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Abstract: Over the past half century, the demand for sand and gravel has led to extensive quarrying
activities, creating many pit lakes (PLs) which now dot floodplains and urbanized regions globally.
Despite the potential importance of these environments, systematic data on their location, morphology
and water quality remain limited. In this study, we present an extensive assessment of the physical
and optical properties in a large sample of PLs located in the Po River basin (Italy) from 1990 to
2021, utilizing a combined approach of remote sensing (Landsat constellation and Sentinel-2) and
traditional limnological techniques. Specifically, we focused on the concentration of Suspended
Particulate Matter (SPM) and the dominant wavelength (λdom, i.e., water colour). This study aims to
contribute to the analysis of PLs at a basin scale as an opportunity for environmental rehabilitation
and river floodplain management. ACOLITE v.2022, a neural network particularly suitable for
the analysis of turbid waters and small inland water bodies, was used to atmospherically correct
satellite images and to obtain SPM concentration maps and the λdom. The results show a very strong
correlation between SPM concentrations obtained in situ and those obtained from satellite images,
both for data derived from Landsat (R2 = 0.85) and Sentinel-2 images (R2 = 0.82). A strong correlation
also emerged from the comparison of spectral signatures obtained in situ via WISP-3 and those
derived from ACOLITE, especially in the visible spectrum (443–705 nm, SA = 10.8◦). In general, it
appeared that PLs with the highest mean SPM concentrations and the highest mean λdom are located
along the main Po River, and more generally near rivers. The results also show that active PLs exhibit
a poor water quality status, especially those of small sizes (<5 ha) and directly connected to a river.
Seasonal comparison shows the same trend for both SPM concentration and λdom: higher values in
winter gradually decreasing until spring–summer, then increasing again. Finally, it emerged that
the end of quarrying activity led to a reduction in SPM concentration from a minimum of 43% to a
maximum of 72%. In this context, the combined use of Landsat and Sentinel-2 imagery allowed for
the evaluation of the temporal evolution of the physical and optical properties of the PLs in a vast
area such as the Po River basin (74,000 km2). In particular, the Sentinel-2 images consistently proved
to be a reliable resource for capturing episodic and recurring quarrying events and portraying the
ever-changing dynamics of these ecosystems.

Keywords: remote sensing; quarrying impacts; ecosystem dynamics; river floodplains; dominant
wavelength; suspended solids

1. Introduction

Our society relies on a huge amount of sand and gravel for the construction of in-
frastructure, roads, runways, railways, etc. Initially, most of the aggregates were directly
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withdrawn from riverbeds, causing a gradual incision of the riverbed and deep morpho-
logical and hydrological alterations. In the 1980s, given the serious degradation of river
ecosystems, the quarrying activity was shifted from riverbeds to floodplains, leading to the
formation of pit lakes (PLs) [1]. PLs are now widespread globally and increasingly affect
the landscape of urbanized regions around the world [1]. The creation of PLs can impact
the landscape and environment in several ways, both positive and negative. In general,
these ecosystems can play some important ecological and socioeconomic roles; however,
anthropogenic impacts and mismanagement can lead to a number of issues (e.g., water
contamination, changes in groundwater quality, alteration to river hydromorphology,
eutrophication, disruption of pre-existing habitats, etc.) [2–9].

Once quarrying activities are concluded, PLs may evolve towards ecosystems that
provide processes and functions that can be useful to society, e.g., water storage and
management, nutrient retention or removal, improvement of groundwater quality, creation
of new aquatic habitats, etc. [1]. In the last two decades, several studies have been published
on PLs focusing on the eutrophication issue [10], the management and regulation of these
ecosystems [2,6], the hydro-chemical aspects [3,4,7,8] and biogeochemical processes and
functions [9,11]. However, all of these studies only concern a small sample of PLs and are
often limited both spatially and temporally, so there is a lack of systematic water quality
products or datasets available for these ecosystems. With the aim of filling this gap, the
main focus of this study is to assess the physical and optical properties of a large sample
of PLs located in the Po River basin (Italy) from 1990 to 2021 using a combined approach
of remote sensing and traditional limnological techniques. The Landsat mission satellites
(Landsat-5 and Landsat-7) provide an opportunity to utilise data from a long time series
to analyse PLs from the 1990s to 2014. Meanwhile, the more modern Sentinel-2 allows
for the exploitation of additional spectral capabilities, high spatial resolution, and short
revisit time for more frequent and detailed monitoring. Here, we focus on the calculation
of the dominant wavelength (λdom, i.e., water colour) and the concentration of Suspended
Particulate Matter (SPM); parameters that can contribute to the assessment of water quality.

Water colour is one of the oldest water observation parameters and is closely related
to the optical properties of water, constituting a fundamental indicator for the optical water
quality [12]. It is a result of water constituents and their interaction with sunlight, establish-
ing the basis for water-quality monitoring through optical remote sensing. This suggests
that the information obtained from the colour of PLs can contribute to the assessment of
their quality status. As a consequence, this parameter has also been recognised by the
Global Climate Observing System as a fundamental climate variable for inland waters [13].
SPM is another key parameter for describing water characteristics and can contribute to
assessing aquatic ecosystems’ quality [14–21]. It is a bio-optical parameter consisting of
a mix of inorganic substances (e.g., mineral sediments), organic constituents (e.g., algal
particles and vegetation debris) and water-insoluble microorganisms. In particular, most
SPM manifest as complex, floc-like aggregate structures composed of a variety of minerals
and organic matter ranging from the molecular to the organismal level [22]. SPM con-
centration can directly and significantly influence the optical properties of water through
the absorption and scattering of sunlight [23,24]. For example, it can directly reduce light
penetration, affecting phytoplankton productivity and nutrient dynamics, as well as the
living conditions of both aquatic animals and vegetation [21,24–31]. Therefore, monitoring
temporal and spatial variations in SPM concentration is crucial for understanding the
dynamics of aquatic ecosystems [15,17,19,23,24,32–34]. As a consequence, SPM plays a
prominent role as an indicator to monitor the degradation of inland water resources and
guide their management [35–37]. Particularly in inland waters, this parameter is often
correlated with nutrient enrichment, such as that of nitrogen and phosphorus [38,39],
while in many high-turbid lakes, it has been directly associated with dredging activity [40].
Given the importance of this parameter, many approaches and sensors have been adopted
over the years to accurately estimate the SPM concentration from optical remote sensing
data [26,38,41–50].
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One of the advantages of Earth Observation (EO) data is its ability to obtain water
quality information remotely over large areas and over the long term. It offers the opportu-
nity to increase and improve the spatio-temporal coverage of inland water environmental
monitoring [51]. In recent years, remote sensing has become a low-cost operational tool
that, in support of traditional limnological measurements, provides information on the
state of surface waters by deriving bio-geophysical parameters, such as chlorophyll-a
concentration [52–54], turbidity [55,56], suspended particulate matter [31,57,58], phyto-
plankton types [59] and Secchi disk depth [60,61]. In particular, both water colour and
SPM-concentration products can be retrieved from satellite images.

Recently, an algorithm based on multispectral information acquired from satellite
sensors has been proposed to derive the hue angle, an indicator that can be used to
determine the λdom of a water body (i.e., the water colour) [62,63]. This indicator is called
the Forel-Ule Index (FUI) and is derived from Remote Sensing Reflectances (Rrs). The
FUI is not based on local retrieval algorithms; therefore, it can characterise natural waters
easily and effectively [64,65]. FUI, still used today, is a benchmark standard in numerous
studies [13,51,65–71], and is characterised by having a relatively low uncertainty [62,63,66].

The monitoring of SPM concentration using traditional limnological techniques can
provide accurate measurements; however, they are time-consuming, expensive and spa-
tially limited [18,72–75]. On the other hand, remote sensing techniques can be useful to
complement in situ measurements, as they allow for large-scale, long-term observations
of Visible-Near infrared (VIS-NIR) spectral regions which can be exploited to map SPM
concentration [18,23,24,32,33,37,75–81].

In the present study, we assess the evolution of the λdom and the SPM concentration
in a large sample of PLs and we expect to find a clear difference according to their sizes
and locations, as well as in according with quarrying activity and seasonal variations. Our
study seeks to examine the reliability of Landsat and Sentinel-2 satellites in estimating
these two water quality parameters in small and dynamic aquatic environments such as
PLs. The results highlight that location and size are the principal factors influencing water
quality status; moreover, it emerged that disturbance from quarrying activity does not
have a long-term impact on water quality, because after the cessation of quarrying, SPM
concentration decreases rapidly, although, on average, ceased PLs are characterised by
higher a λdom than those still active.

2. Materials and Methods
2.1. Study Area

The Po River basin extends around one of the largest rivers in the Mediterranean Sea
and the longest river in Italy. The Po River is 652 km long and its basin covers approximately
74,000 km2, of which ~71,000 km2 are in Italy. In terms of water resources, the Po River
(with an average annual flow of 1540 m3 s−1 which has been gradually decreasing since
the 21st century) is overexploited for irrigation, hydropower generation, and domestic
purposes [82,83]. The Po River basin represents a key territory for the economy of the
entire country; in fact, economic activities within it account for about 40% of Italy’s annual
GDP [84,85]. In particular, the Po River basin contributes to about 60% of national sand and
gravel production. The climax of this sector occurred from the post-World War II period
until the 1980s, during which great amounts of inert materials were extracted directly from
the riverbed to support post-war reconstruction, causing its gradual lowering [86]. Once
the severity of the river alteration was felt, mining activity was moved to the floodplain,
leading to the creation of numerous PLs. For more details regarding water resources and
quarrying activities in the Po River basin, see [1].

In the Po River basin, 1580 PLs have been identified, of which 338 were still active
in 2021 [1]. These PLs differ in location (isolated, in proximity to or connected to a river),
size (<1 to 52 ha), and quarrying activity (active or ceased). For more details regarding
identification and classification of PLs see [1].
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For this study, a large subsample of PLs (320, both active and ceased) located in eight
geographical areas within the basin was selected (Figure 1): Turin (TO), Po and Orba River
Park (OR), Milan (MI), Trezzo sull’Adda (TR), Brescia (BS), Mantua (MN), Modena (MO),
and along the Po River shaft (PO). These areas were selected because they are spatially well-
distributed and representative of different land uses [1]. In each of these geographic areas,
the density of PLs is high and consequently they exhibit a high degree of heterogeneity and
well represent the entire basin.
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Figure 1. Pit lakes (PLs) divided into the eight subsample areas (blue boxes). The Po River is
highlighted in light blue, green dots represent active PLs, red dots represent ceased PLs, and yellow
dots represent doubtful PLs (all those are lakes that have the typical characteristics of PLs but whose
origin or end of mining is uncertain). Turin (TO), Po and Orba River Park (OR), Milan (MI), Trezzo
sull’Adda (TR), Brescia (BS), Mantua (MN), Modena (MO), and the Po River shaft (PO).

2.2. The Processing of Satellite Images

Considering the wide time range used for this study (1990–2021), three different
satellites were used: Landsat-5 (L5), Landsat-7 (L7) and Sentinel-2 (S2). The L5 and L7
belong to the Landsat constellation, and mount onboard TM (Thematic Mapper) and ETM+
(Enhanced Thematic Mapper) sensors, respectively. They are characterised by a spatial
resolution of 30 m, a revisit time of about 16 days and 5 bands in the VIS-SWIR (Visible-
Short Wavelength InfraRed) domain. The S2 mission, on the other hand, comprises two
polar satellites (S2A and S2B), placed on the same orbit, but offset 180◦ from each other,
allowing a revisit time of about 5 days. They mount onboard MultiSpectral Instrument
(MSI) sensors, characterised by three different spatial resolutions (10, 20 and 60 m) and
13 bands in the VIS-SWIR.

All satellite images were downloaded as Level-1 (L1, i.e., not atmospherically cor-
rected) from the following portals: https://catalogue.onda-dias.eu/catalogue/ (accessed
on 1 October 2023) and https://earthexplorer.usgs.gov/ (accessed on 1 October 2023).
All S2 images were resampled to the same spatial resolution (10 m). The years considered

https://catalogue.onda-dias.eu/catalogue/
https://earthexplorer.usgs.gov/
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are listed in Table S1 and for each year, when available, six images were downloaded. Since
there is no specific protocol for SPM concentration, we followed the protocol proposed
by [87] for sampling lake phytoplankton, according to the European Water Framework
Directive (WFD): winter (1 January–20 March), spring (1 April–15 May), spring-summer
(16 May–15 June), summer (1 July–31 August), summer-autumn (1 September–1 October)
and autumn (2 October–31 November). A total of 375 satellite images divided into the
eight subsample areas were downloaded, and these images were free of clouds and other
radiometric problems (e.g., sunglint).

ACOLITE v.2022 [88,89] was used to atmospherically correct satellite images and to
obtain SPM concentration maps. ACOLITE is a neural network that groups atmospheric
correction algorithms and allows users to derive different water quality parameters from
Rrs values. In addition, it is particularly suitable for the analysis of turbid and small inland
water bodies. ACOLITE requires L1 satellite images as inputs and can mask all water pixels
autonomously. The atmospheric correction algorithm used was Dark Spectrum Fitting
(DSF), which is able to estimate Aerosol Optical Depth at 550 nm (AOD550) from dark
targets, while the algorithms used to estimate SPM concentration were: SPM_Nechad2010
(for Landsat images), adjusted with the in situ data specific to our case studies, and the
SPM_Nechad2016 (for S2 images). The former was proposed by [46], while the latter was
recalibrated in 2016 specifically for S2 images. Both exploit the spectral characteristics of
the red band (630–690 nm). For more information regarding the two algorithms, see [46].

2.3. Field Campaigns and Validation

To validate SPM concentration maps obtained by processing Landsat images with
ACOLITE code, we used SPM concentration data collected by the University of Parma from
1993 to 2013. To this aim, all cloud-free Landsat images with a maximum discrepancy of
two days from in situ sampling were downloaded, totalling 76 images. To validate S2 data,
we carried out seven specific field campaigns (11 April 2022, 13 April 2022, 20 June 2022,
27 June 2022, 13 September 2022, 28 September 2022, and 15 June 2023) in PLs located in
the PO area between 2022 and 2023 (Table S2).

During these field campaigns, water samples were collected, and spectral signatures
(Rrs) were acquired at the same sites. Water samples were filtered with Whatman GF/F
fibre filters and used to determine gravimetrically the SPM concentration according to [90].
Dry filters where subsequently incinerated in the muffle at 450 ◦C for 4 h to obtain inorganic
and organic fractions of the particulate. Reflectance measurements were collected using
the handheld spectrometer WISP-3 [91] produced by Water Insight. The instrument is
designed for water quality studies and can be used for the optical validation of satellite
data. The optical range is from 400 to 800 nm, with a bandwidth (full width half maximum)
of ~4.9 nm and is able to simultaneously measure water and sky radiances at 42◦ to the
nadir (Lu and Lsky, respectively) and downwelling irradiance (Ed), using three different
optics and appropriate geometry. Together, these three optics can be used to obtain the
Rrs of the water surface. All measurements (5 replicates for every single station) were
taken away from the shoreline to avoid any influence of the bottom on the radiometric
measurements; in addition, measurements were taken at an azimuth angle of ~135◦ to the
sun to avoid any sunglint effects.

To compare the satellite data with in situ data, Regions of Interest (ROIs) (3 × 3 pixels)
centred around the sampling site were created and the mean value was extracted for both
SPM and Rrs; afterward, a series of descriptive statistics were calculated to assess their
consistency. In detail, the determination coefficient (R2), Mean Absolute Error (MAE), Root
Mean Square Error (RMSE) and Mean Absolute Percentage Error (MAPE) were calculated
for both parameters. In addition, for spectral signatures only, the Spectral Angle (SA) was
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also calculated, which was used to determine how similar the shape of satellite spectra is to
in situ data [92,93]. The metrics used were computed as follows:

R2 = 1− ∑n
i=1(xi − yi)

∑n
i=1(xi − xi)

2 (1)

MAE =
∑n

i=1|xi − yi|
n

(2)

RMSE =

√
∑n

i=1(xi − yi)
2

n
(3)

MAPE = median
(∣∣∣∣yi − xi

xi

∣∣∣∣100%
)

, i = 1, . . . N (4)

SA = cos−1 ∑n
i=1 xiyi√

∑n
i=1 y2

i

√
∑n

i=1 x2
i

(5)

where xi are the in situ values, xi is the mean of the in situ values and yi are the values
derived from satellite images.

In order to compare the spectral signatures acquired in situ (hyperspectral) with the
spectral signatures of S2 (multispectral), a resampling of the hyperspectral signatures was
performed based on spectral characteristics of S2. In particular, the higher spectral resolu-
tion of WISP data were spectrally resampled according to the full width half maximum
(FWHM) of S2 data.

2.4. Pit Lakes Analysis

The identification of water pixels by ACOLITE is not always accurate because the
pixels located at the water–land interface, which could lead to an overestimation of SPM
concentrations, are often retained. For this reason, ACOLITE products were overlaid on the
true colour images in order to verify the effective removal of terrestrial pixels and clouds.
After that, starting from the ACOLITE water mask, all pixels located near the shorelines
were manually removed. In addition, spectral signatures were examined for outliers within
the water pixels. Once the ROIs were created, they were used to extract SPM concentration
and Rrs values in the Visible domain, which were needed to obtain the λdom (water colour)
via the Forel-Ule index [63]. More information on the procedure to obtain the λdom from
Landsat and S2 images can be found in [63]. Finally, all outliers characterised by negative
or excessively high values, often due to the presence of dredges in the middle of active PLs,
were manually removed from these maps. Once the SPM concentrations were extracted
from the PLs of all available images, the temporal trends of each lake and the average SPM
concentration of each subsample area were calculated.

PLs were also divided into various thematic groups, with the purpose of understand-
ing whether SPM concentration and λdom changed according to lake location, size, season
(according to WFD protocol) and quarrying activity. Based on location, PLs were divided
into three categories: isolated, in proximity to (at most 500 m away from a watercourse) or
connected to a river. Based on dimension, they were divided into: small (<5 ha), medium
(5–10 ha) and large (>10 ha). Based on season, the WFD protocol was followed, while based
on quarrying activity, they were divided into: active and ceased. The Mann–Whitney and
Kruskal–Wallis nonparametric tests were performed to assess whether there were signifi-
cant differences in SPM and λdom among the categories that compose each thematic group.

To specifically assess the impact of quarrying activity on the evolution of the water
quality of PLs, two types of analysis were conducted on a restricted number of PLs. The
first involved the analysis of temporal trends of SPM concentration in 13 PLs whose
quarrying activity ceased during the observed period (1990–2021). Specifically, the mean
SPM concentrations before and after the end of quarrying activity was calculated for the
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13 lakes, considering all available images. For this analysis, the cumulative precipitation
during the seven days prior to the date of satellite acquisition was measured to understand
the influence of this meteorological factor. The wind was not considered because the PLs
examined were characterised by extensive areas of riparian vegetation in their surroundings
(on average, 80% of the perimeter of those PLs were covered by vegetation). The second
analysis concerned two adjacent PLs located in the MI area: one whose quarrying activity
had ceased (MI-30), and the other which was characterised instead by frequent quarrying
episodes (MI-31). For this analysis, 27 S2 images acquired during quarrying events were
downloaded and processed with ACOLITE in order to obtain SPM concentration maps.

3. Results
3.1. Satellite Data Validation

The statistical comparison between the SPM concentrations obtained in situ and those
derived from satellite images showed that there is a very strong correlation between both
the data derived from Landsat images (R2 = 0.85) and those from S2 images (R2 = 0.82).
However, it appeared that the SPM_Nechad2010 algorithm applied to the Landsat images
overestimated the SPM concentration; consequently, two calibration coefficients were
applied, one for the L5 and one for the L7 data, calculated on the basis of the slope of the
regression lines. In both scatterplots, we removed a comparison related to a very turbid
lake because, although there was a strong correlation between the in situ and satellite data,
they distorted the R2 values, over-improving them.

The comparison of the spectral signatures obtained using WISP-3 and those derived
from ACOLITE showed that there is a strong correlation in the visible spectrum, while
some issues emerge in the NIR domain (a slight overestimation of satellite values). This
overestimation is not impactful for this work, since the algorithms for estimating the
SPM concentration were based on the red band (630–690 nm), while the calculation of
the λdom was based on the visible bands. Furthermore, the accuracy of the spectral signa-
tures obtained through ACOLITE is also justified by the low SA values obtained for the
28 comparisons performed (10.8◦ ± 5.7◦). The graphs for the statistical metrics are shown
in Figures 2 and 3.
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Figure 2. Scatterplots between in situ data (y-axis) and satellite data (x-axis). The black triangles
and black squares represent comparisons between in situ and ACOLITE SPM concentrations from
Landsat (L5 and L7, calibrated) and Sentinel-2 (S2) images, respectively. “n” represents the sample
size, “R2” the determination coefficient, “MAE” the mean absolute error, “RMSE” the root mean
square error, “MAPE” the mean absolute percentage error, and the dashed gray lines refer to the
regression lines.
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3.2. SPM Concentration and Water Colour

Figure 4 shows the mean SPM concentration and the mean λdom (1990–2021) for all PLs
of the subsample investigated. SPM values range from 1 to 88 g m3, while λdom range from
480 to 589 nm. The PLs with the highest mean SPM concentrations are located along the
Po River (especially in OR and PO areas) and more generally near rivers. For mean λdom,
the pattern is also similar, although it is less pronounced than that of SPM concentration.
In fact, PLs with high mean λdom are mainly located near rivers, although they are also
present in other areas (e.g., MI area).

Based on the PLs’ locations, the analysis shows that those connected to a river (active:
21.4± 2.0 g m−3; ceased: 15.7± 5.9 g m−3) are characterised by higher mean SPM concentra-
tions than both PLs located in proximity of a watercourse (active: 14.5 ± 7.9 g m−3; ceased:
12.8 ± 7.4 g m−3) and isolated ones (active: 12.4 ± 8.2 g m−3; ceased: 8.9 ± 3.7 g m−3),
for both active and ceased PLs. The same result also emerges for the mean λdom. Based
instead on size, smaller PLs (active: 18.2 ± 11.5 g m−3; ceased: 11.4 ± 6.6 g m−3) have the
highest mean SPM concentrations compared to medium (active: 14.3 ± 7.2 g m−3; ceased:
9.3 ± 4.2 g m−3) and large lakes (active: 10.7 ± 5.3 g m−3; ceased: 9.7 ± 5.1 g m−3). In this
case, the difference between the three categories is more pronounced for active PLs than
for ceased ones. The mean λdom follows the same pattern only for ceased PLs (571 ± 3,
569 ± 3, 568 ± 3 nm, respectively), while smaller active PLs are characterised by lower
mean λdom than medium sized PLs (565 ± 7, 568 ± 4, 565 ± 5 nm, respectively). Seasonal
comparison shows the same trend for both SPM concentration and λdom: higher values
in winter gradually decrease until spring–summer, then increase again. No differences
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are visible between active and ceased PLs. Finally, the comparison based on quarrying
activity shows that active PLs (13.3 ± 8.2 g m−3) exhibit higher mean SPM concentration
than ceased PLs (10.6 ± 5.9 g m−3); however, ceased PLs (570 ± 3 nm) show higher mean
λdom than active PLs (566± 6 nm). All comparisons are shown in Figure 5, while the values
divided into the eight subsample areas are reported in Tables S3 and S4.
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Figure 5. Boxplots of SPM concentrations (left column) and dominant wavelength (right column) of
pit lakes (PLs) in the subsample (mean values referring to 1990–2021). Shown from top to bottom are
comparisons of PLs’ locations, PLs’ sizes, season (according to WFD protocol), and quarrying activity.
For location, size, and season boxplots, both active (left) and ceased (right) PLs are represented. In
each boxplot, the circles represent the outliers. The “p” values refer to the Kruskal–Wallis and the
Mann–Whitney (for quarrying boxplots only) statistical tests. For the Kruskal–Wallis test, the signifi-
cant difference between two pairs of categories (p < 0.05) is indicated by the lack of identical letters.

By comparing the PLs characterised by low mean values of SPM and λdom (PLs low)
with the PLs characterised by high mean values of SPM and λdom (PLs high), it was observed
that the PLs low are larger (mean: 12 ha) and older (and consequently deeper). These PLs are
predominantly isolated and consistently exhibit lower mean SPM concentrations compared
to the overall mean of the subsample area where they are located. On the other hand,
PLs high are smaller (mean: 5 ha) and younger (and consequently shallower). They are
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predominantly located in proximity or directly connected to a river, and consistently display
higher mean SPM concentrations compared to the overall mean of the subsample area in
which they are located.

3.3. The Impact of Quarrying Activity and Precipitation

Table 1 shows the mean SPM concentrations of the 13 PLs before and after the cessation
of quarrying activity (Figures S1–S5). The results show that the mean SPM concentration
decreases from a minimum of 43% to a maximum of 72% (a mean reduction of 54%).

A clear correlation between SPM concentration and cumulative precipitation was not
found for the 13 PLs analysed. For these comparisons, we exclusively considered values
obtained after the ending of the quarrying activity. This approach ensured the elimination
of any variability introduced by the resuspension associated with dredging.

Figure 6 shows the SPM concentration of PLs MI-30 (ceased) and MI-31 (active) during
some quarrying events. The results show that MI-31 is consistently characterised by higher
SPM concentrations than MI-30, especially in the southern part where the dredge is located.
In addition, it is evident how the SPM peak located in the excavation area moved and
extended rapidly within a few days to the entire lake (e.g.,16 June 2018 to 21 June 2018,
9 September 2019 to 14 September 2019, 10 June 2021 to 15 June 2021).
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SPM concentration maps were obtained from Sentinel-2 Level 1 images, processed with ACOLITE
(SPM_Nechad2016 algorithm).
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Table 1. SPM concentrations (mean ± st.dev.) before and after the end of quarrying activity for the
13 pit lakes (PLs) examined (observation period: 1990–2021).

PLs Coordinates Quarrying Activity Before
(g m−3)

After
(g m−3) SPM Reduction (%)

OR-4 45.161294N; 8.548939E 1995–2012 9.7 ± 4.4 5.5 ± 3.6 −43
OR-22 45.031655N; 8.873921E 2005–2008 18.1 ± 7.7 7.4 ± 3.9 −59
OR-25 45.070040N; 8.895304E 2003–2007 19.8 ± 6.8 7.7 ± 3.2 −61

BS-11 45.378769N; 10.181337E 2006–2012 17.3 ± 7.8 8.5 ± 4.8 −51
BS-42 45.464501N; 10.250156E <1990–2005 12.5 ± 5.7 5.8 ± 2.5 −54
BS-49 45.491103N; 10.263158E <1990–2007 11.6 ± 6.0 6.6 ± 3.2 −43

MN-2 45.245806N; 10.699478E 1999–2007 14.3 ± 7.9 7.3 ± 2.8 −49

MO-5 44.673111N; 10.817644E 2006–2014 20.4 ± 6.9 5.9 ± 2.6 −71

PO-9 45.059638N; 9.775130E <1990–2009 15.0 ± 8.1 7.3 ± 3.0 −51
PO-14 45.155322N; 9.801703E 2002–2012 19.4 ± 12.9 5.5 ± 1.9 −72
PO-17 45.141368N; 9.849019E 2002–2012 16.9 ± 7.2 8.3 ± 3.2 −51
PO-54 44.911351N; 10.623380E 1998–2012 20.4 ± 10.1 10.4 ± 5.4 −49
PO-77 44.861300N; 11.524369E <1990–2008 14.0 ± 5.9 7.0 ± 3.3 −50

4. Discussion
4.1. The Reliability of Remote Sensing for PLs’ Water Quality Assessments

Satellites used for land monitoring, such as Landsat and Sentinel-2, provide images
characterised by high spatial resolution that enable the assessment of water quality param-
eters. In particular, recent studies have corroborated the capabilities of such satellites in
monitoring inland waters and small lakes [18,94–98]. This success can be attributed to the
increase in the average revisit interval, which has resulted in a concomitant increase in the
number of cloud-free images. Such an abundance of data, therefore, allows a near real-time
monitoring of such dynamic environments.

In this study, we conducted an in-depth analysis of the reliability of Landsat-5, Landsat-7
and Sentinel-2 satellites in assessing the physical and optical properties of PLs, focusing on
the estimation of SPM concentration and λdom. Our approach included the comparison of
SPM concentration data obtained in situ by limnological techniques with those retrieved
through the use of the neural network ACOLITE on satellite data. The results of this
comparison revealed a remarkable agreement; however, the SPM_Nechad2010 algorithm
employed for the Landsat images showed a tendency to overestimate SPM concentrations.
It was necessary to correct this overestimation by a recalibration process based on the
reference data obtained in situ. The validation was mainly focused on PLs characterised by
SPM concentrations below 20 g m−3, due to a logistic constrain that did not allow the access
to many PLs for field measurements. However, although only a few data were available for
PLs with particularly high SPM concentrations, the agreement between in situ and satellite
values was very strong. Nevertheless, these data were not included in the main validation
step, as they would have distorted the scatterplots (Figure 2), over-enhancing the coefficient
of determination (R2). In the future, it would be appropriate to find accessible PLs with
SPM concentrations above 20 g m−3. This would allow a more complete and detailed
validation of the performance of the ACOLITE algorithm in environments characterised
by such levels of SPM concentration. Moreover, it would be interesting to identify a few
sample lakes and analyse their temporal evolution in detail through the integration of
S2 data with products derived from, for example, Landsat-8 and Landsat-9 images, in order
to avoid temporal gaps between data.

In addition to the SPM concentration, we also performed a comparison of the Rrs
spectral signatures, obtained by the atmospheric correction of S2 images through ACOLITE,
with those acquired through the Water Insight spectrometer WISP-3. This spectral parame-
ter is essential for the calculation of λdom, and consequently, a robust agreement between
the values obtained in situ and those detected by satellites is crucial. The comparison
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reveals strong agreement in the visible domain (400–700 nm), while some discrepancies
were found in the NIR domain (a slight overestimation of satellite values). Specifically,
the 740 nm band showed very good effectiveness for turbid waters, as the presence of
high SPM concentrations increases reflectance levels in both the red and NIR domains.
However, this band is not as effective in clearer waters, where reflectance values should
tend to zero. This phenomenon could result from an error in atmospheric correction due
to the intrinsic properties of water in the infrared domain [99,100]. This overestimation
does not have a significant impact on our investigation, since the two algorithms used to
estimate SPM concentrations (SPM_Nechad2010 and SPM_Nechad2016) were based on the
red band (630–690 nm), while the calculation of λdom was based exclusively on the visible
bands. More generally, the strong agreement between the spectral signatures collected in
situ and those obtained from satellite data was confirmed by the low values obtained from
the calculation of the SA statistical index (10.8◦ ± 5.7◦).

4.2. The Assessment of PLs’ Water Quality

The use of a combined approach between Landsat and Sentinel-2 satellite images
allowed for the estimation of the mean SPM concentration and mean λdom for each PL over
a three-decade period (1990–2021). Most of the challenges in inland water observations
are due to their optical complexity. These aquatic ecosystems can be a mixture of optically
shallow and deep waters, with gradients of oligotrophic to hypertrophic productive waters
and clear to turbid conditions. Hence, a large range in optical absorption and backscattering
resulting in high optical variability can be found among and within lakes. This creates a
challenge for algorithms applied to optical remote sensing for water-quality monitoring.
Furthermore, another challenge is performing atmospheric corrections over such variable
aquatic ecosystems, as their complexity requires different approaches than those for land
and ocean applications.

The results of this temporal analysis revealed that the PLs with the highest mean
SPM concentrations and highest mean λdom are located along the Po River (especially in
the OR and PO areas) and, in general, near waterways and rivers. This finding is further
confirmed through the subdivision of PLs into thematic groups; in fact, PLs connected to a
river and those located in their proximity exhibited higher mean SPM concentrations and
mean λdom than isolated PLs. These PLs are fed by river waters and, especially during
flood periods, receive a large amount of suspended solids and nutrients that can lead to
a higher trophic state [9]. Recent studies have shown that, as a consequence of climate
change, periods of prolonged drought followed by short periods of flooding after intense
precipitation are becoming more frequent and intense in the Po River basin [83]. Thus, our
results suggest that there is a significant potential for climate change to affect the water
quality of PLs, particularly those connected to rivers, with prolonged periods of higher
transparency during droughts and more turbid waters following flood events.

Focusing on quarrying activity, it turned out, as might be expected, that active PLs are
characterised by a higher mean SPM concentration than ceased PLs. This is mainly due to
the mechanical action of the dredgers, which collect inert materials from the lake bottom
and cause considerable resuspension of bottom sediments and stirring of suspended
material. On the other hand, the mean λdom analysis shows that the ceased PLs show
a higher mean λdom than the active PLs. Specifically, ceased PLs tend more toward a
green-yellow colour, a feature attributable to the moderate presence of phytoplankton and
Coloured Dissolved Organic Matter (CDOM). In fact, the absence of turbulence caused by
dredges may contribute to greater water clarity, allowing sunlight to penetrate deeper and
potentially promoting more algal particle growth. In addition, the high cover of riparian
vegetation in the surroundings of the ceased PLs could result in an increased concentration
of CDOM, via inputs of allochthonous dissolved organic matter [101,102].

The division of PLs according to size revealed that small lakes (<5 ha) on average have
higher SPM concentrations than their larger counterparts. This trend is more pronounced
in PLs that are still active, while it tends to diminish in those that have ceased the quarrying
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activity. The explanation for this phenomenon may lie in the fact that, in smaller active
PLs, quarrying activity has only recently started. As a result, such lakes are generally
shallow and subject to the mechanical action of dredges, and to wind and fish action. These
phenomena can resuspend lake sediment from the bottom, causing a drastic increase in
SPM concentrations. The same trend is also reflected in the analysis of the mean λdom in
ceased PLs, while for active PLs, the results show that small-sized PLs are characterised by
a lower λdom than medium-sized PLs. This result could be attributed to the sparseness or
absence of riparian vegetation in small-sized active PLs. In fact, the presence of riparian
vegetation may lead to the introduction of organic debris into the waters, which, once
dissolved, may contribute to increases in the λdom.

Finally, the increase in SPM concentration during the winter and autumn periods can
be attributed to water mixing, increased wind and rainfall, and a reduction in riparian
vegetation; factors that promote the input of particulate material from outside. In addition,
more organic debris may flow in lake waters during these periods, leading to an increase in
CDOM. On the other hand, the green hue of the waters, predominant in the spring and
summer months, may be explained by algal blooms, caused by increased nutrients reaching
the lake from agricultural fields, associated with higher temperatures.

4.3. The Impact of Quarrying Activity and Precipitation

Quarrying activity has been proven to have a considerable impact on PLs. For ex-
ample, the turbulence generated within the water column disrupts thermal stratification
and resuspends significant amounts of sediment, exerting a significant influence on the
lake’s planktonic community [103–105]. At the same time, sediment resuspension con-
tributes to increased turbidity in the water, resulting in decreased sunlight penetration.
This phenomenon, in addition to reducing the amount of light available to phytoplank-
ton, influences macrophyte communities that may establish along banks characterised by
gentle slopes. Such communities play a crucial role in maintaining high water quality
standards [106], as well as providing habitats and food sources for numerous aquatic
organisms [7,8].

The characteristics of the MSI sensor installed onboard the S2 have been proven
suitable for analysing the impact of quarrying activity on the SPM concentration of PLs.
This suitability extends to both the long-term, allowing for the evaluation of temporal
trends in SPM concentrations before and after the cessation of quarrying activities, and
the short-term, allowing for the detection of recurring and episodic turbidity events in
specific PLs that occur at small spatio-temporal scales. However, despite a high spatial
resolution and a short revisit time, the extent of some small, newly formed pit lakes and
the presence of clouds at specific periods of the year may limit the observation of short,
punctual quarrying episodes.

As was to be expected, the end of quarrying activity led to a marked decrease in
SPM concentrations in all of the PLs examined (a mean reduction of 54%), mainly due
to the cessation of the mechanical sediment-stirring action carried out by the dredges.
However, even once quarrying activity was over, no direct correlation emerged between
SPM concentrations and total precipitation, as might have been expected. This could
depend on multiple factors, including the actual location of the weather station relative to
the lake and the time scale adopted, as soil erosion responds not only to the total amount of
rainfall but also to rainfall intensity. In our perspective, it would be interesting to identify a
weather station near a lake and consider a change in the time interval considered for the
total precipitation. A plausible hypothesis is that within the total precipitation, rainfall that
occurs shortly after the satellite image acquisition may have a greater influence than rainfall
that occurs days later. Moreover, there is a complex relation between precipitation intensity,
plant biomass and composition and erosion [107] that could influence water quality. This
analysis is beyond the scope of this work but, given the observed changes in land cover due
to climate change and anthropogenic activities observed in the Po river watershed [108],
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the approach adopted in this work could be useful in the future for understanding the
consequences of climate change and directing anthropic activity on the water quality of PLs.

An additional finding from this research indicates that the resuspension action actuated
by the dredges is not confined to a single well-defined point. On the contrary, the increase
in the SPM concentration found at the sampling point spread gradually throughout the
entire lake over the course of a few days (potentially even more rapidly, given the frequency
of the revisiting of S2, which occurred approximately every 5 days).

5. Conclusions

This research confirmed the reliability of Landsat and Sentinel-2 satellites in perform-
ing a basin-scale assessment of SPM and λdom concentrations in small, dynamic inland
waters such as PLs. The approach adopted to quantify these two parameters allowed a
comprehensive and in-depth assessment of the quality status of these ecosystems over three
decades (1990 to 2021). The spatial and spectral characteristics of these satellites opened
up new perspectives in the study of these lakes, which were otherwise inaccessible using
traditional limnological techniques.

The key results include that the water quality status in these lakes depends on multiple
factors, including their location and size. In fact, it was found that the lakes with a poor
water quality status (based on both SPM concentration and λdom) were those of small
sizes, often located near or directly connected to rivers. In addition, quarrying activity
appears to have a significant impact on PLs, as it has been demonstrated that the end of
such activities results in a marked decrease in SPM concentrations (a mean reduction of
54%). Inversely, the extraction of inert materials from the lake bottom causes an increase in
SPM concentrations, an effect that propagates rapidly throughout the water body from the
point of extraction. In this regard, the Sentinel-2 satellite has proven to be a reliable tool for
detecting these episodic or recurrent events in a dynamic context.

A significant future step in the study of these aquatic ecosystems could be the installa-
tion of fixed instruments for collecting continuous spectral measurements to estimate SPM
concentrations. This type of approach would allow for further insight into the study of
water quality through continuous measurements that could overcome the limitations of
satellite remote sensing, such as revisit time and cloud cover. The integration of in situ and
remote data both radiometric and limnological combines synergistically to provide insight
into waterbody bio-geochemistry, which can be extended over time, allowing their genesis
and evolution to be explored.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/rs15235564/s1, Table of acronyms, Table S1. Landsat-5 (L5, red), Landsat-7
(L7, blue) and Sentinel-2 (S2, green) satellite images processed for subsample pit lake analysis. Turin
(TO), Po and Orba River Park (OR), Milan (MI), Trezzo sull’Adda (TR), Brescia (BS), Mantua (MN),
Modena (MO), and along the Po River shaft (PO). The seasons follow the WFD protocol: winter
(Win.; 1 January–20 March), spring (Spr.; 1 April–15 May), spring-summer (Spr.–Sum.; 16 May–15
June), summer (Sum.; 1 July–31 August), summer-autumn (Sum.–Aut.; 1 September–1 October) and
autumn (Aut.; 2 October–31 November). Table S2. In situ measurement campaigns to validate remote
sensing (RS) products from Sentinel-2 satellite images. Table S3. Mean SPM concentrations (g m−3)
divided into the four categories (location, dimension, season and quarrying activity) and into the
eight subsample areas: Turin (TO), Po and Orba River Park (OR), Milan (MI), Trezzo sull’Adda
(TR), Brescia (BS), Mantua (MN), Modena (MO), and along the Po River shaft (PO). Small (S.),
medium (M.) and Large (L.). Winter (Win.; 1 January–20 March), spring (Spr.; 1 April–15 May),
spring-summer (Spr.–Sum.; 16 May–15 June), summer (Sum.; 1 July–31 August), summer-autumn
(Sum.–Aut.; 1 September–1 October) and autumn (Aut.; 2 October–31 November). Table S4. Mean
λdom (nm) divided into the four categories (location, dimension, season and quarrying activity) and
into the eight subsample areas: Turin (TO), Po and Orba River Park (OR), Milan (MI), Trezzo sull’Adda
(TR), Brescia (BS), Mantua (MN), Modena (MO), and along the Po River shaft (PO). Small (S.), medium
(M.) and Large (L.). Winter (Win.; 1 January–20 March), spring (Spr.; 1 April–15 May), spring-summer
(Spr.–Sum.; 16 May–15 June 15), summer (Sum.; 1 July–31 August), summer-autumn (Sum.–Aut.;
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1 September–1 October) and autumn (Aut.; 2 October–31 November). Figure S1. Temporal evolution
of SPM concentration (orange columns) in some pit lakes in the OR area (Po and Orba River Park)
in relation to cumulative precipitation (blue polygons) in the 7 days prior to satellite acquisitions.
The green line indicates the end of quarrying activities and the mean percentage decrease in SPM
concentrations after that event. Figure S2. Temporal evolution of SPM concentration (orange columns)
in some pit lakes in the BS area (Brescia) in relation to cumulative precipitation (blue polygons) in the
7 days prior to satellite acquisitions. The green line indicates the end of quarrying activities and the
mean percentage decrease in SPM concentrations after that event. Figure S3. Temporal evolution
of SPM concentration (orange columns) of MN-2 pit lake in the MN area (Mantua) in relation to
cumulative precipitation (blue polygons) in the 7 days prior to satellite acquisitions. The green line
indicates the end of quarrying activities and the mean percentage decrease in SPM concentrations
after that event. Figure S4. Temporal evolution of SPM concentration (orange columns) of MO-5
pit lake in the MO area (Modena) in relation to cumulative precipitation (blue polygons) in the
7 days prior to satellite acquisitions. The green line indicates the end of quarrying activities and the
mean percentage decrease in SPM concentrations after that event. Figure S5. Temporal evolution of
SPM concentration (orange columns) of some pit lakes in the PO area (Po River shaft) in relation to
cumulative precipitation (blue polygons) in the 7 days prior to satellite acquisitions. The green line
indicates the end of quarrying activities and the mean percentage decrease in SPM concentrations
after that event.
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