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Abstract: This paper presents a study on enhancing the efficiency of underwater gravity matching
navigation path planning in a three-dimensional environment. Firstly, to address the challenges of
the computational complexity and prolonged calculation times associated with the existing three-
dimensional path planning algorithms, a novel Three-Dimensional Along-Path Obstacle Profiling
(TAOP) algorithm is introduced. The principles of the TAOP algorithm are as follows: (1) unfolding
obstacles along the path using the path obtained from two-dimensional planning as an axis, interpo-
lating water depth values based on downloaded terrain data, and subjecting obstacles to dilation
treatment to construct a dilated obstacle profile for path segments; (2) conducting height direction
course planning and a secondary optimization of the path based on the profile contours of the dilated
obstacles; and (3) integrating height planning with the path points from two-dimensional planar
planning to obtain a complete path containing all turning points in the three-dimensional space. Sec-
ondly, gravity anomaly data are utilized to delineate gravity suitability areas, and a three-dimensional
planning environment that is suitable for underwater gravity matching navigation is established
by integrating seafloor terrain data. Under identical planning environments and parameter condi-
tions, the performance of the TAOP algorithm is compared to that of the RRT* algorithm, Q-RRT*
algorithm, and Depth Sorting Fast Search (DSFS) algorithm. The results show that, compared to the
RRT* algorithm, Q-RRT* algorithm, and DSFS algorithm, the TAOP algorithm achieves efficiency
improvements of 15.6 times, 5.98 times, and 4.04 times, respectively.

Keywords: Three-Dimensional Along-Path Obstacle Profiling algorithm; underwater gravity matching
navigation; three-dimensional path planning efficiency; RRT*; Q-RRT*

1. Introduction

Currently, inertial navigation systems are the primary navigation tools used for un-
derwater vehicles. They do not rely on external information and can provide real-time,
continuous, autonomous, and all-weather data such as position, velocity, acceleration,
and attitude, meeting the requirements of underwater navigation for concealment and
reliability [1-4]. However, the drift error of inertial devices accumulates over time, leading
to a gradual decrease in the navigation accuracy of the inertial navigation system, which
cannot meet the accuracy requirements for long-duration missions. Therefore, regular
calibration using other navigation methods is necessary [5,6].
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Gravity matching navigation utilizes variations in the Earth’s gravity field for po-
sitioning and does not require signal transmission and reception. It possesses strong
anti-interference capabilities and can meet the requirements of underwater navigation
for concealment and positioning reliability, making it one of the most suitable navigation
methods for aiding inertial navigation systems [7-9]. Gravity matching navigation acquires
the gravity-related information of the current position using a gravity sensor. By comparing
the real-time measurements with a prestored gravity field reference map and employing
suitable matching and solving algorithms, the position of the vehicle is estimated, thus
correcting the navigation errors of the inertial navigation system. The positioning accuracy
and success rate of gravity matching navigation are closely related to the distribution of
gravity field characteristics in the navigation area. The same matching algorithm exhibits
different matching effects in regions with different gravity features, and areas with rich
gravity features can significantly improve the matching accuracy [10]. Therefore, to ensure
the effectiveness of gravity matching navigation, it is necessary to evaluate the suitability of
the navigational area based on gravity features and plan the trajectory in accordance with
the distribution of suitability, ensuring that the trajectory remains within the suitable region.

Traditional underwater gravity matching navigation path planning algorithms are
typically based on two-dimensional maps and cannot effectively adapt to the complex un-
derwater terrain and obstacles [11-13]. Researching and applying path planning algorithms
for underwater three-dimensional space is of great significance in advancing underwater
autonomous navigation technology and enhancing the safety and reliability of underwater
devices. Despite significant achievements in two-dimensional path planning algorithms, ex-
tending them directly to three-dimensional space is not a straightforward task. Compared
to the two-dimensional plane, a three-dimensional space involves more degrees of freedom
and a more complex physical environment, which imposes higher requirements on path
planning algorithms. For instance, in terms of computational complexity and storage space,
three-dimensional path planning algorithms need to overcome greater challenges. Cur-
rently, the commonly used three-dimensional path planning algorithms include the artificial
potential field method, A* algorithm, ant colony algorithm, and rapidly exploring random
tree (RRT) algorithm. The artificial potential field method is a path planning approach that
mimics natural potential fields. It constructs an artificial potential field where the target
exerts attraction on objects and obstacles exert repulsion, causing objects to move in the
direction of the potential field gradient to reach the destination. However, this method can
sometimes result in objects becoming trapped in local minima and being unable to reach
the target location, thus not guaranteeing a solution [14,15]. The A* algorithm is a heuristic-
based path planning method that utilizes cost functions to obtain information about the
distance to the goal, directing the search towards finding the path with the minimum cost
and shortest distance. However, this method has limited real-time performance, with large
computational requirements and long processing times for each node. As the number of
nodes increases, the efficiency of the algorithm decreases [16,17]. The ant colony algorithm
is a heuristic path planning method that simulates the foraging behavior of ants, treating
the target as a food source and obstacles as impassable regions. It finds the optimal path by
updating the pheromone concentration. The ant colony algorithm has strong robustness
and can be combined with other algorithms. However, its convergence speed is relatively
slow in the initial stage, and it is sensitive to the selection of initial solutions [18,19].

The RRT algorithm is a randomized search-based path planning method that con-
structs a random tree to explore the state space and quickly find a feasible path from the
start point to the goal. The algorithm starts with an initial state as the root node and
randomly samples a state at each iteration, attempting to connect it with the nearest state
in the tree. If the connection is successful (without intersecting obstacles and satisfying
other constraints), the new state is added to the tree [20,21]. Traditional RRT algorithms can
find feasible paths, but they are not necessarily optimal and have slow convergence speeds
and long search times. The RRT* algorithm improves upon this by introducing the process
of reselecting the parent node for new nodes within a certain radius and rewiring nearby
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nodes. This modification enables the RRT* algorithm to exhibit asymptotic optimality,
meaning that as the number of iterations increases indefinitely, the found path tends to be
optimal. However, the convergence speed of the algorithm is influenced by the size of the
bounding hyperball. Increasing the radius leads to a significant increase in the number of
nodes within the hyperball, resulting in longer computation times [22-25]. To improve the
search efficiency of the RRT* algorithm, the Q-RRT* algorithm extends the range of parent
node selection for new nodes and nearby nodes based on the triangle inequality, which can
generate better initial paths and achieve a faster convergence speed [26,27]. RRT-based algo-
rithms exhibit significantly reduced search efficiency when dealing with high-dimensional
spaces and complex obstacles, leading to a substantial increase in the required number of
iterations and computation time [28-32]. The Depth Sorting Fast Search (DSFS) algorithm
enhances the efficiency of the parent node reselection process and rewiring process by uti-
lizing the inequality relationship between ancestor nodes and their descendants. It achieves
this by selecting candidate nodes in depth-first order, thereby reducing the number of
nodes that require collision detection and effectively saving computation time [33].
Differing from previous research, this paper proposes a novel Three-Dimensional
Along-Path Obstacle Profiling (TAOP) algorithm aimed at further enhancing the efficiency
of underwater gravity-matching navigation in three-dimensional environments. The TAOP
algorithm decomposes three-dimensional path planning into two-dimensional planning
and a height planning phases. It can be seamlessly integrated with existing planar path
planning algorithms, thereby circumventing the low computational efficiency issue of
current path planning methods in three-dimensional scenarios. Additionally, by combining
gravity anomaly data and seafloor terrain data, a three-dimensional planning environment
that is suitable for underwater gravity-matching navigation is established, and performance
simulation tests for route planning are conducted within this environment. Through a
comparison of the RRT*, Q-RRT*, and DSEFS algorithms, various factors including the
initial path quality and computation time are evaluated. This validation demonstrates
that the TAOP algorithm is capable of achieving rational path planning for underwater
gravity-matching navigation and effectively improving planning efficiency.

2. Three-Dimensional Along-Path Obstacle Profiling Algorithm

When performing three-dimensional path planning for underwater gravity-matching
navigation, it is necessary to consider both gravity suitability, to ensure the normal op-
eration of the navigation system, and seamount constraints, to ensure safe navigation.
When RRT-based algorithms directly sample in three-dimensional space, the collision de-
tection of the edges of the random tree requires both being in a gravity suitability grid and
maintaining a safe distance from the seamount in the height direction, which places high
demands on the nodes. The number of invalid nodes sampled in a three-dimensional space
far exceeds that in the plane, which leads to a very high failure rate of collision detection,
an excessive computational load, and a slow convergence of the planning algorithm. The
calculation time is too long, and even feasible solutions cannot be found. Moreover, when
the sampling range covers the entire three-dimensional planning space, the effective nodes
are dispersed, resulting in large path volatility and a high path cost. In addition, each
time collision detection is performed, it is necessary to interpolate the water depth at each
detection point on the path to ensure a safe distance from obstacles. However, interpolation
in large-scale terrain data is a time-consuming computational step, which greatly affects
the computation time.

To address these issues, this paper proposes the Three-Dimensional Along-Path Ob-
stacle Profiling (TAOP) algorithm, which transforms three-dimensional path planning
into two separate processes: two-dimensional planar planning and height planning. First,
based on the gravity suitability distribution map, a two-dimensional planning algorithm
is employed to plan the planar path points. Next, obstacles along the path are unfolded
along the planar path axis, and interpolation is used to generate a seamount obstacle profile
graph with the distance from the starting point along the path as the horizontal axis and
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the elevation information as the vertical axis. Finally, by utilizing the obstacle profile infor-
mation, the height of the path points is planned to ensure safety in the height direction. The
TAOP algorithm separates height planning from planar planning, and gravity suitability
actually only acts on the planar directions of the latitude and longitude, where planar
planning is directly related to gravity suitability. Using planar planning to sample in a
two-dimensional plane can reduce the number of invalid sampling nodes significantly, and
it does not require the consideration of the impact of seamounts on the height, which greatly
reduces the amount of collision detection calculations. The interpolation operation is only
performed once in the preprocessing stage to generate the profile of the obstacle, effectively
shortening the calculation time. The TAOP algorithm unfolds the profile of the obstacle
along the path after planar planning, and it generates a three-dimensional path based on
the profile contour according to height planning, which can be used in combination with
most two-dimensional planning algorithms.

The TAOP algorithm mainly includes four steps, with the basic procedure shown in
Algorithm 1 and the schematic diagram shown in Figure 1: planar path point data prepro-
cessing (Preprocess — TAOP), path coarse planning (CoarsePlan — TAOP), path secondary
optimization (Optimize — TAOP), and path point integration (Integrate — TAOP).

Algorithm 1 TAOP (Ppre/ Aobs, ddelta)

P4 < Preprocess — TAOP (Ppre, dobs, Adelta) ;
P < CoarsePlan — TAOP(Py);
Popt +— Optimize — TAOP(P;);
Prer < Integrate — TAOP (Ppre, Popt) ;
return Prer;

Explanation of parameters in Algorithm 1:

Ppre: The set of planar path points;

dops: The safe distance from terrain obstacles;

dgelta: The interval distance when generating the obstacle profile;
P4: The set of location points to be verified;

P;: The set of coarse planned path points;

Popt: The set of secondary optimization path points;

Pmer: The set of integrated path points.

I~

Planar path points data P,

T Coarse planning

@

I

P
Path points integration | Secondary optimization
P g l— "y op

(©)
I

Figure 1. The schematic diagram of TAOP algorithm.

The first step is planar path point data preprocessing. After obtaining the planar
polyline path from two-dimensional planning, the TAOP algorithm performs a ‘straight-
ening’ operation on the path. ‘Straightening’ is equivalent to coordinate transformation.
The points on the planar path are no longer represented by the latitude and longitude
or the coordinates in the two-dimensional planning space, but by the two-dimensional
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path distance s (not Euclidean distance) between them and the starting point of the path.
Specifically, let Ppre (P%,re, Porer P;’fre) be the set of planar path points generated by the

two-dimensional planning algorithm, let m be the total number of path points obtained
via two-dimensional planning, and let each point ppre contain position information (x,y)

in the two-dimensional space. In each vector segment formed by adjacent path points
— — —

(i.e., p%,re p}%re,p}%re pgre,. . .,p}’)”rglp;)”re), divide the vector into equal intervals of given interval
distance dgejt, and uniformly insert interval points. Calculate the positions of each interval
point, as well as its distance s from the starting point pinit, in the two-dimensional plane.
Include the (x,y,s) information for each point pe and add it to the interval point set Pe.
Then, unfold the obstacles along the path onto a plane, which is equivalent to ‘slicing’ the
obstacles in a three-dimensional space. To obtain the height information of the obstacles
along the path, obtain the depth /) at the location corresponding to each interval point by
interpolating the downloaded terrain data based on the latitude and longitude. Expand the
information of point pe to (x,,s, ho). Then, set the distance of each point on the ‘straight-
ened’ path from the starting point as the horizontal axis, and set the depth value of the path
points as the vertical axis, as shown in Figure 2. Point A and point B represent the starting
point and target point of the path planning, respectively. The solid line contour in the figure
represents the profiles of obstacles along a path generated via two-dimensional planning.

o

B

= === Dilated obstacle contour
— Original obstacle contour

h/m

s/m

Figure 2. Profile contour of obstacles along a path.

To ensure the safety of navigation, the planned path needs to maintain a certain safe
distance dgps from the obstacles. Therefore, the obstacle profile is dilated. The original
depth hy of each interval point is extended by a distance d,,s along the outer normal
direction of the profile edge to obtain the dilated depth /, and the information for the
point pe is updated to (x,y, s, h). The dashed line contour in Figure 2 represents the dilated
profiles of the obstacles.

In the subsequent coarse planning phase, the TAOP algorithm will continuously adjust
the height of the path by comparing the obstacle’s dilation depth at interval points with the
height of the current planned path at that location. Therefore, the smaller value between
the starting point depth and the target point depth is set as /iin, and the intervals with
a puffed depth value of less than /i, in the interval point set P are deleted, as they do
not affect the path direction. The remaining interval points are sorted in descending order
based on their corresponding puffed water depth values, and these interval points are used
as the set of points Py for verification. The pseudocode for the preprocessing process of the
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planar path point data is described in detail in Algorithm 2, and the schematic diagram is
shown in Figure 3.

Algorithm 2 Preprocess — TAOP(Ppre, Aopbss Adelta)

P +— T,

Py + 9;

dtoi «—0;

fori=1tom—1do
Pé + Segment (p;)re/ P%)Jrrg /ddelta> ;
Pi.s ¢ Pls+dyi;

Pe < P.UPL;
dtoi — dtoi + d(pi)re/ pi:j;el) ;
end for

Pe.h < Gridalt(Pe, At7terrain) 5
Pe.h — Po.h + dgpg;
for all pe € P do
if pe.h > min (pmit.h, Pgoal-h) then
Py = PqU{pe};
end if
end for
return Pg;

lﬁm

Divide the planar path vector
at equal intervals dyy, and
obtain the (x, y, 5) information
of each interval point

Interpolate to obtain water
depth values and expand the
interval point information to
©, y, 5, 1)

[

Remove points in the interval

oint setpwhere I is less than E =10 G r iy GRS o
P ) b o e <«——  and update the interval point
hpin and  sort them in

descending order of /i infnmtibnligl Ll

[:

Figure 3. The schematic diagram of the planar path point data preprocessing.

The second step is the coarse planning of the path. After establishing a profile map of
the obstacles along the path segment, connect the path starting point pj,i; with the target
point pgoq as the highly planned initial path, and initialize the planned path point set P to

{pinit, pgoal}- For each position point pq in the set Py to be verified, locate the minimum

interval (pi~!, pi) of the planned path based on its two-dimensional path distance s from
the path starting point. Here, i — 1 and i are, respectively, the serial numbers of the front
and rear ends of the path segment. Based on the two-dimensional path distance and
the height between the path points at both ends of the interval and the starting point, as
shown in Figure 4, calculate the height /;, (the height of intersection in Figure 4) of the
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path at the horizontal coordinate of the position to be verified according to the principle of
similar triangles:

pirlh—hy  pgs—pils
pilh—pih pls—pils

(pih— pi~th) x (pg.s — piLs)
pis—pils

where pg represents the location point to be verified, pi~! and p! represent the path points

before and after the smallest interval of the planned path that has been located, s and &

represent the path distance and water depth from the starting point, respectively, and h,
represents the height of the planned path at the abscissa of the location point to be verified.

M

he = pith+

@

e  Planned path point
o  Unverified location point
x Intersection

——— Planned path

—=-== Dilated obstacle contour
Py — =~ Auxiliary line
A~ w

h/m

s/m

Figure 4. Principle of coarse planning.

Compare the calculated path height /i, with the p4.h value of the position to be verified.
If hy < pq4.h, this indicates that the current planned path passes through obstacles or cannot
maintain a safe distance from the obstacles at this position, and the path needs to be
corrected. Take p4 as a new path point and insert it into the middle of the front and rear
end points of the located minimum interval, pi~! and pi. The pq.h value at this position is
the new path height, as shown in Figure 5.

[ ] Planned path point
Planned path

—=-—=Dilated obstacle contour

h/m

s/m

Figure 5. Adding a new path point in coarse planning.
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If hy > pq.h, this indicates that the current planned path can maintain a safe distance
from the obstacles at this position and no path correction is necessary. The pseudo code of
the path coarse planning process is shown in Algorithm 3.

Algorithm 3 CoarsePlan — TAOP(Py)

P+ {pinitr pgoal} ’
for all pq € Pydo
for i = length(P;) to 2 (step = —1) do
if pg.s < pl.s then
e < pi~Lh+ (pi.h - pi‘l.h> X <pd.s - pi_l.s) / (pi.s - pi_l.s) ;
if iy < p4.h then
Py < Insert(Pr, pq,i);

break
end if
end if
end for
end for
return P;;

The third step is the secondary optimization of the path. After traversing the point
set P4 to be verified, a set of path points that can safely pass through obstacles is obtained.
However, this path may contain a certain number of redundant points, resulting in an
increase in the total length of the path and the number of turns, which affects the efficiency
of path planning. The optimization process can be used to identify and remove redundant
points in a path. If there are no obstacles on the line between two path points, one of
the points can be directly removed, thereby reducing unnecessary points on the path and
making the path smoother, simpler, and more efficient.

For each path point p; in the path point set P;, check whether each point can directly
connect with all non-adjacent points behind it. Suppose that the path points passed by the
non-adjacent path points, pi and pi, are plr‘ € P. (wherek=i+1,---,j—1), and that the
corresponding planning height is pX.h. After connecting pi and pl, the height iX (where
k=1i+4+1,---,j—1) at the intersection point of the intermediate path point’s horizontal
coordinate on this line can be calculated according to the similarity triangle principle,
as shown in Figure 6. Therefore, the intermediate path point’s horizontal coordinate
corresponding to the height /¥ (the height of intersection in Figure 6) on this line can be
obtained according to the similarity triangle principle:

pih—nE  pks—pls

pih—pih  prs—phs

(phn—pin) x (pls = pis)
phs — pi.s

Compare the planning height pk.h of all intermediate path points with the height X at
their horizontal coordinates on the connecting line. If Vpk.h < K, this indicates that the

®)

nE = plh+ (4)

path between the path points pi and p/r can be optimized, so delete the intermediate path

points and directly connect pi and pl; if 3pk.h > hE, the path between pl and p} remains

unchanged. The optimized path is Pypt, and the pseudo code of the secondary optimization
is shown in Algorithm 4.
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° Planned path point
X Intersection
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— == Auxiliary line

h/m

s/m

Figure 6. Principle of secondary optimization.

Algorithm 4 Optimize — TAOP(P;)

while i < length(P;) —1 do
reconnect_status < false;
for j = 2 to length(P;) do
nuMpass < 0;
fork=i+1toj—1do
HE «— plh+ (p]r.h - pi.h) X (p’r‘.s — plr.s) / (p’r.s - plr.s);
if Kk < pk.h then

break
else
NUMpass <— NUMpags + 1;
end if
end for
if numpass = j —i—1then

P Pr\{plrc}kzﬂlf--,j—l;
reconnect_status <— ture;
break
end if
end for
if reconnect_status = false then
i+—i+1;
end if
end while
Popt — Pr;
return Popt;

The fourth step is path point integration. Due to the fact that the obstacle profile along
the route is obtained based on the ‘straightened’ planar planning path points, which is
equivalent to the artificial omission of the turning points in the x — y plane, the path point
set Popt after the second optimization only contains the turning points in the s — h plane. It
is necessary to integrate the path points from the height planning and the two-dimensional
planar planning to obtain a complete path Pper that includes all of the turning points in
the three-dimensional space. The specific implementation of the path point integration
algorithm is given in Algorithm 5.
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Algorithm 5 Integrate — TAOP (Ppre, Popt)

Ppre-h < Interp(Popt.s, Popt-h, Ppre-5) ;
Pmer < Sortrows(Ppre, 5) ;
for all popt € Popt do
if not Ismember (popt.s, Pmer.s) then
for i = 2 to length(Pmer) do
if popt.s < Plier-s then
Prer < Insert(Pumer, popt, i) ;
break
end if
end for
end if
end for
return Pper;

The TAOP algorithm involves the following function explanations:

Segment: Given two points, ps and pq4, and a distance, d, divide the vector pgﬂd with
equal intervals d starting from ps, calculate the positions (x, y) of all the interval points and
their distances s from ps, and return the set P(x, y,s) of all the interval points that contain
the point ps.

Gridalt: Given a struct array P containing position information (x,y) and a terrain
array Artierrain containing latitude, longitude, and altitude information, convert the position
coordinates (x,y) in P into latitude, longitude, and altitude (Xjon, Yiat) (X10n, Y1at ), interpolate
the latitude and longitude values into the terrain array At7terrainA""terrain to Obtain the
height values h for all of the coordinates in P and return it.

length: Given an array P, return the length of P.

Insert: Given a set P, a point pq4, and a positive integer i, insert the point pq into the
ith position of the set P:.

Interp: Given an array Arry containing the values of x, an array Arr, containing
the values of y, and an array Arr,’ containing the values of x to be queried, use linear
interpolation to calculate and return the corresponding y values for all elements in Arry’.

Sortrows: Given a struct array P and a field in it, sort the elements of the array P in
ascending order by the given field.

Ismember: Given a number x and an array Arr, return a logical value as true if x is
present in Arr, and return a logical value as false otherwise.

3. Simulation
3.1. Simulation Environment

In this article, a latitude range of 7°N to 10°N and a longitude range of 112°E to
116°E are selected as the navigation space for the underwater vehicle. The source of the
gravity anomaly data (version V29.1) and submarine topographic data (version V19.1)
is the website of the Scripps Institution of Oceanography at the University of California,
San Diego (https:/ /topex.ucsd.edu/, accessed on 7 February 2023), with a resolution of
1" x 1'. The gravity anomaly data in the area are a maximum of 131.9 mGal, a minimum
of —60.3 mGal, an average of 17.1 mGal, and a standard deviation of 26.1 mGal. The
maximum depth of the seabed data is 0 m, the minimum is —3408 m, the average is
—1769.9 m, and the standard deviation is 659 m. The three-dimensional gravity anomaly
and three-dimensional submarine topographic datum maps of the experimental area are
shown in Figures 7 and 8.
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Figure 7. Three-dimensional digital terrain reference map of sea floor.
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Figure 8. Three-dimensional marine gravity anomaly reference map.

One prerequisite for gravity matching navigation to work effectively is that the grav-
ity features of the area to be matched need to have good suitability. The characteristic
parameters of the gravity field matching area are important factors that affect the posi-
tioning accuracy and matching probability. During navigation, gravity matching should
be performed in areas with obvious gravity field features. The suitability of the gravity
field can be measured using various indicators, and different indicators can reflect different
characteristics of the gravity field. By fusing information from multiple gravity feature
parameters, a more comprehensive and effective evaluation of the working area of gravity
matching navigation can be made. However, the division method of the suitability area is
not the focus of this article, so in this article, a single characteristic parameter, the standard
deviation of gravity anomaly, is used to divide the suitability area and non-suitability area
of gravity matching navigation.

The standard deviation of the gravity field can reflect the degree of dispersion and
overall undulation of the gravity anomaly sequence. The larger the standard deviation, the
richer the gravity information. The calculation formula for the standard deviation is [34]

(5:

1 a b
T L) —g) 5)

i=1j=1

a b
g= ) ) gli)) ©
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where ¢ represents the standard deviation of gravity anomalies, a and b represent the
number of grids in the x and y directions within the moving window, g( i,] ) represents
the gravity anomaly at the calculation point (i, j), and g represents the average value of
the gravity anomalies. When g(i, ) is divergent, the value of ¢ is large; when g(i,j) is
concentrated, the value of § is small. The selection criterion for the suitability area is

o> 50 (7)

where 4 is the threshold for dividing the suitability area and non-suitability area.

Using a moving computational window with a resolution of 10’ x 10’, the local gravity
field standard deviation was calculated as described above. After extensive matching
experiments and a statistical analysis of the positioning errors and matching success rates
with different thresholds, regions with a gravity anomaly standard deviation greater than 5
were found to have better suitability. Therefore, a threshold value of §y = 5 was selected,
and a two-dimensional gravity suitability grid was established, as shown in Figure 9. The
black portion represents the non-suitability grid, while the white portion represents the
suitability grid.
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Figure 9. Suitability division of gravity matching area (theory).

To ensure the safety of navigation, it is usually necessary to avoid dangerous areas
such as shoals and reefs when planning a route. Using the seabed topographic data within
the planning area, a safe depth of 100 m is set to extract the distribution of dangerous areas,
as shown in Figure 10. The dangerous areas in Figure 10 are removed from Figure 9 to
obtain the gravity suitability distribution map, as shown in Figure 11. The seabed digital
model within the planning area is divided into three regions: a non-suitability area, a
dangerous area, and a suitability area. The black portion is the non-suitability area with
poor positioning and matching effects; the gray portion is the dangerous area, which is not
suitable for navigation; and the white portion is the suitability area, and the planned route
can only pass through this area to reach the destination.
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3.2. Evaluation Method

This section compares the performance of the TAOP algorithm with those of the RRT*
algorithm, Q-RRT* algorithm, and DSFS algorithm for three-dimensional path planning in
the environment set forth above, and it evaluates the improvement of the TAOP algorithm in
planning efficiency. The # symbol represents the path planning efficiency of the algorithm,
which is the amount of work completed per unit time by the algorithm. The workload of
the path planning algorithm is set as the ratio of the shortest cost ¢y to the cost ¢ obtained
from the planning, which is called the cost optimization ratio. When the cost generated by
the path planning algorithm approaches the shortest cost, the value of the cost optimization
ratio approaches 1. Therefore, the calculation formula for path planning efficiency is

Cmin
= 8
=" ®)
In addition, due to the presence of terrain obstacles in the area studied in this paper,
the actual shortest cost is difficult to calculate directly, so the shortest cost cpin is set to
the shortest distance between the starting point and the target point when no obstacles
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are present. The coordinates of the starting point of the path planning are set as (112.7°E,
9.4°N, —300 m), and the coordinates of the target point are set as (115.3°E, 7.9°N, —200 m).
According to the Haversine formula, the shortest cost is approximately 3.31 x 10° m.

Three sets of comparative simulation experiments for path planning were conducted:
(1) the RRT* algorithm versus the TAOP algorithm; (2) the Q-RRT* algorithm versus the
TAQP algorithm; and (3) the DSFS algorithm versus the TAOP algorithm. To ensure the
fairness of the experiments, the TAOP algorithm’s planar planning path was generated us-
ing the two-dimensional form of the counterpart algorithm’s initial path. In the simulation
results, ‘R” and ‘TR’ denote the “Three-Dimensional RRT* algorithm” and “TAOP algorithm
(using two-dimensional RRT* algorithm for planar planning)’, ‘Q” and ‘Tq" denote the
‘Three-Dimensional Q-RRT* algorithm” and “TAOP algorithm (using two-dimensional Q-
RRT* algorithm for planar planning)’, and ‘D" and ‘T’ denote the “Three-Dimensional
DSFS algorithm” and ‘TAOP algorithm (using two-dimensional DSFS algorithm for planar
planning)’. To validate the time-saving effect of the TAOP algorithm in collision detection
without the need for depth interpolation, the total collision detection time during the
planning process, denoted as ‘t.,;’, was recorded. Additionally, the initial cost cjnjt and
the computation time f;n;: were calculated to evaluate the efficiency of the algorithms in
planning the initial path. During testing, each algorithm was independently run 50 times
under identical simulation parameters. The specific experimental parameter settings are
detailed in Table 1.

Table 1. Parameter settings for path planning simulation.

Parameter Name Symbol Value Unit
Threshold radius of the target area Tthre 100 m
Maximum number of iterations N 10,000

Extended step size P 5000 m
Selection radius for ChooseParent and Rewire procedures r 10,000 m
Maximum depth of ancestors n 2

4. Results

Table 2 presents the experimental statistical results of the six algorithms in terms
of the total collision detection time f.. In this table, Q1, Q2, and Q3 represent the first
quartile, median, and third quartile of the data, respectively. Figure 12 provides a visual
representation of the distribution of the total collision detection time ¢ in the form of a
box plot. From the statistical information, it is evident that the TAOP algorithm requires
significantly less computation time for collision detection when compared to directly
using the RRT*, Q-RRT*, and DSFS algorithms, with average reduction percentages of
approximately 94.85%, 83.78%, and 80.93%, respectively. In Figure 12, the data points
for the TAOP algorithm consistently appear at lower positions, significantly below their
corresponding counterparts in the control algorithms, indicating a faster collision detection
process for the TAOP algorithm.

Table 2. Statistics of total collision detection time t;.

Average Percentage

Algorithm Q1 Q2 Q3 Mean Reduction
R 050 0.76 s 1245 097 s .
Tx 0.04 s 0.04s 0.05 s 0.05 s 94.85%
Q 194s 2795 466 407 s .
To 044 055 072 0.66 5 83.78%
D 1. 24 34 27
56 s 8s 3.34s 8s 80.93%

Tp 043s 049 s 0.57 s 0.53s
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Tables 3 and 4 present the statistical results for the initial cost cjyit and initial path
computation time ¢;,;; for six different algorithms. Figures 13 and 14 display box plots
for the initial cost and initial path computation time, respectively. When observing the
statistical results, it is evident that the TAOP algorithm exhibits significant reductions in
both the initial cost and initial path computation time. In Figure 13, the data points for the
TAOP algorithm are noticeably lower, with the upper and lower bounds of the box plot
being lower than their corresponding parts for the control algorithms. This indicates that
the TAOP algorithm generates paths with smaller costs compared to its control algorithms,
effectively optimizing the planning results. In Figure 14, fewer data points for the TAOP
algorithm fall within higher time ranges, suggesting that the TAOP algorithm is more
efficient in computing the initial path.

Table 3. Statistics of initial cost cjpj;.

Algorithm Q1 Q2 Q3 Mean
R 438 x 10° m 473 x 10° m 499 x 10° m 4.66 x 10° m
TR 3.71 x 10° m 3.86 x 10° m 3.99 x 10° m 3.94 x 10°m
Q 3.80 x 10° m 3.89 x 10° m 4.05 x 10° m 3.94 x 10° m
Tq 3.46 x 10° m 3.53 x 10° m 3.71 x 10° m 3.68 x 10° m
D 3.76 x 10° m 3.92 x 10° m 4.11 x 10° m 3.93 x 10° m
Tp 345 x 10° m 348 x 10° m 3.50 x 10° m 348 x 10° m

Table 4. Statistics of initial path computation time #i,jt.

Algorithm Q1 Q2 Q3 Mean
R 1.28s 2.76s 411s 3.61ls
TR 0.12s 0.14s 0.22s 0.19s
Q 2.72s 3.81ls 7.53 s 6.05s
Tg 048s 0.62s 0.83s 0.81s
D 1.86s 2.83s 4.15s 3.64s

Tp 0.48 s 0.59s 0.72s 0.64s
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In the simulation results, there is a significant deviation between the mean and median
of various statistical measures, indicating that the data do not follow a normal distribution.
Therefore, we employed the Mann—Whitney U test to further validate the performance
advantage of the TAOP algorithm statistically. In this test, the collision detection total time
teol, initial cost cinit, and initial path computation time t;,;; were used as evaluation metrics,
and the corresponding p-values were calculated, as shown in Table 5. From Table 5, it can
be observed that the p-values for all of test metrics are much smaller than the significance
level of 0.05, indicating that the TAOP algorithm outperforms the RRT*, Q-RRT*, and DSFS
algorithms in planning simulation experiments.
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Table 5. Hypothesis test results.
HO0: M(ALG1) = M(ALG?2)
H1: M(ALG1) > M(ALG2)
ALG1 ALG2 M p-Value Reject

teoll 9.91 x 10730 Yes

R Tr Cinit 3.88 x 10715 Yes

tinit 9.91 x 10730 Yes

teoll 1.16 x 10~ Yes

Q Tq Cinit 1.06 x 1072 Yes

Einit 1.80 x 10~ Yes

teoll 297 x 10~28 Yes

D Tp Cinit 6.58 x 10723 Yes

tinit 9.91 x 10~30 Yes

In addition, based on the mean initial cost and mean initial path computation time in
Tables 3 and 4, the average path planning efficiency for the six algorithms was calculated
using Equation (8), as shown in Table 6. It can be observed that, compared to the RRT*, Q-
RRT*, and DSFS algorithms, the TAOP algorithm has improved the path planning efficiency
by 15.6 times, 5.98 times, and 4.04 times, respectively.

Table 6. Average path planning efficiency 7.

Algorithm 1 Improvement Multiple
R 0.39
Tx 6.26 15.06
Q 0.20
To 137 598
D 0.33
To 1.64 4.04

Figures 15-17, respectively, present the initial path graphs generated using the R algo-
rithm compared with the T algorithm, the Q algorithm compared with the Tq algorithm,
and the D algorithm compared with the Tp algorithm in a specific test scenario. Here,
points A and B denote the starting and target points, respectively. Upon examination,
it is evident that the paths generated using all six algorithms lie within the predefined
suitable area, meeting the requirements for safe navigation. Additionally, in contrast to
the RRT*, Q-RRT*, and DSFS algorithms, the TAOP algorithm produces initial paths with
a lower cost. To offer a more intuitive portrayal of the variations in the planned paths
in the vertical direction, the paths are projected onto the ‘longitude-depth’ plane, as de-
picted in Figures 15¢, 16c and 17c. From the perspective of the ‘longitude-depth’ plane, it is
readily apparent that the initial paths generated using the TAOP algorithm exhibit greater
smoothness, whereas the paths generated using the corresponding RRT*, Q-RRT*, and
DSFS algorithms manifest pronounced undulations in the vertical direction, characterized
by one or more conspicuous fluctuations. This divergence arises because the RRT*, Q-RRT*,
and DSEFS algorithms all engage in random sampling across the entire three-dimensional
planning space, with sample points displaying significant randomness in the vertical di-
mension, thereby rendering them more likely to generate higher-cost paths. Conversely, the
TAOQP algorithm engages in judicious planning in the vertical dimension based on obstacle
profiles, consequently optimizing the cost.



Remote Sens. 2023, 15, 5579

18 of 22

-500
-1000
-1500
-2000
-2500
-3000
-3500

112

Depth/m

116

10.0076

9.6743

9.3409

9.0076

8.6743

8.3409

Latitude/°N

8.0076

7.6743

7.3409

7.0076 * ;
112.0083 112.6750 113.3416 114.0083 114.6750 115.3416
Longitude/°E

(b)

113 114 115
Longitude/°E

()

116

Figure 15. Initial paths generated using R algorithm and Tg algorithm: (a) view from three-
dimensional terrain map; (b) view from gravity suitability distribution map; (c) projection onto

‘longitude-depth’ plane view.

Figure 16. Cont.



Remote Sens. 2023, 15, 5579 19 of 22

10.0076

0
A B
9.6743 ;
500 i
9.3409
1000 |
o007c R ol WT— e gl et
z . e
° 86743 5 1500
E =
Z 8.3409 & 2000}
-
8.0076 Hsook
7.6743
3000 F
7.3409
7.0076 - - -3500 ' : ;
1120083 112.6750 113.3416 1140083 114.6750 1153416 112 13 114 . 115 116
Longitude/°E Longitude/°E
(b) (c)
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Figure 17. Initial paths generated using D algorithm and Tp algorithm: (a) view from three-
dimensional terrain map; (b) view from gravity suitability distribution map; (c) projection onto
‘longitude—-depth’ plane view.

5. Discussion

The underwater gravity-matching navigation employing the TAOP algorithm for three-
dimensional path planning offers several prominent advantages. It demonstrates significant
improvements in the collision detection time, initial cost, and initial path computation time,
effectively reducing the path oscillations and achieving smoother initial paths. Compared to
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directly using the RRT*, Q-RRT*, and DSEFS algorithms, the TAOP algorithm has improved
the path planning efficiency by factors of 15.6, 5.98, and 4.04, respectively. It can be seen
that the TAOP algorithm has significant advantages, and it can use dimensional reduction
methods to solve the problem of high computational costs and even the problem of the
inability to find feasible solutions in complex three-dimensional environments due to node
diffusion. At the same time, the TAOP algorithm avoids the time-consuming problem of
interpolating the terrain data required for three-dimensional collision detection, and it
significantly reduces the fluctuation of the path by directly referencing the obstacle contour
to plan the height of the path. Similarly, other traditional path planning algorithms for
three-dimensional planning (such as artificial potential field method, a* algorithm, ant
colony algorithm, etc.) also directly obtain nodes in three-dimensional space, thus also
suffering from node diffusion issues and multiple interpolation problems required for
three-dimensional collision detection to obtain terrain data. Therefore, the results can be
generalized, and the TAOP algorithm can be used to combine height planning with the
two-dimensional planar planning forms of these algorithms to reduce the complexity of
the problem, thereby effectively saving planning time and improving the path planning
efficiency. In addition, the TAOP algorithm is also suitable for situations where the two-
dimensional path cannot be changed, and only the height needs to be planned in some
special cases.

6. Conclusions

This paper introduces a novel TAOP algorithm aimed at enhancing the path planning
efficiency of underwater gravity-matching navigation in three-dimensional environments.

1. Anovel TAOP algorithm is introduced. Given the existing challenges of high compu-
tational complexity and lengthy computation times associated with three-dimensional
path planning algorithms, the innovative TAOP algorithm is proposed. It decomposes
three-dimensional path planning into two components: two-dimensional planar plan-
ning and height planning. The TAOP algorithm straightens the paths obtained from
planar planning through coordinate transformations, performs height planning based
on obstacle profile contours along the path, and integrates the points from both planar
and height planning to obtain the final path in a three-dimensional space.

2. A three-dimensional planning environment for underwater gravity-matching navi-
gation is constructed. To accurately represent the terrain features and gravity field
distribution in underwater environments, gravity suitability areas are defined based
on the characteristics of gravity anomaly data. Combined with seabed topographical
data, obstacle constraints in the underwater three-dimensional space are established,
making the planned paths more adaptable to the complex terrain and gravity condi-
tions encountered in practical underwater gravity-matching navigation.

3. Theeffectiveness of the TAOP algorithm is validated. In the defined three-dimensional
path planning environment, performance comparison simulations are conducted
between the TAOP algorithm and the RRT*, Q-RRT*, and DSFS algorithms. The
results demonstrate that the TAOP algorithm reduces the collision detection time,
lowers the cost of the initial path solutions, shortens the initial planning time, and
reduces path oscillation, significantly improving the planning efficiency. Compared
to directly employing the RRT*, Q-RRT*, and DSFS algorithms, the TAOP algorithm
improves the path planning efficiency by factors of 15.6, 5.98, and 4.04, respectively.

4.  Future research directions are identified. This paper has not addressed the issue
of dynamic environments, which can significantly affect the efficiency and accu-
racy of path planning. Incorporating dynamic obstacles into the planning algorithm
remains a challenge that requires further research. Additionally, while the TAOP algo-
rithm has shown promise in improving the planning efficiency, it may still encounter
performance issues when encountering complex, dynamic environments. Future
work should focus on enhancing the robustness and suitability of the algorithm to
such environments.
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