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Abstract: Synthetic Aperture Radar (SAR) image change detection aims to detect changes with
images of the same area acquired at different times. It has wide applications in environmental
monitoring, urban planning and resource management. Traditional change detection methods for
spaceborne SAR time-series images typically adopt a pairwise comparison strategy to obtain multi-
temporal change information. However, this kind of method has the problem of losing the overall
change information, which is time consuming. To address this problem, this paper proposes a new
change detection algorithm for spaceborne SAR time-series data based on SAR-SIFT-Logarithm
Background Subtraction. This algorithm combines the SAR-SIFT image registration technology with
Logarithm Background Subtraction. The method first preprocesses the input time-series data with
steps like noise reducing and radiometric calibration. Then, the images will be coregistered by the
SAR-SIFT step to avoid mismatches-induced detection performance degradation. Next, the parts
that remained unchanged throughout the time period are modeled with a median filter to obtain the
static background. The change information is then obtained via the subtraction of background and
CFAR detection and clustering. The proposed algorithm is validated using the Sentinel-1 GRD and
PAZ-1 time-series dataset. Experimental results demonstrate that the proposed method effectively
detects the overall change information and reduces processing time compared to traditional pairwise
comparison methods.

Keywords: spaceborne SAR; SAR-SIFT-Logarithm Background Subtraction; time-series images;
change detection

1. Introduction

Change detection is an important application in the remote sensing domain [1–3].
Spaceborne SAR time-series images data have emerged in the past two to three decades
as an important tool for change detection application, since it can offer advantages such
as repeat pass observations, all-weather capability, and high resolution [4,5]. Currently,
SAR image change detection is mainly based on differential images obtained by pairwise
comparison, and the differential image’s quality like sharpness and signal-to-noise ratio has
a significant impact on the final results [6]. Hence, the researchers focuses on improving
its quality to obtain accurate change information. Reference [7] proposed a Combined
Difference Image (CDI) method. The CDI method is simple, and the calculation speed is
fast. However, it is necessary to artificially set the weighting parameters, and multiple
tests are required to find the most appropriate parameters. Reference [8] proposed a
neighborhood-based ratio (NR) operator. Compared with the CDI method, the NR operator
can remove artificial parameters and achieve unsupervised. Reference [9] proposed a
method of generating differential image by Wavelet Fusion (WF). This method uses the
complementary information of mean-ratio (MR) and Log-ratio (LR) images to generate a
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differential image, which combines the advantages of MR differential images to maintain
the overall information and LR differential images to maintain detailed information.

However, for multi-temporal data, this method is not effective enough to obtain the
overall change information. To address this issue, an effective approach is to introduce
Background Subtraction methods used in optical remote sensing [10–12]. In reference [13],
the Background Subtraction idea is introduced into airborne SAR moving target detection,
which can effectively extract the motion trajectory of moving targets. This method is applied
to the spotlight mode, which can generate an image sequence to obtain the background.
And thanks to the accurate position information of the platform, all images can be formed
in unified image coordinates, i.e., no registration is needed. However, when the spaceborne
SAR platform repeatedly observes the same scene, due to the influence of orbit offsets
at different times, the geometric positioning error of the image is large, so background
extraction and change detection cannot be directly performed. In addition, there are
relatively few studies and discussions on target-level change detection in high-resolution
spaceborne SAR images. Reference [14] proposed a moving target monitoring method
with high framerate spaceborne Synthetic Aperture Radar SAR images. Reference [15]
explored methods for urban change detection using multi-temporal spaceborne SAR data.
Ye et al. developed an object-based change detection algorithm that can generate change
maps at different scales [16]. Therefore, compared with airborne SAR images, introducing
Background Subtraction into spaceborne SAR time-series images has several differences,
which makes it a challenging task.

Based on the aforementioned analysis, this paper proposes an improved Logarithm
Background Subtraction method, entitled SAR-SIFT-Logarithm Background Subtraction,
for change detection using spaceborne SAR time-series data.The proposed method employs
SAR-SIFT image registration [17–19] to obtain accurately coregistered image sequence,
which is followed by the Logarithm Background Subtraction algorithm for image change
detection. The method first preprocesses the input time-series data with steps like noise
reducing and radiometric calibration. Then, the images are coregistered by a SAR-SIFT
step to avoid mismatches-induced detection performance degradation. Next, the part
that remained unchanged throughout the time period is modeled with a median filter to
obtain the static background. The change information is then obtained via subtraction of
background and CFAR detection and clustering. The method is experimentally validated
using Sentinel-1 and PAZ-1 time-series datasets along with detailed truth data.

The structure of this paper is as follows: Section 2 introduces the dataset used in the
paper and outlines the experimental design; Section 3 presents the proposed SAR-SIFT-
Logarithm Background Subtraction. In Section 4, the detailed experimental results are
presented. Section 5 contains the discussion of the experimental results. Section 6 contains
the conclusion.

2. Dataset and Experiments

Sentinel-1 is a satellite mission developed by the European Space Agency (ESA) for
Earth observation through radar imaging, and the sensor is equipped with a C-band SAR.
It plays a pivotal role in monitoring and managing various environmental and geological
applications [20]. Sentinel-1 offers all-weather, day-and-night imaging capabilities, making
it an invaluable tool for applications such as disaster management, agriculture, forestry,
and tracking changes in land and ocean surfaces [21]. Sentinel-1 can acquire many types of
data, including multi-temporal SAR image sequences [22], SAR image mosaics [23], and
SAR image fusion [24]. Among them, the multi-temporal SAR image sequence contains
SAR images acquired in the same region at different times [25]. This enables the long-term
monitoring and observation of a specific area, extracting change information from it.

The PAZ satellite, launched on 22 February 2018, is owned and operated by Hisdesat.
PAZ operates in the same orbit of the twin satellites TerraSAR-X and TanDEM-X, and it
has the same ground strip and acquisition mode. The three satellites work together as
a high-resolution SAR satellite constellation. PAZ is equipped by a side-looking X-Band
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SAR using the active phased array antenna technology with an operational instantaneous
bandwidth up to 300 MHz. It has been designed to be very flexible and is able to operate in
a wide array of configurations depending on the desired image performance.

This paper utilizes Sentinel-1 GRD products and PAZ-1 products as the experimental
dataset. Table 1 contains the parameters of the Sentinel-1 dataset, and Table 2 contains the
parameters of the PAZ-1 dataset.

Table 1. Sentinel-1 experiment parameters.

Parameter Name Values

Acq. Mode IW
Pol. mode HH
Spacing [m] 10 × 10
Orbit Repeat Cycle 12 days
Onboard sensors C-Band

Table 2. PAZ-1 experiment parameters.

Parameter Name Values

Acq. Mode SM
Pol. mode HH
Spacing [m] 3 × 3
Orbit Repeat Cycle 11 days
Onboard sensors X-Band

2.1. Experimental Design

In this paper, a sequence of time-series images was selected from the Sentinel-1 dataset;
then, the proposed method and the traditional method were used to detect changes in the
number of vehicles in a nearby parking lot and BEIJING-HYUNDAI AUTO Enterprise. The
latitude and longitude of the nearby parking lot are 39.9214◦ and 116.1958◦, respectively;
the latitude and longitude of BEIJING-HYUNDAI AUTO Enterprise are 40.1047◦ and
116.6443◦, respectively. For the nearby parking lot experiment, six sets of ground truth
data were collected through field observations. The performance of these two methods
was quantitatively evaluated using the root mean square error (RMSE) to validate the
effectiveness and robustness of the proposed approach.

The PAZ-1 dataset is used to complete the change detection of the number of vehicles
in the parking lot of the CCTV Tower, and then the truth data are used to verify the
detection results. The latitude and longitude of the nearby parking are 39.9171◦ and
116.3000◦, respectively.

2.1.1. Dataset 1: Nearby Parking Lot

This experiment is based on the Sentinel-1 dataset. As shown in Figure 1, the change
of the number of vehicles is detected in the area of interest indicated by the red box in
the nearby parking lot. The sequence of time-series images spans from 5 March 2020 to
14 November 2022, and it contains a total of 82 images.

Six sets of ground truth data were acquired through on-site collection. As the Sentinel-
1 satellite is a sun-synchronous orbit satellite [26], it always passes over a specific area and
acquires images every 12 days. Therefore, by recording the number of parked vehicles
every 12 days during the sensor passing time, the required ground truth data can be
obtained. Figure 2a shows the field situation of collecting truth data, and Figure 2b is an
image obtained by modeling the truth data to restore the vehicle distribution in the parking
lot, which is helpful for subsequent error analysis.
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(a) (b)

Figure 1. Comparison of optical image and SAR image of the nearby parking lot. (a) Optical image
from Google Earth. (b) SAR image acquired on 15 September 2022 by Sentinel-1A satellite.

(a) (b)

Figure 2. The collection of truth data (21 October 2022). (a) Field situation. (b) Truth data modeling.

Table 3 lists six sets of truth data recorded from 15 September 2022 to 14 November 2022.

Table 3. Six sets of truth data recorded.

Date of Image 2022.9.15 2022.9.27 2022.10.09 2022.10.21 2022.11.02 2022.11.14

Truth data
(number of vehicles) 114 134 109 140 46 44

The Logarithm Background Subtraction method and the pairwise comparison method
were used to detect the change in the number of vehicles in the parking lot, and the
change curve of the number of vehicles was obtained. Finally, the obtained truth data are
used to quantitatively evaluate and analyze the errors of the proposed method and the
traditional method.

2.1.2. Dataset 2: BEIJING-HYUNDAI AUTO Enterprise

This experiment is also based on the Sentinel-1 dataset. As shown in Figure 3, the
change of the number of vehicles is detected in the parking lot of BEIJING-HYUNDAI
AUTO Enterprise, which is indicated by a red box. The sequence of time-series images
spans from 9 July 2019 to 25 September 2020 and contains a total of 38 images.
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(a) (b)

Figure 3. Comparison of optical image and SAR image of the BEIJING-HYUNDAI AUTO Enterprise.
(a) Optical image from Google Earth. (b) SAR image acquired on 25 September 2020 by the Sentinel-
1A satellite.

The Logarithm Background Subtraction method and the pairwise comparison method
were separately employed to detect the vehicle count changes in this parking lot, resulting
in vehicle count change curves. A comparative analysis was performed to compare the
experimental results of the two methods.

2.1.3. Dataset 3: CCTV Tower Parking Lot

This experiment is based on the PAZ-1 dataset. As shown in Figure 4, the change in
the number of vehicles is detected in the area of interest indicated by the red box in the
CCTV Tower Parking Lot. The sequence of time-series images spans from 14 February 2023
to 31 August 2023 and contains a total of 12 images.

(a) (b)

Figure 4. Comparison of optical image and SAR image of the CCTV Tower Parking Lot. (a) Optical
image from Google Earth. (b) SAR image acquired on 31 August 2023 by the PAZ-1 satellite.

The PAZ-1 data are used to complete the change detection of the number of vehicles
in the parking lot of the CCTV Tower, and the change curve of the number of vehicles is
obtained. This experiment mainly uses RTK (real-time kinematic ) equipment to collect
the car’s accurate centimeter-level position as truth data when the satellite is passing by.
During the satellite transit, RTK equipment is used to accurately record the latitude and
longitude coordinates and location map of vehicles in the parking lot. Subsequently, by
analyzing the RTK data, a vehicle distribution map is created to present the distribution of
vehicles in the parking lot in detail.
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3. Proposed Algorithm

The processing flowchart of the proposed method is shown in Figure 5. The algorithm
consists of the following steps:

Temporal image sequence

Logarithmic transformation

Image preprocessingMedian filtering

Static background

Image sequence that contains 

the changed part

 Apply a mask

 CFAR detection

Multiply by the proportional 

coefficient

Change detection results

Figure 5. Overall flowchart of the algorithm.

Firstly, the logarithmic transformation technique is used to transform the time-series
images into logarithmic images, which are then sorted by azimuth time to form a sequence
of logarithmic images.

This sequence consists of n images, each of size M × N pixels, and can be represented
by a 3D array f {log[I]} of dimensions n × N ×M, where the k-th layer represents the k-th
image, and each layer contains M × N pixel values. It can be expressed as:

f {log[I]} = {log[I(i, j, k)], i = 1, 2, . . . M; j = 1, 2, . . . N; k = 1, 2, . . . n} (1)

In the formula, log[I(i, j, k)] represents the pixel value located in the i-th row and j-th
column of the k-th image in the logarithmic image sequence.

Next, the sequence of logarithmic images is preprocessed, including image registration,
image filtering, and radiometric correction. The speckle noise in SAR image seriously affects
the accuracy of change detection, so it needs to be processed. The mean filtering method
can be used to filter out the speckle noise in SAR images so as to improve the image quality.
Image registration aligns the two images so that the corresponding points in the two images
have the same coordinates. Radiation correction is a technique used to correct the radiation
distortion in SAR images due to the beam illumination variation. Its purpose is to make
the values of the corresponding pixels of each image in the image sequence consistent
so that the user can obtain the stable parts of all images. Among them, SAR-SIFT image
registration is a critical preprocessing step.

The preprocessed logarithmic image sequence can be represented as follows:

f {log[ Ĩ]} = {log[ Ĩ(i, j, k)], i = 1, 2, . . . M; j = 1, 2, . . . N; k = 1, 2, . . . n} (2)

In the formula, log[ Ĩ] represents the registered image sequence.
The steps of SAR-SIFT imag registration technology are detailed in Section 3.1.
Then, a median filter is applied along the image index dimension of the registered

image sequence, whereby for each pixel, the grayscale values across multiple images are
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sorted, and the middle value is taken as the corresponding grayscale value in the static
background, resulting in the unchanged part. The median filtering is the key concept
used in the Background Subtraction method. It is used for extracting the unchanged part
(background) from the reregistered image sequence. Since the image sequence consists
of repeated pass observation data, the unchanged parts like buildings present as stable
pixel values and have less variation along the index of the images. Meanwhile, the pixels
with changes like cars leaving or moving into the frame present as high value or low value
variations on the stable pixel value curve. Therefore, the median filtering can filter those
high or low values caused by the changes and output the stable background, which we can
use to obtain the unchanged parts in all the images.

log[B(i, j)] = median

{
n⋃

k=1

log[ Ĩ(i, j, k)]

}
(3)

In the formula, B(i, j) represents the pixel intensity value located in the i-th row and
j-th column of the static background, and median refers to the operation of taking the
median value.

After obtaining the static background, the image sequence that contains the changed
part is obtained by subtracting the static background from the original registered image
sequence.

log[F(i, j, k)] = log[ Ĩ(i, j, k)]− log[B(i, j)] (4)

In the formula, log[F(i, j, k)] represents the pixel intensity value located in the i-th row
and j-th column of the k-th image that contains the changed part.

Meanwhile, to exclude other interfering areas, a binary mask is applied on the image
sequence to retain only the region of interest.

log[F̂(i, j, k)] = log[F(i, j, k)]×M(i, j) (5)

In the formula, log[F̂(i, j, k)] represents the pixel value located at the i-th row and j-th
column of the k-th image, which has undergone a mask processing. M(i, j) denotes the
pixel value located at the i-th row and j-th column of the binary mask image, which can
only be either 0 or 1. During the element-wise multiplication operation, the pixels with
a value of 0 in the binary mask will result in the corresponding pixel value in the image
being set to 0, while pixels with a value of 1 will have no effect.

After this, the Constant False Alarm Rate (CFAR) detection algorithm is applied on the
image sequence to detect targets, and the number of pixels containing targets is extracted.
The CFAR detection algorithm is a target detection technology commonly used in the
field of radar signal processing [27]. Its main purpose is to effectively detect the area
where the target exists while maintaining a constant false alarm rate. The basic idea is
to adaptively adjust the detection threshold so that the system can adapt to changes in
different backgrounds so as to achieve target detection while maintaining a certain false
alarm rate [28].

Finally, the number of targets is obtained by multiplying the number of pixels contain-
ing targets by the proportional coefficient. In the experimental images, each pixel represents
an area of 10 m by 10 m on the ground: that is, each pixel represents a square area of 10 m
by 10 m. In the field inspection of parking lots, the number of vehicles parked in each pixel
can be counted to determine the true value and proportional coefficient of the number of
vehicles in a single pixel.

The main processing steps are from logarithmic transformation to CFAR detection;
their details are introduced as follows.

3.1. SAR-SIFT Image Registration Algorithm

The Scale-Invariant Feature Transform (SIFT) algorithm is a classic method used for
feature extraction and matching in images. It exhibits features such as scale invariance,
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rotation invariance, and illumination invariance, which enables it to extract stable feature
points under different scales, angles, and lighting conditions. However, due to the unique
characteristics of SAR images, such as strong noise, low contrast, and irregular reflections,
traditional SIFT algorithms cannot be directly applied to SAR images for feature extraction.
The SAR-SIFT algorithm improves the SIFT algorithm by introducing the characteristics of
SAR images to adapt to the special properties of SAR images. Specifically, the SAR-SIFT
algorithm introduces techniques such as adaptive Gaussian filtering and adaptive local
binarization to enhance the contrast and stability of SAR images, thereby achieving more
accurate feature point extraction and matching.

The following is the specific operation process of the SAR-SIFT algorithm for registration:
Establish the SAR-Harris scale space
Calculate the gradient of SAR image using the ROEWA. For orientation ϕ, the weighted

averages of bilateral windows are as follows:{
r1(x, y | ϕ) = ∑(x′ ,y′) g1(x′, y′)I(x + x′, y + y′)
r2(x, y | ϕ) = ∑(x′ ,y′) g2(x′, y′)I(x + x′, y + y′)

(6)

In the formula, r1 and r2 are local exponential weighted averages, I is the SAR image,
x and y are image pixel coordinates, g1 and g2 are exponential weighted filters, respectively:g1(x, y | ϕ) = exp

(
− x+y

α

)
x cos ϕ + y sin ϕ > 0

g2(x, y | ϕ) = exp
(
− x+y

α

)
x cos ϕ + y sin ϕ < 0

(7)

ϕ = 0◦ and ϕ = 90◦ are horizontal and vertical direction exponential weighted filters.
The gradient of the SAR image is calculated based on the ratio of local exponential weighted av-
erages between horizontal and vertical directions. The gradient of an SAR image is as follows:

Gx,a(x, y) = log
(

r1(x,y|ϕ=90◦)
r2(x,y|ϕ=90◦)

)
Gy,a(x, y) = log

(
r1(x,y|ϕ=0◦)
r2(x,y|ϕ=0◦)

)
Gn,a(x, y) =

√
Gx,a(x, y)2 + Gy,a(x, y)2

Gt,a(x, y) = arctan
(

Gy,a(x,y)
Gx,a(x,y)

) (8)

Then, we used the obtained gradient to establish the SAR-Harris scale space. The
expression of multi-scale SAR-Harris function is as follows:

CSH(x, y, a) = g√2a

[
(Gx,a)

2 (Gx,a)
(
Gy,a

)(
Gy,a

)
(Gx,a)

(
Gy,a

)2

]
(9)

In the formula, g√2a represents a Gaussian kernel with a standard deviation of
√

2.
CSH(x, y, a) represents the value of SAR-Harris scale space at (x, y, a).

Feature points detection and precise localization.
For each point in the multi-scale space, detect feature points using the DoG operator.

The DoG operator is a scale space transformation that can detect local extreme points at
different scales. To obtain more robust extreme points, we adopted the following formula
to filter out low-contrast points in the initial extreme points:

RSH(x, y, a) = det(CSH(x, y, a))− d× tr(CSH(x, y, a))2 (10)

In the formula, det represents calculating the determinant of the matrix, tr represents
calculating the trace of the matrix, and d is the adjustment parameter set to 0.04.

Assign the main direction.
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Next, we used the ROEWA gradient to calculate the gradient histogram in the key
point neighborhood. The direction corresponding to the highest point of the histogram is
the main direction.

Generate descriptors.
The scale-dependent neighborhood around each key point is divided into sectors. We

utilized the ROEWA gradient to calculate the gradient histogram within the key point
neighborhood. Then, we consolidated all histograms into a normalized vector to generate
SAR-SIFT feature descriptors.

Key point matching and filter matched points.
After obtaining the descriptors of the key points, we used the NNDR to perform

preliminary matching. We chose the two closest feature points and judged whether the
distance between them meets the given threshold. According to the threshold, we selected
the matched feature point pairs and stored them. The formula for calculating Euclidean
distance is as follows:

d =

√
n

∑
i=1

(xi − yi)
2 (11)

The initial matched feature point pairs contain a large number of erroneous matches,
which need to be removed. We retained the matched points that are consistent in space
and angle using the RANSAC algorithm. After obtaining all the correctly matched point
pairs, we used these pairs to calculate the transformation model parameters and obtain the
transformation matrix.

Image resampling.
We used the obtained affine transformation matrix to resample the registered image,

adjusting its position and size to achieve perfect matching. Through the above steps, the
registered SAR image was obtained. The flowchart of the SAR-SIFT algorithm operation
process is shown below (Figure 6):

Construct SAR-Harris scale space

Keypoints detection

Orientation assignement

Descriptors extraction

Keypoints matching

Image resampling

Figure 6. Flowchart of the SAR-SIFT algorithm.

4. Experimental Results and Analysis

Experiment 1 provides a controllable experimental environment. It not only has the
actual spaceborne SAR dataset but also contains the complete truth data, which can be
used to evaluate the system and verify the performance of the algorithm. This experiment
provides us with a quantitative method to evaluate the effectiveness of the algorithm.
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Experiment 2 expanded the scope of the experiment and selected a larger experimental
area, namely the parking lot of BEIJING-HYUNDAI AUTO Enterprise, which was located
in the real application background during the COVID-19 pandemic. This experiment serves
as a practical application context for presenting the outcomes.

Experiment 3 also provides a controllable experimental environment, which uses RTK
equipment to accurately record vehicle coordinates, and then verifies the robustness of the
proposed method with higher-resolution data.

4.1. Dataset 1: Nearby Parking Lot

For the detection of the change of the number of vehicles in the nearby parking lot,
a total of 82 images were selected from 5 March 2020, to 14 November 2022. First, the
experimental processing area was selected with an image size of 376 × 376 pixels, as shown
in Figure 7.

(a) (b)

Figure 7. Comparison of optical image and SAR image of the experimental area. (a) Optical image
from Google Earth. (b) SAR image acquired at 15 Septmber 2022 by Sentinel-1A satellite.

After applying median filtering and radiometric correction to the image sequence, im-
age registration is required. There are two main methods for image registration: pixel-based
registration and feature-based registration. Pixel-based registration methods minimize the
differences between pixels in the images to achieve image registration. Commonly used
pixel-based registration methods include cross-correlation registration, phase correlation-
based registration, and wavelet transform-based registration. The principle behind these
methods is to calculate the similarity between corresponding pixels in two images, find the
translation that maximizes the similarity, and complete image registration. Feature-based
registration methods achieve image registration by extracting feature points or regions
from the images and calculating the relative positions of these feature points or regions.
In this paper, SAR-SIFT registration and cross-correlation registration were applied to the
image sequence to demonstrate the registration results using a scene as an example.

The SAR-SIFT algorithm was used to register the images. Matching points connection
diagrams are shown in Figure 8. In order to visualize the matching effect, we use red lines to
connect all detected matching pairs so that the registration results can be clearly observed.

Figure 9a shows the intensity superposition of the reference image and the image to be
registered before registration, where gray represents areas of equal intensity, and green and
magenta represent areas of different intensities. Figure 9b shows the superposition after SAR-
SIFT registration, and Figure 9c shows the superposition after cross-correlation registration.
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Figure 8. Line segments connecting matching points (date of reference image: 15 Septmber 2022; date
of image to be registered: 21 October 2022).

(a) (b) (c)

Figure 9. Comparison image before and after SAR-SIFT registration. (a) Before SAR-SIFT registration.
(b) After SAR-SIFT registration. (c) After cross-correlation registration.

By comparing the intensity overlay images of the two registration methods, it can be
seen that the SAR-SIFT algorithm can accurately achieve the spatial alignment of two im-
ages, while the effect of cross-correlation registration is not ideal. Image registration is one
of the key steps in this paper and is crucial for ensuring data quality and detection accuracy.
Low registration accuracy will affect subsequent target detection ability and ultimately
increase the experimental result errors. Therefore, SAR-SIFT algorithm with high accuracy
is used to register the temporal images in this experiment for subsequent processing.

After registration, images need to be cropped for background subtraction. The main
reason for cropping is that the areas that changed before and after are too small in the
experimental images. The above operation can improve the proportion of changed regions
in the entire image, and the final cropped size is 50 × 50 pixels. As seen above, Figure 10a
is the area of registration, while Figure 10b and Figure 10c are the optical and SAR image of
the parking lot, respectively.

Logarithm Background Subtraction is applied to the area marked by the red box in
Figure 10, and the resulting image is shown in Figure 11. From left to right are the input
image, the static background and the image that contains the changed part. The red box
represents the parking area to be detected.
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Figure 10. Parking lot area for experiment. (a) Area for registration from Google Earth. (b) Opti-
cal image of parking lot area from Google Earth. (c) SAR image of parking lot area acquired on
15 September 2022 by Sentinel-1A satellite.

(a) (b) (c)

Figure 11. Logarithm Background Subtraction result. (a) Input image. (b) Background. (c) Change part.

After obtaining the image that contains the changed part through Logarithm Back-
ground Subtraction, it is necessary to perform target detection on the image in order to
obtain the change targets.

In this paper, a CFAR target detection algorithm based on Gaussian distribution
is used by calculating the statistical information of the changed image. The Gaussian
distribution is utilized to model the environmental background, thereby computing the
detection threshold. The target detection result is presented in Figure 12. CFAR detection is
a method to determine pixels whose pixel value is greater than the threshold as the target
and those whose pixel value is less than the threshold as the non-target. Therefore, after
performing CFAR detection, a binary image is finally formed, as shown on the left side of
the figure. In this image, the white areas represent the target points, while the black areas
represent non-target points. In the right figure, the red dots corresponds to the white part
of the figure on the left, which is ‘vehicle appeared’ in the legend.



Remote Sens. 2023, 15, 5533 13 of 22

(a) (b)

Figure 12. CFAR detection results and labeling results. (a) CFAR’s binary detection results of changed
pixels (vehicles). (b) Detected changed pixel (vehicles) label on the original SAR image with red dot.

The advantages of the CFAR algorithm are that it enables an adaptive determination of
the detection threshold, thereby avoiding the problem of static threshold sensitivity to noise
and interference. Since the algorithm only requires some local information to complete the
detection task, its computational load is relatively small, and its real-time performance is
good, making it suitable for target detection tasks in this paper. By multiplying the number
of pixels with detected targets by the proportional coefficient, the vehicle count for each
scene image is calculated, and the resulting vehicle count variation curve is obtained, as
shown in Figure 13, of which Figure 13a shows the logarithm Background Subtraction
method result and Figure 13b shows the result of pairwise comparison method.

(a) (b)

Figure 13. Curve of vehicle number. (a) Logarithm Background Subtraction method result. (b) Pair-
wise comparison method result.

4.2. Dataset 2: BEIJING-HYUNDAI AUTO Enterprise

In order to carry out change detection experiment on BEIJING-HYUNDAI AUTO
Enterprise, a total of 38 images were selected from 9 July 2019 to 25 September 2020. The
images were cropped and the experimental processing area was identified. As shown
in Figure 14, the area marked by the red box is the experimental processing area, and
the image connected by the red line is the optical image corresponding to its enlarged
image. As shown in the enlarged image, the size of the experimental processing area is
128 × 128 pixels.
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Figure 14. Parking lot area for experiment. (a) SAR image acquired on 25 September 2020 by Sentinel-
1A satellite. (b) Optical image of parking lot area from Google Earth. (c) SAR image of parking lot
area acquired on 25 September 2020 by Sentinel-1A satellite.

After basic denoising of the images, the SAR-SIFT algorithm was used to perform
registration on the experimental area. Matching points connection diagrams are shown in
Figure 15. In order to visualize the matching effect, we use red lines to connect all detected
matching pairs so that the registration results can be clearly observed.

Figure 15. Line segments connecting matching points (date of reference image: 25 September 2020;
date of image to be registered: 24 December 2019).

The registration effect is shown in Figure 16. After SAR-SIFT registration, the images
were aligned, and further operations can be performed.
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(a) (b)

Figure 16. Comparison image before and after SAR-SIFT registration. (a) Before SAR-SIFT registration.
(b) After SAR-SIFT registration.

The Logarithm Background Subtraction result of the image sequence is demonstrated
in Figure 17. From left to right are the input image, the static background and the image
that contains the changed part. The red box represents the parking area to be detected.

(a) (b) (c)

Figure 17. Logarithm Background Subtraction result. (a) Input image. (b) Background. (c)
Change part.

Adding a binary mask to the image that contains the changed part leaves only the
region of interest, which is convenient for subsequent CFAR detection and reduces the
error caused by the irrelevant area. The region of interest is shown in Figure 18, where
Figure 18a is an optical image, and the red box indicates the parking area of the enterprise,
which is also the CFAR detection area. Figure 18b shows the binary mask.

After obtaining the image that contains the changed part through Logarithm Back-
ground Subtraction, it is necessary to perform target detection in the region of interest of
the image. The detection result is shown in Figure 19.

The pairwise comparison method detection result is shown in Figure 20.
The red pixels in the image represent the presence of vehicle targets compared to the

background or base image, while green pixels represent the decrease of vehicle targets
compared to the base image. By multiplying the number of detected target pixels by the
proportional coefficient, the number of vehicles in each image can be calculated, resulting
in a curve showing changes in vehicle count, as shown in Figure 21, of which Figure 21a
shows the Logarithm Background Subtraction method result and Figure 21b shows the
result of pairwise comparison method.
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(a) (b)

Figure 18. Region of interest (BEIJING HYUNDAI AUTO Enterprise). (a) Optical image from Google
Earth. (b) Generated binary mask for extracting the region of interest.

Figure 19. Logarithmic Background Subtraction method detection result.

Figure 20. Pairwise comparison method detection result.

4.3. Dataset 3: CCTV Tower Parking Lot

This experiment is based on the PAZ-1 dataset. The sequence of time-series images
spans from 14 February 2023 to 31 August 2023 and contains a total of 12 images. Since this
dataset reaches a resolution of 3 m × 3 m, this experiment uses RTK (real-time kinematic)
equipment to accurately record the coordinates of vehicles in the parking lot and the
trajectory map when collecting data, and then it creates a vehicle distribution map by
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parsing RTK data. Finally, the experimental results obtained by this method will be
compared with the truth data to evaluate the accuracy of the algorithm again.

(a) (b)

Figure 21. Curve of vehicle number. (a) Logarithm Background Subtraction method result. (b) Pair-
wise comparison method result.

As shown in Figure 22, the area marked by the red box is the parking lot area, and
the image connected by the red line is the enlarged image of the parking lot and its
corresponding optical image. As shown in the enlarged image, the size of the experimental
processing area is 50 × 50 pixels.

Figure 22. Parking lot area for experiment. (a) SAR image acquired on 31 August 2023 by PAZ-1
satellite. (b) Optical image of parking lot area from Google Earth. (c) SAR image of parking lot area
acquired on 31 August 2023 by PAZ-1 satellite.

The Logarithm Background Subtraction result of the image sequence is demonstrated
in Figure 23. From left to right are the input image, the static background and the image
that contains the changed part.

After obtaining the image that contains the changed part through Logarithm Back-
ground Subtraction, it is necessary to perform target detection in the region of interest of
the image. The CFAR detection result is shown in Figure 24. The left image is the binary
image obtained after CFAR detection, in which the white point is the target, and the right
image is the visualization result. The red point in the image corresponds to the white point
in the left image, that is, the vehicle target.
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(a) (b) (c)

Figure 23. Logarithm Background Subtraction result. (a) Input image. (b) Background. (c) Change part.

Figure 24. The CFAR detection result.

5. Discussion
5.1. Performance Comparison of Traditional and Proposed Method

The RMSE was used as a quantitative analysis metric for change detection in this
experiment. RMSE is defined as the square root of the average of the squared differences
between predicted values and true values and is commonly used to evaluate the accuracy
of prediction models. The formula is as follows:

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (12)

In the formula, n is the number of predicted samples, yi is the true value, and ŷi is the
predicted value of the model.

5.1.1. Dataset 1: Nearby Parking Lot

From 15 September 2022 to 14 November 2022, a total of 6 scenes of ground truth
data were collected for this parking lot. Table 4 shows the absolute value of detection for
missing cars in the proposed method and the traditional pairwise comparison method.

The graph of the deviation for detected cars by the traditional method and the pro-
posed method is shown in Figure 25.

It can be seen from the graph that the deviation for detected cars by the proposed
method is lower than that of the traditional method. The overall detection performance is
evaluated with the RMSE metric.

Based on calculations, the experimental results obtained from the Logarithm Back-
ground Subtraction method yield an RMSE value of 8.534. From the perspective of quan-
titative analysis indicators, there are certain errors in the detection results, but these are
within a reasonable range. Considering the low resolution of Sentinel-1, this method can
obtain more accurate results for higher-resolution images. Taking data from 21 October
2022 as a case study, the following section presents an error analysis of vehicle distribution
in the parking lot.
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Table 4. The detection result and performance comparison of the proposed method and traditional
pairwise based method.

Date of Image 2022.9.15 2022.9.27 2022.10.09 2022.10.21 2022.11.02 2022.11.14

Truth data
(number of vehicles) 114 134 109 140 46 44

Traditional method
(number of vehicles) 145 110 121 167 39 42

Deviation for detected cars
(traditional method) 31 24 12 27 7 2

Proposed method
(number of vehicles) 108 126 96 150 48 36

Deviation for detected cars
(proposed method) 6 8 13 10 2 8

Figure 25. Deviation for detected cars.

By observing the parking lot on site, the distribution of vehicles in the parking lot
is modeled. In this experiment, the number of parked cars in each pixel was counted to
determine that the single-pixel proportional coefficient is 6, i.e., the ground truth number
of vehicles in a pixel is 6. It can be seen from Figure 26a that not all pixels detected as target
points contained 6 cars, and pixels with less than 3 cars were not detected as target points,
resulting in missed detection.

(a) (b)

Figure 26. Comparison of actual distribution and detection result of vehicles in the parking lot.
(a) Actual distribution. (b) Detection result.

After performing the calculations, the RMSE for the pairwise comparison method
is determined to be 20.261. From a perspective of vehicle count change detection, the
pairwise comparison method relies on the number of targets in the base image, which leads
to cumulative errors in the detection results. The more targets there are in the base image,
the higher the probability of false detections in the change detection results. On the other
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hand, the Background Subtraction method is not limited by the number of targets and only
requires sufficient similarity between the background and detection images. Additionally,
the pairwise difference method requires image registration and subtraction for each pair of
images, which is computationally intensive and vulnerable to registration errors, leading
to lower efficiency and accuracy. Compared to the pairwise comparison method, the
Background Subtraction method reduces false detections caused by noise and illumination
changes by modeling the static background.

5.1.2. Dataset 3: CCTV Tower Parking Lot

We take the image dated 31 August 2023 as an example to analyze the experimental
result. The vehicle distribution map of the parking lot recorded by RTK equipment is
shown in Figure 27a, and Figure 27b contains the enlarged image of CFAR detection result.

(a) (b)

Figure 27. Detection result. (a) Vehicle distribution map. (b) Enlarged image of CFAR detection result.

The true value is 53 vehicles, and the detection result is 57 vehicles. From the experi-
mental result, it is not difficult to see that compared with Dataset 1, Dataset 3 has higher
resolution and more accurate detection results. However, there is only one set of true values
in this experiment. In the future, more truth data will be collected to verify the detection
effect of the proposed method on high-resolution spaceborne SAR images.

5.2. Limitations and Potential Usability of the Proposed Method

Despite the promising results, it is essential to acknowledge the limitations and areas
for improvement encountered in this study. One limitation lies in the sensitivity of the
logarithm background subtraction method to variations in image resolution, as indicated
by the observed errors in the detection results. Additionally, the algorithm’s performance
may be influenced by changes in environmental conditions, such as weather and lighting,
which were not explicitly addressed in this research.

6. Conclusions

This paper combines the Logarithm Background Subtraction with SAR-SIFT registra-
tion technology to form a change detection method suitable for spaceborne SAR platforms.
Firstly, the logarithmic transformation technique is introduced to enhance the robustness
of the Background Subtraction method. Then, the images are coregistered by SAR-SIFT
technology to avoid mismatches-induced detection performance degradation. Next, the
static background is modeled by the median filter, and then the subtraction is carried
out to help extract the image that contains the changed part. Finally, change detection is
performed on the image to obtain the overall change information. The experimental results
show that the proposed method can effectively detect the overall change information in
spaceborne SAR time-series images, and compared with the traditional pairwise compar-
ison method, the detection efficiency is greatly improved. Future works are focusing on
enhancing the algorithm’s robustness and performance by introducing all the polarization
channels’ information.
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