics-based orbit predictions. We employed multiple ML/DL algorithms and comprehensively
compared the performances of different models. Since the prediction errors of the physics-based
propagators accumulate with time and have sequential characteristics, specific sequential modeling
algorithms, such as Long Short-Term Memory (LSTM), show superiority. Our approach shows
promising results with average improvements of 47% in 3D RMS within the 24-h prediction interval of
the ultra-rapid products. In the end, we applied the orbit predictions improved by LSTM to kinematic
precise point positioning and demonstrated the benefits of LSTM-improved orbit predictions for
positioning applications. The accuracy of the station coordinates estimated based on these products
is improved by 16% on average compared to those using ultra-rapid orbit predictions.

Keywords: precise orbit determination; GPS; machine learning; deep learning; time-series prediction

1. Introduction

The Global Navigation Satellite System (GNSS) satellites are substantial for the engi-
neering and science community. Accurate predictions of GNSS satellite orbits and clocks,
along with Earth rotation parameters (EOPs), are essential for many real-time positioning
applications, such as real-time navigation and early warning systems [1–4]. Presently,
orbit predictions are typically obtained using physics-based orbit propagators, relying on
precise initial states of the space object and good knowledge of the orbital forces. The
deterministic models cannot perfectly describe the changing perturbing forces, which is
one of the major remaining challenges for orbit prediction. As a result, errors in orbit
predictions accumulate over time. At the same time, the demand for real-time positioning
is presently increasing [5–7], which inspires further investigations on improving GNSS
orbit predictions.

Motivated by the rapid expansion of computing power and the considerable data
volume in recent years, more and more scientists have applied machine learning (ML) and
deep learning (DL) in geoscience [8,9], geophysics [10] and geodesy [11]. More specifically,
some studies try to improve orbit prediction using ML/DL approaches (In this study, the
term ML refers to methods from classical tree-based methods to simple neural networks.
DL refers to deep neural networks with advanced mechanisms such as convolutional and
recurrent units). Convolutional Neural Networks (CNN) have been applied to improve
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the accuracy of an orbit prediction model [12]. The orbit errors were computed based
on the broadcast ephemerides and converted into an image-like format to be fed into a
CNN model. Improvements in all orbit types of GPS and Beidou constellations have been
reported. The back propagation neural network has been applied to a similar question
and results in beneficial improvements [13]. Several studies focus on low Earth orbit
(LEO) satellites because the impacts of non-gravitational perturbing forces, gravitational
anomalies, and imperfect shape modeling are more significant than in other types of orbits,
resulting in substantial errors in the physics-based orbit propagators [14]. The performance
of the Support Vector Machine (SVM) on the orbit prediction of LEO satellites has been
tested in a simulation-based environment [15], and then is applied to publicly available
Two-Line Element (TLE) files [16]. These two studies conclude that SVM can improve
position and velocity accuracy when the data volume is sufficient. A time-delay neural
network has been built up for LEO satellites, which reduces errors in tracking LEO satellite
positions and effectively improves a vehicle’s navigation performance [17]. However, all
the mentioned studies modeled the satellite orbits with the accuracy of dozens of meters
or even kilometers. They did not study the feasibility of ML/DL algorithms for further
improving the orbit prediction with accuracy at the sub-meter level.

In this study, we investigate the potential of ML/DL methods for improving the orbit
prediction products at the centimeter level theoretically in hindcast experiments. To this end,
we concentrate on the products provided by the German Research Center for Geosciences
(GFZ), which is an International GNSS Service (IGS) analysis center (AC) focusing on GPS
satellites. GFZ provides three types of GNSS orbit products with weekly (final products),
daily (rapid products), and sub-daily (ultra-rapid products) latency [18]. Among them,
ultra-rapid products are most important for real-time applications because they provide
orbit predictions for the next 24 h as well as the estimated orbits of the last 24 h. However,
the accuracy of the predictions in ultra-rapid products degrades significantly over time due
to the limitations of the physics-based orbital propagator, such as imperfect initial states
and an insufficient model of solar radiation pressure [19]. In addition, the uncertainties
in the applied EOPs may also degrade the accuracy of the ultra-rapid products [20]. As
a result, the differences between the ultra-rapid predictions and final products vary from
a few centimeters to meters. In contrast, the final products, which are estimated in an
unconstrained condition and used to define the reference frame, have the highest quality
with an accuracy of around 2.5 cm [21]. Overall, if we consider the final products as the
reference, the differences between the ultra-rapid and final products mainly indicate the
errors caused by the limitations of the physics-based orbit propagators.

Inspired by the success of ML/DL in sequence predictions and the time-series charac-
teristics of the satellite orbits, we applied ML/DL algorithms to model differences between
ultra-rapid and final orbit products, which investigates the potential to further enhance
the quality of physics-based orbit predictions at the centimeter level. In this context, we
combined the advantages of physics-based and data-driven methods. Another emphasis
of this study is the detailed comparison of different ML/DL algorithms applied to orbit
prediction, which can provide a reference for further investigations. Moreover, we also
validated the enhanced ultra-rapid products by employing them in kinematic precise point
positioning (PPP) to investigate the potential benefits of LSTM-improved orbit predictions
for positioning applications. This study focused on hindcast experiments to investigate the
potential theoretically. Some potential efforts to put this pipeline into operational use are
also discussed at the end.

2. Data

We used the ultra-rapid [22] and final [23] products provided by GFZ, which is an
IGS analysis center. We used these data rather than the official IGS products since GFZ
provides ultra-rapid products eight times per day, as shown in Figure 1, allowing us to have
a relatively larger number of samples, which is beneficial for data-driven methods to obtain
better generalizability. Furthermore, using the products provided by one AC rather than the
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official combined solutions can avoid a potential impact of the combination strategy [24],
which means the differences between the ultra-rapid and final products are mainly caused
by the deficiencies of the used orbit forces model. We considered each ultra-rapid product
as one sample, the 24-h observations of which were considered to be inputs, whereas the
24-h predictions were considered to be targets (Figure 1). The products from January 2019
to April 2021 were used (205,281 valid samples), the sampling rate of which is 15 min.
To monitor the training process and evaluate the model independently, the data samples
were randomly divided into training, validation, and test sets with proportions of 70%
(144,075), 15% (30,873) and 15% (30,873). All the proposed models were trained on the same
training samples, and all the results reported were based on the same test set to obtain a
fair comparison.
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Figure 1. The schematic diagram of the GFZ 3-hourly ultra-rapid orbit products.

3. Methodology
3.1. Overview

Figure 2 shows an overview of the pipeline designed for this study. First, we generated
the differences between the ultra-rapid and final orbit products in the radial, along-track,
cross-track (RSW) frame [25]. The RSW frame is satellite-fixed, and the individual compo-
nents are less correlated. The gravitational impacts are better separated in the RSW frame,
whereas the non-gravitational perturbing forces are only isolated to a lesser degree. Each
single ultra-rapid product (Figure 2) served as one sample. The RSW differences within the
24-h observation interval served as input features, whereas the RSW differences within the
24-h prediction interval of the same product were targets. To achieve the best performance,
we trained three models to predict RSW differences individually. Therefore, the input
sequences had a length of 95 and three features (R, S, W differences) at each epoch, whereas
the output sequences had the same length but only one component at each epoch. The
input-output pairs were fed into multiple ML/DL algorithms for supervised regression.

Ultra-Rapid 
products

Final 
products

RSW 
differences 

(observations)

RSW 
differences 

(predictions)

Machine 
Learning

Deep 
Learning

Input 
features

Figure 2. Graphical representation of the pipeline in this study.

3.2. Data Preprocessing
3.2.1. Generating Orbit Differences

We first aligned each ultra-rapid product to the corresponding final product based
on GPS time. Then, we transformed the Earth-centered Earth-fixed (ECEF) coordinates
into the Earth-centered inertial (ECI) frame by considering EOPs. The transformation was
realized using the following equation [25–27]:

ri = PNUXY · re = Ri
e · re (1)

where ri and re denote the satellites’ position vectors in the ECI and ECEF frames, respec-
tively. P and N are the precession and nutation matrices. U denotes the Earth’s rotation
angle relating to dUT1. X and Y are the rotation matrices describing polar motion. All
the EOPs are provided by the International Earth Rotation and Reference Systems Service
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(IERS) regularly [26]. After converting the satellite orbits into the ECI system, we computed
the orbit errors between the ultra-rapid (ri,UR) and the final products (ri,Final):

∆ri = ri,UR − ri,Final (2)

Then, we can transform the orbit errors into the RSW frame [25]:

eR =
ri

‖ri‖
(3)

eS =
ri × vi

‖ri × vi‖
(4)

eW = eS × eR (5)

Rs
i =

[
eR eS eW

]S (6)

∆rs = Rs
i · ∆ri (7)

where eR, eS, eW are the three normal unit vectors in the RSW frame. ri and vi denote
the position and velocity in the inertial frame, respectively. Rs

i denotes the transformation
matrix. ∆rs denotes the error vector in the RSW frame. For Equations (3)–(7), the velocity
in the ECI frame is necessary. Since the original products do not provide any information
about the velocities, we computed them using numerical differentiation:

vi,t =
ri,t+1 − ri,t−1

2 · δt
(8)

where δt is the time difference between two adjacent epochs, which is 15 min in our case.
However, we did not have any information about the velocity at the very beginning and
end of each ultra-rapid product as indicated in Equation (8), which means we obtained a
sequence with a length of 190 instead of 192.

3.2.2. Feature Standardization

Then, we standardized the features to simplify the optimization process in the ML/DL
algorithms and improved their performance [28]. Since our data are temporal deviations
accumulating with time, as shown in Figure 3, we computed the ensemble mean values
and standard deviations of each feature at each individual time epoch:

f̂i,t =
fi,t − µi,t

σi,t
(9)

where fi,t and f̂i,t denote the original and standardized ith feature at the time epoch t. The
ensemble mean and standard deviation of the ith feature at the epoch t over all training
samples are denoted by µi,t and σi,t. The standardizing approach was realized using
StandardScaler in scikit-learn [29]. We first determined 95 scalers for each feature to deal
with the input epochs individually, and 95 scalers for the target based on the training set.
Later, these scalers were applied to the validation and test sets.

This standardization strategy was applied to all the input features (RSW differences).
Figure 4 shows 30 randomly selected examples of the RSW differences and corresponding
standardized RSW differences. The first column shows the radial errors, where we can find
that the proposed standardization clearly reduces the magnitudes while keeping the major
features. The severe accumulation problem of along-track errors is clearly reduced.
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Figure 3. The mean orbit differences of the GPS constellations with 1-σ intervals (top) and the
zoomed-in version of only the mean orbit differences (bottom).
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Figure 4. Thirty randomly selected samples of radial, along-track, cross-track differences (top) and
corresponding standardized unitless differences (bottom) of the GPS constellation.

3.3. Machine-Learning and Deep-Learning Algorithms

This section introduces the principles of the employed ML/DL algorithms. For clarity,
we categorize the tree-based model and multilayer perceptron as ML models and the
other neural networks with convolutional or recurrent mechanisms as DL models. For
the ML models, the input features were reshaped from (95, 3) into (285, 1) to meet their
requirements since they cannot consider the sequential relationship between input epochs.

3.3.1. Tree-Based Models

The first category of the tested ML methods are the tree-based models, from which
many geodetic studies profited due to their reasonable performance and good interpretabil-
ity [30–32]. We investigated Decision Tree (DT; [33]) and Random Forest (RF; [34]). A DT
consists of nodes, branches, and leaves. At each node, the data are split into two groups
and fed into branches based on specific criteria. The target at the root node is split into
targets at the sub-nodes, which are pursued with the lowest loss value. This process goes
on until the dataset is split into its smallest parts. RF is an ensemble of multiple tree-based
predictors. The data are randomly split into subsets, which are then processed separately
in different DTs. Therefore, the individual trees are less correlated, and the ensemble forest
can provide better generalizability. The final results are then obtained by averaging the
results of the individual trees. In this study, we implemented the tree-based models using
scikit-learn [29] with the hyperparameters tuned using Bayesian search [35,36].
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3.3.2. Multilayer Perceptron

The multilayer perceptron (MLP; [37]) model has been applied to different geodetic
time series [38,39]. An MLP has an input layer, an output layer, and multiple hidden layers
whose number of neurons can be arbitrarily chosen. Data in an MLP flows in a forward
direction from the input to the output layer. The hidden layers consist of neurons with
ReLU activation functions: f (x) = max(0, x). The results of each layer are passed to the
next one. The outputs of a neural network are compared with the corresponding labels to
compute the loss function. The weights are adjusted accordingly in the backward direction
based on the partial gradients of the loss function from the output layer to the input layer.

3.3.3. Convolutional Neural Networks

A convolutional neural network (CNN; [40]) is a specific type of neural network that
uses convolution in place of matrix multiplication in some layers. CNN-based models
can be applied to time-series data using the 1D convolutional operation. In this study,
we designed a CNN model as shown in Figure 5 with the detailed architecture shown
in Table A1 realized using TensorFlow [41]. After two 1D convolutional layers, we use a
flattening layer to convert the 2D vector (sequence and feature) into a 1D vector. Then, a
fully connected layer with 64 hidden neurons and activation function tanh is applied to
increase the non-linearity further. In the end, an output layer is applied.

𝑥1 𝑥2 𝑥3 𝑥4

ℎ1
1

𝑥5

ℎ2
1

ℎ1
2 ℎ2

2

…

ℎ3
1 …

Flattening layer

Fully connected layer

Output layer

Figure 5. The schematic representation of the CNN model used in this study. The inputs and hidden
states are denoted using x and h, respectively.

3.3.4. Recurrent Neural Networks

The major shortcoming of the traditional MLP for time-series modeling is that they are
not designed to incorporate sequential information properly. As a result, the performance
of the traditional MLP in analyzing a long time series is imperfect. One of the historic DL
models for processing sequential data is the Recurrent Neural Network (RNN; [42]). The
key idea of RNN is that the hidden state at epoch t is related to the external signals and
previous state. Two well-known difficulties in training an RNN model are the gradient
vanishing problem when the gradients are too small or the gradient exploding problem
when the gradients are too big [43,44]. To mitigate this problem, the Long Short-Term
Memory (LSTM; [45]) has been introduced, which is one of the most used RNN variants.
The LSTM neuron contains four gates: input gate (I), forget gate (F), output gate (O), and
cell state (C). Equation (10)–(14) show the complete mathematical representation of an
LSTM neuron:
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Ii,t = σ
(

UI
i · xt + WI

i · ht−1 + bI
i

)
(10)

Fi,t = σ
(

UF
i · xt + WF

i · ht−1 + bF
i

)
(11)

Oi,t = σ
(

UO
i · xt + WO

i · ht−1 + bO
i

)
(12)

Ci,t = Fi,t � Ci,t−1 + Ii,t � tanh
(

UC
i · xt + WC

i · ht−1 + bC
i

)
(13)

hi,t = tanh(Ci,t)�Oi,t (14)

where U and W are trainable weight matrices whereas b are biases. The subscripts de-
note the time epoch t of the ith neuron within a layer. The sigmoid and the hyperbolic
tangent activation functions are denoted by σ and tanh, respectively. The element-wise
product is represented by �. In this study, all the RNN architectures were combined with
the LSTM neurons since their performance on predicting geodetic time series has been
demonstrated [46–49].

A clear limitation of the original RNN architecture for our purpose is that the outputs
at earlier epochs do not sense the latter hidden states. Since the 24-h orbit predictions should
be related to the whole 24-h orbit observations, we should summarize all the information
contained within the first 24 h and use them to predict the differences in the next 24 h.
Multiple architectures exist that can provide sequential predictions by summarizing all the
information in the input sequence. In this study, we considered three options, as shown in
Figure 6.
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h1 …
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(a) Bidirectional

Figure 6. The schematic representations of the three architectures of RNNs used in this study. The
inputs and outputs are denoted by x and o, respectively. The hidden states are denoted by h, with the
context denoted by C. The trainable weights are represented by W, U, V.

The first option is bidirectional modeling (biLSTM; Figure 6a). The bidirectional
modeling includes additional connections from the latter hidden states to the foregone
hidden states, which is not feasible for real-time monitoring applications. However, if the
entire input sequence precedes the target sequence, we can use the bidirectional architecture
to let all the outputs sense the whole input sequence. The second architecture is called
sequence-to-one modeling (LSTM-s2o; Figure 6b), which only has one output at the end of
the sequence. This architecture is usually used to summarize a sequence and give one fixed-
size representation as output. In this study, we used this architecture first to summarize
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the information contained in the orbit differences of the 24-h observations and then fed
the output vector into two fully connected layers to predict the orbit differences in the
following 24-h predictions. Figure 6c shows the third solution using an encoder-decoder
architecture (EDLSTM; [50,51]). In the encoder, the input features are fed into an RNN
model and generate a context vector C, which summarizes the whole input sequence and
serves as input features of the decoder model. The context vector will be copied m times to
fit the length of the output sequence.

3.3.5. Combination of CNN and LSTM

Combining CNN and LSTM is beneficial for processing a sequence of images [52].
Presently, the idea of combining CNN and LSTM is becoming more noticeable in time-series
prediction as well. The motivation is that the one-dimensional CNN layers focus on local
areas and can extract high-level features. Then, LSTM layers can obtain these features and
capture the long-term dependency. In this study, we also designed a model to combine the
advantages of these two principles, as shown in Figure 7.

𝑥1 𝑥2 𝑥3 𝑥4

ℎ1
1

𝑥5

ℎ2
1

…

ℎ3
1 …0

Bidirectional LSTM layer

Time distributed dense layer

Output layer

Figure 7. Combination of CNN and bidirectional LSTM.

First, we treated the problem as a sequence-to-sequence problem, as shown in Figure 6a.
We kept the sequence length the same with the help of the padding option [28]. After
several 1D CNN layers, we connected the outputs to the LSTM layers, which means the
different channels were considered to be different features in the LSTM layers. Since the
high-level features extracted by the CNN layers usually do not contain all information of
the whole sequence, the bidirectional LSTM was preferred for our purpose. To this end,
each hidden state of the LSTM layer contains the information of the whole input time series
and is fed into different dense layers to obtain the outputs.

3.4. Evaluation Metrics

We evaluated our results in two aspects: (a) the ensemble average of all test samples at
individual time epochs (RMSt) and (b) the temporal average of an individual test sample
(RMSi). To evaluate the performances of our methods numerically, we defined three
different evaluation metrics as follows:

ỹi,t = yi,t − ŷi,t (15)

RMSt =

√
∑N

i=1 ỹ2
i,t

N
(16)

RMSi =

√
∑S

t=1 ỹ2
i,t

S
(17)
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PR =

Num

{
RMSi <

√
∑S

t=1 y2
i,t

S

}
N

· 100% (18)

where y, ŷ, and ỹ denote the original differences between ultra-rapid and final products,
predicted differences using the models, and reduced differences. The subscripts denote
the time epoch t of the ith sample. The number of samples and sequence length are
denoted by N and S. The positive ratio (PR) describes the proportion of samples that our
approach improves.

3.5. Kinematic Precise Point Positioning Using Improved Orbits

The kinematic PPP was performed using Bernese V5.2 [53] with state-of-the-art param-
eterization without ambiguity resolution due to the lack of phase biases. All the settings
and input data except for orbit products were kept the same for the three experiments to
keep consistency: The GFZ final clock and ERP products were used [23]. We estimated 2-h
tropospheric zenith delays and 24-h tropospheric gradients with an a priori model [54]. The
necessary ionosphere models were downloaded from the Center for Orbit Determination
in Europe (CODE; [55]) to compute the higher-order ionosphere corrections [56]. Following
the standard setting in Bernese GNSS data processing, an elevation cutoff angle of 3 degrees
was applied to the kinematic PPP processing.

To compare the impact of the three orbit products, we used 24-h arc lengths from GFZ
final estimated orbits, GFZ ultra-rapid predicted orbits, and LSTM-improved predicted
orbits. In the end, we estimated kinematic station coordinates and clock offsets jointly
for every epoch, namely epoch-wise station coordinates in the zero-difference and PPP
modes. To perform the analysis for a full year, we retrained the LSTM-s2o model, using
data from 2017 to 2020, and applied the model to the data in 2021. We generated three
solutions of station coordinates in 2021 using final estimations, ultra-rapid predictions, and
LSTM-improved predictions of GPS orbit products, respectively. The estimated coordinates
with a temporal resolution of 30 s were then compared to the IGS weekly SINEX solution
of GNSS station coordinates products [57].

4. Results and Discussion

In this section, we comprehensively report and discuss the performance of different
ML/DL algorithms. First, we will compare the different LSTM architectures to determine
the most suitable one. Then, we will compare the performance of all the other ML/DL
approaches and demonstrate the suitability of LSTM-s2o for our purpose. Ultimately, we
will report the results of kinematic PPP to the benefits of LSTM-improved orbit predictions
for positioning applications.

4.1. Comparison of Different LSTM Architectures

Figure 8 shows the RMSt of the improved orbits using the four LSTM models compared
to the original ultra-rapid orbit predictions. The statistics of the absolute improvements of
RMSt are shown in Table 1. The LSTM-s2o model has the best performance with maximum
3D improvements of 16.8 cm with the average improvements close to 10 cm. The maximum
relative improvement is remarkable and reaches 73% with an average relative improvement
of 47%. As a result, the improved orbit predictions can keep the difference under 10 cm for
up to 10 h. The LSTM-s2s perform worse than all the other architectures, especially in the
first epochs, since the outputs on the first few output epochs do not sense the information of
later input epochs, which is unreasonable for our purpose. On the other hand, the outputs
on the latter epochs contain more information about the input sequence. Therefore, the
performance of LSTM-s2s in the later epochs becomes better.
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Figure 8. RMSt [cm] of the differences between the orbit products enhanced using the four LSTM-
based models and the final orbit products. The differences between the original ultra-rapid and final
products are shown as reference.

Table 1. The maximum, average, and minimal absolute improvements of RMSt [cm] of the three
different LSTM architectures regarding the original ultra-rapid RMSt. The best performances are
highlighted in bold.

Radial Along-Track Cross-Track 3D
Max. Ave. Min. Max. Ave. Min. Max. Ave. Min. Max. Ave. Min.

LSTM-s2s 1.8 0.8 0.3 10.4 3.1 0 1.8 0.6 0 10.7 3.3 0.2
biLSTM 1.8 1.3 1.1 14.3 8.9 3.3 1.9 1.0 0.6 14.5 8.9 3.8

LSTM-s2o 1.8 1.3 1.1 16.7 9.7 3.8 2.0 1.1 0.7 16.8 9.7 4.3
EDLSTM 1.9 1.3 1.0 14.5 9.0 3.9 1.8 1.1 0.6 14.7 9.0 4.4

We notice that the LSTM-s2o slightly outperforms other candidates. The potential
reason for the worse performance of the biLSTM model is its limited performance in
describing long-term correlation. If the time gap between input and output epochs is long,
the correlations between the sequences decrease because of multiplications of multiple
weight matrices. Due to the orbital period of around 12 h for GPS satellites, the outputs
should have a high correlation to the inputs at 12 h (48 epochs) before, which is relatively
long and challenging for the biLSTM network. On the contrary, the EDLSTM should
perform better than the LSTM-s2o since it takes a similar final output of the LSTM layers
but considers it to be a context vector rather than an input vector for fully connected
layers. In the decoder, the sequential relationship between the epochs of the output
sequence is also considered. In our experiments, however, the EDLSTM shows slightly
lower performance than the LSTM-s2o model. A possible explanation is the overfitting
issue. We have 144,075 training samples. However, the EDLSTM model has more trainable
parameters due to the additional LSTM layers in the decoder (Table A1). Although the DL
models can usually keep good generality with more trainable parameters than training
samples, they may perform worse for certain complicated tasks.

We also studied the performance of the models on individual samples. Figure 9
shows the relative improvements of RMSi using the four LSTM-based models with the
positive ratio shown in Table 2. They demonstrate again that the sequence-to-sequence
architecture is, for our purpose, inferior, and all the other methods provide similar results.
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The other three models benefit from the periodicities of the GPS satellites and provide
positive impacts on the radial components for about 90% of the test samples. The along-
track component is the most important and challenging because of its large magnitude
caused by error accumulation over time. Overall, the three models can provide positive 3D
improvements to more than 75% of the test samples. The reason for the negative impact
on certain samples is that some of the original products already have relatively low RMSi,
and the errors of our models are more significant than the original differences between
ultra-rapid and final products. With a low original RMSi value, a small negative impact
can cause a large relative value. Our later analysis of the application of the enhanced orbit
predictions demonstrates that the cases with negative impacts are not critical for the overall
orbit quality.
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Figure 9. Relative improvements of RMSi using the four LSTM-based models regarding the original
ultra-rapid RMSi [%]. The edges of each box are the upper and lower quartiles. The data points that
exceed 1.5 interquartile ranges are denoted using dots. The four groups show the improvements of
radial, along-track, cross-track, and 3D RMSi.

Table 2. The positive ratio of the relative improvements using the four different LSTM-based models
regarding the original ultra-rapid errors [%]. The best performances are highlighted in bold.

Model Radial Along-Track Cross-Track 3D

LSTM-s2s 81 63 68 70
LSTM-s2o 88 70 75 77
biLSTM 89 70 74 77

EDLSTM 88 70 75 77

4.2. Comparison of Machine-Learning and Deep-Learning Models

In this section, we summarize the results of the applied ML/DL models. Based on
previous analysis, we only include the LSTM-s2o as the representation of LSTM-based
models since it had the best performance. Furthermore, we also added some CNN layers
before the LSTM layers to build the CNNLSTM model, which can explicitly extract high-
level features from the original inputs (RSW coordinates). Figure 10 shows the behavior of
the RMSt of the improved orbits using the six models compared to the differences between
the original ultra-rapid and final orbits with the statistics of the absolute improvements
of RMSt shown in Table 3. Overall, the DL models outperform the ML models because
of their higher capacity. The LSTM model still demonstrates superiority because of its
sequential modeling characteristics. DT shows only minor improvements with maximum
improvements of 3D RMSt of only 9 cm because of its relatively basic principle. RF is an
ensemble of multiple DTs and therefore provides more improvements with maximum
improvements of RMSi reaching 12.8 cm. MLP, CNN, and CNNLSTM show comparable
results, indicating that we do not clearly benefit from the 1D CNN layers.
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Figure 10. RMSt [cm] of the differences between the orbits enhanced using the six ML/DL models and
the final orbits. The differences between the original ultra-rapid and final products are shown as reference.

Table 3. The maximum, average, and minimal absolute improvements of RMSt [cm] of the different
ML/DL models regarding the original ultra-rapid RMSt. The best performances are highlighted in bold.

Radial Along-Track Cross-Track 3D
Max. Ave. Min. Max. Ave. Min. Max. Ave. Min. Max. Ave. Min.

DT 0.9 0.5 0.1 9.0 3.7 1.7 1.1 0.5 0.2 9.0 3.8 1.7
RF 1.1 0.5 0.2 12.7 5.0 1.9 1.4 0.7 0.2 12.8 5.0 2.0

MLP 1.3 0.8 0.3 14.2 9.1 5.0 1.4 1.0 0.4 14.3 9.1 5.3
CNN 1.5 1.0 0.7 13.0 7.6 2.7 1.9 1.0 0.5 13.2 7.6 3.3

LSTM-s2o 1.8 1.3 1.1 16.7 9.7 3.8 2.0 1.1 0.7 16.8 9.7 4.3
CNNLSTM 1.8 1.2 0.9 14.0 8.9 3.2 1.9 1.0 0.5 14.2 8.9 3.7

Figure 11 shows the relative improvements of RMSi using the six selected ML/DL
models with the positive ratio shown in Table 4. The DL models generally provide more
significant improvements with higher median values. However, the higher complexities of the
DL models result in larger interquartile ranges, which means the improvements are less stable.
This issue is expected to be mitigated if we include more training data. CNNLSTM has a more
compact box with a higher positive ratio, which implies that extracting high-level features can
make our predictions more stable. As a cost, it may not significantly reduce gross errors.
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Figure 11. Relative improvements of RMSi using the six ML/DL models regarding the original
ultra-rapid RMSi [%]. The edges of each box are the upper and lower quartiles, respectively. The
data points that exceed 1.5 interquartile ranges are denoted using dots. The four groups show the
improvements of radial, along-track, cross-track, and 3D RMSi, respectively.
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Table 4. The positive ratio of the relative improvements using the six ML/DL models [%]. The best
performances are highlighted in bold.

Model Radial Along-Track Cross-Track 3D

DT 73 61 67 67
RF 83 66 72 73

MLP 81 66 73 74
CNN 86 70 73 76

LSTM-s2o 88 70 75 77
CNNLSTM 88 72 75 78

4.3. Precise Point Positioning Using LSTM-Improved Orbits

After proving the abilities of ML/DL approaches to model the differences between
the ultra-rapid and final products, we analyzed the potential benefits of LSTM-improved
orbit predictions for positioning applications. For this purpose, we generated the LSTM-
improved orbits by adding differences predicted by the LSTM-s2o model to the correspond-
ing ultra-rapid orbit predictions. Then, we performed kinematic PPP to evaluate the impact.
We selected ten globally distributed IGS stations, as shown in Figure 12 to avoid potential
latitude-based biases. The observation files were downloaded from CDDIS [58].

BJFS

CHPI

DUND

GODEGOLD KITG

KRGG

NKLG

WTZA

ZIMM

Figure 12. The positions of the ten selected IGS stations.

Figure 13 shows the daily RMS of the estimated station coordinates regarding a
reference for 2021 using the three different orbit products after removing outliers with
daily RMS larger than ten times the median RMS. On average, about three days per year
(less than 1%) were detected as outliers and excluded from further analysis. For all the
components, the station coordinates using LSTM-improved orbit predictions outperform
those using ultra-rapid predictions in both accuracy and precision. The boxes of the LSTM-
improved orbits are significantly more compact than those using ultra-rapid orbits and
with lower upper boundaries. The largest errors are in the up component due to their
sensitivity to the satellite orbits [59], where our method provides consistent improvements
of more than 10%. The lowest improvement of our method occurs in the east component of
the NKLG station with relative improvements of 7%. One potential reason is its equatorial
location, where the GPS orbit errors are mainly projected into the north and up directions.
Moreover, the impact of the float ambiguity solution used in our processing is another
potential reason. The results indicate the efficiency of the LSTM-s2o model in reducing the
errors of ultra-rapid products. Considering the annual average RMS, the LSTM-improved
orbits have lower errors at all ten stations with an average improvement of 16%, which
indicates that the proposed method can provide improvements that are beneficial for
positioning applications.
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Figure 13. The daily RMS [cm] of the station coordinates estimated using kinematic PPP with different
orbit products for 2021. The box charts (left y-axis) show the RMS of the station coordinates using
final, ultra-rapid, and LSTM-improved orbits. The black dashed line (right y-axis) indicates the
relative improvements of the average RMS using LSTM-improved orbits compared to those using
ultra-rapid orbit products.

5. Conclusions and Outlook

In this study, we applied different ML/DL algorithms to model the differences between
the GPS ultra-rapid and final orbit products. The differences within the 24-h observation
interval of the ultra-rapid products are used as input features, while the differences within
the 24-h prediction interval of the same ultra-rapid products serve as targets for the ML/DL
models. In this context, the ML/DL models capture the non-linear relationship between
the 24-h observations and the 24-h predictions. Our analysis shows that all the studied
ML/DL models can stably model the differences and achieve significant improvements in
orbit predictions. Comparing the performance of different methods, we conclude that the
LSTM models are the most suitable because of the time-series characteristic of the satellite
orbits. The LSTM model with sequence-to-one modeling achieves the best performance
with a maximum absolute improvement of 16.8 cm and averaged relative improvements
over 45% in the aspect of RMSt. Additionally, it achieves stable improvements for more than
76% of test samples, which proves the sufficient generalization of the proposed method. The
improved GPS orbits have an accuracy better than 10 cm over 10 h, which is 2.5 times longer
than the original ultra-rapid orbits (4 h). We then applied the LSTM-improved orbits to
estimate the coordinates of ten IGS stations globally and compared the results with the esti-
mated coordinates using final and ultra-rapid orbits. The coordinates using LSTM-improved
orbits are more accurate than those using ultra-rapid orbits by 16%. The results proved the
potential benefits of the orbits enhanced by ML/DL methods for geodetic applications.

This study demonstrated the potential of applying data-driven ML/DL models to correct
the systematic errors of the physics-based orbit propagators. The promising results revealed
the prospect of combining the physics-based orbit propagator and the data-driven ML/DL
algorithms to improve precise orbit predictions further. With the help of ML/DL algorithms,
the limitations of the physics-based orbit propagator can be reduced to a certain degree.
Moreover, the benefits of improved orbit predictions for positioning applications have been
demonstrated. However, we should emphasize that the proposed method cannot be opera-
tionally applied due to the lack of high-quality references (final product) in this setting. In the
future, combining the proposed methods with physics-based propagators for orbit predictions
with time horizons longer than one day appears to be promising. In this case, we can benefit
from the overlap of ultra-rapid orbit products and rapid orbit products and enhance the orbit
predictions for the later epochs. One of the examples is the 5-day orbit prediction products
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provided by CODE [60]. We may benefit from their 1-day overlap with rapid products and
enhance the orbit predictions for the next four days. As a result, the improved orbit predictions
can be generated operationally and contribute to real-time applications.
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Appendix A. Model Architectures

The detailed implementations of the used deep-learning models are described in Table A1.

Table A1. Architectures of the used deep-learning models. The order follows the description in
Section 3.3.

Model Layer Output Shape Number of Parameters

CNN

Conv1D (None, 92, 16) 208
Conv1D (None, 89, 16) 1040
Flatten (None, 1424) 0
Dense (None, 64) 91,200
Dense (None, 95) 6175

LSTM-s2s

LSTM (None, 95, 128) 67,584
LSTM (None, 95, 64) 49,408
LSTM (None, 95, 32) 12,416

TimeDistributed(Dense) (None, 95, 32) 1056
TimeDistributed(Dense) (None, 95, 1) 33

biLSTM

Bidirectional(LSTM) (None, 95, 256) 135,168
Bidirectional(LSTM) (None, 95, 128) 164,352
Bidirectional(LSTM) (None, 95, 64) 41,216

TimeDistributed(Dense) (None, 95, 32) 2080
TimeDistributed(Dense) (None, 95, 1) 33

LSTM-s2o

LSTM (None, 95, 128) 67,584
LSTM (None, 95, 64) 49,408
LSTM (None, 32) 12,416
Dense (None, 128) 4224
Dense (None, 95) 12,255

EDLSTM

LSTM (None, 95, 128) 67,584
LSTM (None, 128) 131,584

RepeatVector (None, 95, 128) 0
LSTM (None, 95, 64) 49,408

TimeDistributed(Dense) (None, 95, 64) 4160
TimeDistributed(Dense) (None, 95, 1) 65

CNNLSTM

Conv1D (None, 95, 4) 52
Conv1D (None, 95, 8) 136
Conv1D (None, 95, 16) 528

Bidirectional(LSTM) (None, 95, 60) 11,280
Bidirectional(LSTM) (None, 95, 25) 8400
Bidirectional(LSTM) (None, 95, 14) 2016

TimeDistributed(Dense) (None, 95, 1) 15

https://doi.org/10.5880/GFZ.1.1.2020.004
https://doi.org/10.5880/GFZ.1.1.2020.002
https://doi.org/10.5880/GFZ.1.1.2020.002
https://doi.org/10.5880/GFZ.1.1.2020.002
https://hpiers.obspm.fr/eop-pc/index.php?index=matrice
http://ftp.aiub.unibe.ch/CODE/IONO/
https://doi.org/10.5067/GNSS/gnss_igssnx_001
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