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Abstract: Clouds are a critical factor in regulating the climate system, and estimating cloudy-sky
Surface Downward Longwave Radiation (SDLR) from satellite data is significant for global climate
change research. The models based on cloud water path (CWP) are less affected by cloud parameter
uncertainties and have superior accuracy in SDLR satellite estimation when compared to those
empirical and parameterized models relying mainly on cloud fraction or cloud-base temperature.
However, existing CWP-based models tend to overestimate the low SDLR values and underestimate
the larger SDLR. This study found that this phenomenon was caused by the fact that the models
do not account for the varying relationships between cloud radiative effects and key parameters
under different Liquid Water Path (LWP) and Precipitable Water Vapor (PWV) ranges. Based upon
this observation, this study utilized Fengyun-4A (FY-4A) cloud parameters and ERA5 data as data
sources to develop a new CWP-based model where the model coefficients depend on the cloud
phase and cloud water path range. The accuracy of the new model’s estimated SDLR is 20.8 W/m2

for cloudy pixels, with accuracies of 19.4 W/m2 and 23.5 W/m2 for overcast and partly cloudy
conditions, respectively. In contrast, the accuracy of the old CWP-based model was 22.4, 21.2, and
24.8 W/m2, respectively. The underestimation and overestimation present in the old CWP-based
model are effectively corrected by the new model. The new model exhibited higher accuracy under
various station locations, cloud cover scenarios, and cloud phase conditions compared to the old one.
Comparatively, the new model showcased its most remarkable improvements in situations involving
overcast conditions, water clouds with low PWV and low LWP values, ice clouds with large PWV,
and conditions with PWV ≥ 5 cm. Over a temporal scale, the new model effectively captured the
seasonal variations in SDLR.

Keywords: cloud water path; downward longwave radiation; FY-4A; cloudy sky; overcast; partly
cloudy

1. Introduction

Global climate change is a major challenge currently facing humanity. Downward
Longwave Radiation at the Earth’s surface (SDLR) is an essential climate variable for the
study of global climate evolution as defined by the Global Climate Observing System.
Cloud covers more than 60% of the Earth’s surface and greatly affects the radiative balance
of the earth–atmosphere system. Estimating cloud-sky SDLR data sets using satellite
data is of great significance for radiative forcing and climate response research, energy
balance research, and water cycle research. Currently, the spatial resolution and accuracy
of satellite-estimated clear-sky SDLR have been greatly improved, with kilometer-scale
instantaneous clear-sky SDLR accuracy ranging from 17 to 26 W/m2 [1,2]. Conversely, there
remains significant uncertainty in the accuracy of kilometer-scale instantaneous cloud-sky
SDLR estimated by satellite, and the retrieval accuracy is much lower than that of clear-sky
conditions [2–5].
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Cloud-sky SDLR primarily originates from radiation emitted by clouds themselves
and radiation contributions from the atmosphere below the cloud. When clouds are semi-
transparent, SDLR also includes the portion of radiation above the clouds that penetrates
the cloud layer and reaches the Earth’s surface. Given knowledge of the vertical charac-
teristics of the atmosphere and clouds, SDLR can be accurately calculated by atmospheric
radiative transfer models. Due to the extensive input parameters and complicated calcula-
tion processes required by radiative transfer models, SDLR estimation at high-resolution
scales often relies on empirical models [3,6–8], parameterized models [4,9–13], and machine
learning methods [14–20]. Although machine learning models offer the highest accu-
racy, empirical and parameterized models have clear analytical forms and interpretability,
making them irreplaceable in satellite estimation.

In empirical and parameterized models, cloud radiative effects are described in four
different forms. The first form is cloud fraction correction, which is used by most empirical
models. These models describe clear-sky SDLR using surface air temperature and water
vapor pressure, while cloud-sky SDLR is an empirical correction of clear-sky SDLR using a
factor based on the cloud fraction [3,6–8]. Some researchers also used dew point tempera-
ture or cloud base height as correction factors [21,22]. Existing studies demonstrated that
most empirical models rely on specific sites and datasets, requiring adjustments for use in
other locations [23–25].

For the second form, cloud base temperature is used to represent cloud radiative
effects because that cloud base temperature is a key parameter directly determining the
radiation contribution of the cloud base [4,9,12,13,26,27]. However, since the information
below clouds cannot be observed by optical sensors, the cloud base temperature and height
inferred from optical satellite data have great uncertainties.

To avoid using cloud base parameters, some researchers utilize other cloud parameters
to describe cloud radiative effects. For the third form, cloud water path (CWP) is used to
describe cloud radiation. Since CWP is related to cloud height or cloud emissivity [10,12],
researchers employed cloud liquid water path (LWP) and ice water path (IWP) as substitutes
for cloud base height and determined the relationship between SDLR and CWP through
statistical analysis [10,11]. The fourth method is based on the correlation between cloud-
top temperature and cloud-base temperature, using cloud-top temperature to estimate
cloudy-sky SDLR [15,16].

In our previous research, we evaluated the accuracy of the above types of models under
different cloud parameter quality conditions [28]. We found that a model based on CWP
proposed by [11], hereafter referred to as Zhou2007, was less impacted by the uncertainty
of cloud parameters than other models. Under accurate cloud fraction and cloud base
temperature conditions, the Zhou2007 model performed similarly to the best model based
on cloud base temperature and much better than the model using cloud correction. For
the satellite estimation with large cloud parameter errors, the accuracy of the other models
exceeded 30 W/m2, while the RMSE of the Zhou2007 model’s estimated cloudy SDLR
remained below 25 W/m2 [28]. When applying the Zhou2007 model to Fengyun-4A
(FY4A) and GOES-16 data, the RMSE of cloudy-sky SDLR is 24.3 W/m2 for FY-4A data
and 21.3 W/m2 for GOES-16 data [29]. Previous studies show that the Zhou2007 model
tends to overestimate low cloudy-SDLR values and underestimate large cloudy-SDLR
values [11,28,29]. Moreover, though the Zhou2007 model used LWP and IWP to describe
cloudy SDLR, the radiative effects of different cloud phases are not separately considered.

In order to improve the accuracy of CWP-based models in satellite estimations of
cloudy SDLR, this study will deeply analyze the problem of the Zhou2007 model and in-
vestigate the radiative effects of different cloud conditions. Based on this analysis, utilizing
FY4A/AGRI cloud parameters and ERA5 as data sources, a new SDLR parameterized
model considering the cloud phase and CWP range will be constructed and validated.
Furthermore, the new model will be compared with the Zhou2007 model and calibrated
Zhou2007 model after the coefficients are calibrated by this study’s data. This comparison
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will analyze the improvements in the new model in different cloud phases, different PWV
ranges, and different cloud water paths relative to existing CWP-based models.

2. Data

The data employed in this study include satellite products, reanalysis data, and ground
measurements, which are utilized to develop and validate the SDLR model. Table 1 presents
the detailed information on these datasets.

Table 1. Satellite and reanalysis data used in SDLR estimation.

Sources Products Parameters Resolution Function

FY-4A

L1 GEO Latitude, longitude 4 km Geolocation
CLM Cloud mask 4 km Cloud detection
CFR Cloud fraction 4 km

SDLR estimationCLP Cloud phase 4 km

CPD and CPN Cloud liquid water path (LWP)
and ice water path (IWP) 4 km

ERA5
reanalysis

ERA5 hourly data on
pressure and single levels 2 m air temperature (Ta), PWV 0.25◦ hourly SDLR estimation

USGS GMTED2010 Surface elevation (DEM) 0.05◦ Atmospheric profile
interpolation

2.1. FY-4A Products

This study used the following FY-4A products from 2018 and 2019: (1) AGRI-L1 GEO
data, which gives latitude and longitude; (2) Cloud Mask (CLM), Cloud Fraction Rate
(CFR) and Cloud Phase (CLP) products, which offer the cloud mask, cloud fraction, and
cloud phase [30,31]; and (3) Cloud Parameters for Daytime (CPD) and Cloud Parameters
for Night-time (CPN), which offer the LWP and IWP parameters during daytime and
night-time [31–33], respectively. The resolution of these FY-4A parameters is 4 km, once or
twice each hour.

For the cases where cloud fraction information is missing, we employ cloud edge
discrimination to determine cloud fraction based on the result of whether a pixel represents
a cloud edge, according to [29]. If the pixel represents a cloud edge, we assign a cloud
fraction value of 0.5; for pixels representing the cloud center, the cloud fraction is set to 1.
When LWP information is missing for a water- or mixed-phase cloud pixel, we use a fill
value of 300 g/m2 for LWP, according to the method of [29]. Similarly, for a mixed or ice
phase cloud pixel with missing IWP information, a fill value of 100 g/m2 is applied to IWP.

2.2. ERA5 Reanalysis

We utilized the fifth-generation European Centre for Medium-Range Weather Forecasts
reanalysis (ERA5) data to obtain atmospheric parameters. ERA5 is a comprehensive dataset
that integrates climate model data with multiple observational sources using physical
principles. It offers global estimates for various atmospheric, oceanic wave, and land
surface parameters [34]. For our study, we selected the atmospheric temperature and
humidity profiles on 37 pressure levels and atmospheric parameters at a single level, as
outlined in Table 1 [35,36]. The original resolutions of these data are 0.25◦ and hourly.

The Ta and PWV corresponding to the resolution of cloudy pixels were obtained from
the ERA5 data using the method proposed by [37]. First, the ERA5 data are downscaled
to the spatiotemporal scale of satellite pixels through time and interpolations. Then, the
atmospheric profiles above the Earth’s surface are extracted using GMTED2010 elevation
data [38]. The Ta and PWV values are obtained from the final atmospheric profile.

2.3. Field Measurements

The field measurements corresponding to satellite data were collected from 32 sites of
the Baseline Surface Radiation Network (BSRN) [39] and the National Tibetan Plateau Data
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Center (TPDC) [40–44]. Their locations are displayed in Figure 1, and their information is
in Appendix A Table A1. Nine sites are located within the Qinghai–Tibet Plateau region:
SDL, MIG, QH, DSL, AR, JYL, YK, LC, and XYH.
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TPDC sites. The red shape is boundary of Tibetan Plateau from [45].

The meteorological and radiation parameters of these sites include surface air tem-
perature and relative humidity, surface pressure, and upward longwave radiation. The
measurements of BSRN and TPDC sites were averages of 1 and 10 min, respectively. The in
situ SDLR corresponding to the satellite was interpolated from the two nearest records to
the satellite transit time.

The longwave radiation was measured by Kipp & Zonen CNR1 Net Radiometers
for TPDC sites and by Eppley precision infrared radiometers for BSRN sites. Though the
wavelength ranges of these instruments are different, their reading has been calibrated
to the total range of the entire longwave spectrum [46]. We employ the quality control
methods provided by BSRN to remove measurements of SDLR that fall outside the physical
limit, the extremely rare limit, and the inter-comparison limit [47]. The physical limit means
the physical range of SDLR. The measurements beyond the extremely rare limit should be
eliminated, if no physical reasons, such as extreme weather conditions, can be found. The
inter-comparison limit is the range of SDLR based on other associated parameters. We used
the limits values suitable for all latitudes and climate regimes in the BSRN Program. The
physical limits for SDLR are 40–700 W/m2, and the extremely rare limits are 60–500 W/m2.
The inter-comparison limit of SDLR in relation to air temperature and upward longwave
radiation are as follows:

0.4 × σT4
a < Fall−sky < σT4

a + 25
SULR − 300 W/m2 < Fall−sky < SULR + 25 W/m2

where Fall-sky is all-sky SDLR, SULR is upward longwave radiation, Ta is the 2 m air
temperature, and σ is the Stefan–Boltzmann constant.

3. Methods

First, we utilized an atmosphere radiative transfer model for simulation to analyze the
problems of the existing cloud water path-based model. In response to this problem, we
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developed a new cloud water path-based model and validated the new model using the
testing data, as shown in Figure 2. Additionally, we calibrated the coefficients of existing
cloud water path-based model using training dataset and compared them with our new
model. Figure 2 illustrates the process of model construction and validation, where the
overcast pixel data of 2018 were employed for model construction, and all data from 2018
and 2019 were used for model validation.
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Figure 2. Flowchart of SDLR modeling process and model evaluation.

3.1. Problem Analysis of Zhou2007 Model

The Zhou2007 model proposed by [11] is the model used for CERES SDLR products.
This model uses global satellite parameters and ground observations to establish statistical
relationships between cloudy SDLR and PWV, upward longwave radiation, LWP, and IWP.
For the Zhou2007 model, the cloudy SDLR (Fall-sky) is the sum of fluxes from cloudy and
clear portions (Fovercast and Fclear), which is as follows:

Fall−sky = c f •Fovercast + (1 − c f )•Fclear (1)

where cf indicates cloud fraction. Fclear and Fovercast are as follows:

Fclear = 37.687 + 0.474•SULR + 94.190• log(1 + PWV)− 4.935• log(1 + PWV) (2)

Fovercast = 60.349 + 0.480•SULR + 127.956• log(1 + PWV)− 29.794•[log(1 + PWV)]2

+1.626• log(1 + LWP) + 0.535• log(1 + IWP)
(3)

where SULR = σT4
a , σ is the Stefan–Boltzmann constant, Ta is the 2 m air temperature,

PWV is in unit of cm, and LWP and IWP are in unit of g/m2. The model coefficients were
derived using CERES cloud parameters and ground-measured SDLR at 15 sites around
the world.

Because LWP and IWP have a relatively small impact on SDLR in this model, the
accuracy of retrieved SDLR is better than the parameterized models based on cloud base
temperature and the empirical models based on cloud fraction correction when remote
sensing cloud parameters have large uncertainties [26]. Previous studies have shown that
the SDLR retrievals using this model for FY4A achieve an accuracy of 24.3 W/m2, but
there is an issue of overestimation in areas with low SDLR values [11,29]. In this study, to
analyze the problems with the model, we used a test dataset to examine the relationship
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between SDLR errors and various input parameters. We found that large SDLR errors
are related to PWV and LWP. Figure 3a indicates that there is significant uncertainty in
SDLR when PWV is less than 2 cm, and positively biased samples seem much more than
negative biased samples. Figure 3b shows significant errors in SDLR when LWP is less than
200 g/m2. This may be related to the simplifications in the model itself, as the Zhou2007
model employs uniform model coefficients in all cases, and the consideration of cloud
radiative contributions is very simple.
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Previous studies have developed different relationships between SDLR and PWV [21,26].
To address the problem of large SDLR errors under low-PWV conditions, we intend to
derive model coefficients under different PWV ranges, as previously used in existing
research [21]. Concerning the problem of large SDLR errors in situations with low LWP, we
utilized the moderate-resolution atmospheric transmission (MODTRAN) radiative transfer
model to analyze the relationship between cloud SDLR and LWP. Then, the new model was
constructed based on this analysis. As shown in Figure 4, we simulated the SDLR variation
caused by LWP variation for the mid-summer atmosphere and five default cloud types in
MODTRAN. We kept the atmospheric temperature and humidity profiles and other cloud
and atmospheric parameters constant while varying the LWP. This allowed us to obtain
cloud SDLR and cloud longwave radiative forcing data at different LWP values.
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Figure 4a demonstrates that the relationship between SDLR and LWP varies with
LWP. For LWP < 100 g/m2, there is a clear positive logarithmic correlation between SDLR
and LWP, but as LWP increases, the increment in SDLR becomes smaller. In contrast, the
Zhou2007 model assumed a constant relationship between SDLR and LWP, leading to
SDLR overestimation under low-LWP conditions and underestimation under high-LWP
conditions. Furthermore, Figure 4b reveals that when LWP is below 50 g/m2, the slope of
cloud radiative forcing with respect to LWP is significantly greater than in other LWP ranges.
When LWP exceeds 100 g/m2, changes in LWP have little impact on cloud radiative forcing.

3.2. Constructing a CWP-Based Model Considering Cloud Phase and LWP Range
3.2.1. Model Principal

Based on the above analysis, we developed a new CWP-based model considering
cloud phase and the range of LWP. In the new model, the cloudy SDLR is the same as
Equation 1. To compare the difference in flux of cloudy portion between our model and the
Zhou2007 model, the Fclear uses the same formula as Equation (2), and we only parameterize
the flux in the cloudy sky portion.

For water- and mixed-phase cloud, besides being dependent on PWV and Ta, Fovercast is
varied with LWP when LWP ≤ 100 g/m2 and is not varied with LWP when LWP > 100 g/m2:

Fovercast = a0 + a1•SULR + a2•V + a3•V2 + a4• log(1 + LWP) (4)

where V =
√

log(1 + PWV), and this formulation is better than log(1 + PWV), as indicated
in [38]. The coefficients ai (i = 0,. . ., 4) are dependent on the range of LWP and PWV. When
LWP > 100 g/m2, a4 = 0.

For ice cloud, overcast SDLR is determined by Ta, PWV, and IWP:

Fovercast = a0 + a1•SULR + a2•V + a3•V2 + a4• log(1 + IWP) (5)

where the coefficients ai (i = 0,. . ., 4) are dependent on the range of PWV.

3.2.2. Model Coefficient Derivation

We obtained model coefficients following the procedure shown in Figure 2. Firstly,
we obtained quality-controlled PWV, Ta, LWP, IWP, cloud phase, and SDLR data from
FY4A data, ERA5 data, and ground observation data. Then, we used the data from 2018
as our training dataset and the data from 2019 as our validation dataset. As shown in
Figure 4, for liquid clouds, the relationship between LWP and cloudy SDLR is different
for the three LWP ranges, which are less than 50 g/m2, between 50 and 100 g/m2, and
greater than 100 g/m2. Additionally, the relationship between cloudy SDLR and PWV is
different for different PWV ranges, as suggested by [21]. Therefore, for liquid and mixed
clouds, we performed separate coefficient regressions for these three LWP ranges, and
within each LWP range, we considered PWV ≤ 2 cm and PWV > 2 cm separately. For ice
clouds, because it was difficult to analyze the relationship between SDLR and IWP using
MODTRAN radiative transfer models, we only obtained model coefficients for different
water vapor conditions. Regression method was used in model derivation. Finally, our
model considers eight different conditions, and their coefficients are presented in Table 2.

3.3. Calibrated-Zhou Model

To investigate whether the problem of the Zhou2007 model shown in Section 3.1 was
due to not performing model coefficient calibration using local data, we calibrated the
coefficients of overcast flux in the Zhou2007 model using our study’s training dataset. The
new model using calibrated coefficients is referred to as the Calibrated-Zhou model. For
the Calibrated-Zhou model, the clear-sky SDLR is same as Equation (2), and the overcast
SDLR is as follows:
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Fovercast = 88.1140 + 0.4011•SULR + 110.1629• log(1 + PWV)− 14.2779•[log(1 + PWV)]2

+0.2867• log(1 + LWP) + 0.9598• log(1 + IWP)
(6)

where the parameters are the same as those in Equation (2). Both Zhou2007 and Calibrated-
Zhou models are compared with our new CWP-based model.

Table 2. Coefficients of the new CPW-based parameterization for different cloud phase and
LWP range.

Cloud
Conditions

LWP Range
(g/m2) PWV (cm) a0 a1 a2 a3 a4

Water
and mixed

phase
cloud

(0, 50] (0, 2] 32.9619 0.5469 70.3615 28.5630 −2.2896
(2, 8) −237.0998 0.7254 334.4421 −78.9135 6.4414

(50, 100] (0, 2] −10.6017 0.5154 27.8440 73.3841 12.9042
(2, 8) 9.6408 0.5733 15.1083 57.3603 8.3065

(100, 4000) (0, 2] 20.7546 0.3292 245.0102 −46.1900 —
(2, 8) 123.5700 0.4503 −27.6544 75.0153 —

Ice cloud 0 (0, 2] 14.9959 0.3667 184.0043 −28.0156 6.2955
(2, 8) 87.8222 0.4838 −21.7233 71.6096 3.4303

4. Results
4.1. SDLR Retrievals of Training Dataset

Table 3 presents the SDLR results calculated using the training dataset and different
models. The new model shows improvements under various conditions. For water and
mixed-phase clouds, the accuracies are 18.6, 19.0, and 19.6 W/m2 for the three conditions of
0 g/m2 < LWP ≤ 50 g/m2, 50 g/m2 < LWP ≤ 100 g/m2, and LWP > 100 g/m2, respectively.
For ice clouds, the accuracies are 20.3 and 13.1 W/m2 for PWV ≤ 2 and PWV > 2, respec-
tively. Overall, the accuracy is lower when PWV ≤ 2 cm than when PWV > 2 cm. When
PWV ≤ 2 cm, the RMSE of SDLR ranges from 20 to 23.8 W/m2, whereas when PWV > 2,
the RMSE ranges from 13.1 to 15.2 W/m2. Compared to the existing Zhou2007 model,
the new model shows an improvement of 1.7 to 4.1 W/m2. The greatest improvement
is observed under the condition of an ice cloud with PWV > 2 cm, where the RMSE de-
creases by 4.1 W/m2. Though the Calibrated-Zhou model has higher accuracy than the
Zhou2007 model due to coefficient calibration, its RMSE is still 0.2 to 2.2 W/m2 larger than
the new model.

Figure 5 displays the results of water and mixed-phase clouds and ice clouds. For
the water and mixed-phase cloud pixels in the training dataset, the new model achieves
an RMSE of 19.5 W/m2, which is 1.8 W/m2 smaller than that of the Zhou2007 model
and 0.8 W/m2 smaller than that of the Calibrated-Zhou model. Figure 5a–c indicate
that, compared to the other two models, the new model exhibits better consistency with
observations in the ranges of SDLR < 200 W/m2 and SDLR > 400 W/m2. For ice cloud
pixels, the new model achieves an RMSE of 17.0 W/m2, which represents a reduction of
2.5 W/m2 and 0.9 W/m2 in RMSE when compared to the Zhou2007 model and Calibrated-
Zhou model, respectively. Figure 5d–f reveal that, for ice clouds, the most significant
improvement with the new model is in the range of SDLR > 400 W/m2.

4.2. SDLR Retrievals of Testing Dataset

Figure 6 shows the results calculated using the testing dataset. For overcast pixels,
the new model achieved an RMSE of 19.4 W/m2, which is 1.8 W/m2 smaller than that of
the Zhou2007 model and 1.0 W/m2 smaller than that of the Calibrated-Zhou model. For
partly cloudy pixels, the new model achieved an RMSE of 19.4 W/m2, which is 1.3 W/m2

smaller than the Zhou2007 model and 0.7 W/m2 smaller than the Calibrated-Zhou model.
The improvement in retrieval accuracy under partly cloudy conditions is slightly less than
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that under overcast conditions. This is likely attributed to the fact that the new model was
exclusively trained using overcast pixel data. For all the cloudy pixels, the new model
achieved an RMSE of 20.8 W/m2, which is 1.6 W/m2 smaller than the Zhou2007 model and
0.9 W/m2 smaller than the Calibrated-Zhou model. Furthermore, Figure 6 also illustrates
that within the range of observed SDLR less than 200 W/m2, both the Zhou2007 model and
the Calibrated-Zhou model tend to overestimate, while the new model shows a significant
improvement in this range. When the observed SDLR exceeds 400 W/m2, the Zhou2007
model tends to underestimate SDLR, while SDLR from the new model exhibits better
consistency with the observations.

Table 3. Results for different conditions in training dataset (overcast pixels of 2018). The root mean
square error (RMSE) and mean bias error (MBE) are in W/m2, R is correlation coefficient, and N
is sample.

Cloud
Conditions

LWP Range
(g/m2)

PWV
(cm) N

Zhou2007 Calibrated-Zhou New Model

RMSE MBE R RMSE MBE R RMSE MBE R

Water
and mixed-
phase cloud

(0, 50] (0, 2] 808 26.2 10.7 0.83 24.2 −0.5 0.82 23.8 −1.7 0.83
(2, 8) 1517 18.2 −0.4 0.88 17.4 −1.9 0.85 15.0 0.0 0.88
All 2325 21.3 3.4 0.94 20.0 −1.4 0.94 18.6 −0.6 0.95

(50, 100] (0, 2] 2414 23.3 8.3 0.91 22.4 −1.9 0.91 21.7 −0.6 0.91
(2, 8) 2105 17.9 −1.5 0.88 16.9 −4.9 0.88 15.2 0.0 0.89
ALL 4519 20.9 3.7 0.96 20.0 −3.3 0.96 19.0 −0.3 0.96

(100, 4000) (0, 2] 21,241 25.0 6.3 0.88 24.3 −4.1 0.88 23.3 −0.1 0.89
(2, 8) 20,995 16.9 3.2 0.86 15.2 −1.1 0.88 15.0 0.0 0.88
ALL 42,236 21.4 4.7 0.95 20.3 −2.6 0.95 19.6 0.0 0.95

Ice cloud 0 (0, 2] 12,281 21.7 −2.0 0.88 21.4 −4.4 0.88 20.3 −0.4 0.89
(2, 8) 12,695 17.1 −5.9 0.90 13.7 2.3 0.92 13.1 0.0 0.92
ALL 24,976 19.5 −4.0 0.95 17.9 −1.0 0.96 17.0 −0.2 0.96
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Figure 5. Result of water and mixed-phase cloud (a–c) and ice cloud (d–f) in the training dataset, 
which only contains overcast pixels of 2018. RMSE: root mean square error, MBE: mean bias error, 
Figure 5. Result of water and mixed-phase cloud (a–c) and ice cloud (d–f) in the training dataset,
which only contains overcast pixels of 2018. RMSE: root mean square error, MBE: mean bias error,
R: Correlation coefficient, N: number of samples. The black line is the 1:1 line. The red lines are the
y = x ± 50 lines.
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testing dataset.

Figure 7 displays the results for water and mixed-phase clouds and ice clouds based on
the testing dataset. For water and mixed-phase clouds, the new model achieves an RMSE
of 21.8 W/m2, which is 1.4 W/m2 smaller compared to the Zhou2007 model and 0.9 W/m2

smaller compared to the Calibrated-Zhou model. It can be observed that the overestimation
points of the Zhou2007 and the Calibrated-Zhou models in Figure 6, when SDLR is less than
200 W/m2, occur under the conditions of water and mixed-phase clouds. For ice clouds,
the new model achieves an RMSE of 18.0 W/m2, which is 2.1 W/m2 smaller compared
to the Zhou2007 model and 0.8 W/m2 smaller compared to the Calibrated-Zhou model.
Similar to the results based on the training dataset (Figure 5), the existing models tend to
underestimate in the high SDLR region, while the new model corrects this phenomenon.

Figure 8 presents the results at different sites. Overall, the accuracy of the Zhou2007
model is the lowest, followed by the Calibrated-Zhou model, while the new model yields
the best results. For the new model, the RMSE ranges from 12.5 to 31.5 W/m2, and the MBE
ranges from −17.8 to 13.4 W/m2. It performs best at the ISH station and worst at the YK
station. The RMSEs of 27 sites are within 25 W/m2. Sites with RMSEs exceeding 25 W/m2

comprise DSL, JYL, YK, HZZ, and LC, with their corresponding MBE ± RMSE values
as follows: 4.2 ± 27.4 W/m2 (DSL), 0.6 ± 25.0 W/m2 (JYL), −14.4 ± 31.5 W/m2 (YK),
13.4 ± 25.7 W/m2 (HZZ), and −4.5 ± 27.0 W/m2 (LC). Compared to the Zhou2007 model,
the new model improves accuracy at 31 sites, with improvements ranging from 0.01 to
5.9 W/m2. The most significant improvement is observed at the HOW site. Compared to the
Calibrated-Zhou model, the new model improves accuracy at 27 sites, with improvements
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ranging from 0.04 to 3.8 W/m2, and the most significant improvement is observed at the
YK site.
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Figure 8. The RMSE (a) and MBE (b) of calculated SDLR for each site, based on the testing dataset.

4.3. SDLR Results of Different Atmospheric and Cloud Conditions

To assess whether the new model has improved the retrieval accuracy under low-PWV
and low-LWP conditions, we further analyzed the model’s results at different ranges of
PWV and LWP. Table 4 presents the retrieval results from the test dataset under different
conditions. For the new model, the retrieval accuracy for water and mixed-phase clouds
in the LWP ranges of (0, 50), (50, 100), and (100, 4000) g/m2 is 18.7, 19.4, and 22.2 W/m2,
respectively. The RMSE for ice clouds is 20.6 W/m2 for PWV ≤ 2 cm and 13.6 W/m2

for PWV > 2 cm. Similar to the results in Table 3, the results are better when PWV is
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higher compared to when it is lower. When PWV ≤ 2 cm, the RMSE is between 20.6 and
24.8 W/m2, while for PWV > 2 cm, the RMSE ranges from 13.6 to 17.3 W/m2. Compared
to Table 3, the results based on the test dataset are similar to those based on the training
dataset, but the accuracy is lower for LWP > 100 g/m2. This is because the training dataset
only includes overcast pixel data, whereas the test dataset includes overcast and partly
cloudy pixel data. Compared to existing cloud water path-based models, the new model
shows higher accuracy in each LWP and PWV range. Compared to the Zhou2007 model,
the new model’s accuracy has increased by 0.8 to 3.8 W/m2, with the largest improvement
observed in higher-PWV conditions of ice cloud. Compared to the Calibrated-Zhou model,
the new model’s accuracy has improved by 0.3 to 1.4 W/m2.

Table 4. Same as Table 3, but for the results of all testing datasets.

Cloud
Conditions

LWP Range
(g/m2)

PWV
(cm) N

Zhou2007 Calibrated-Zhou New Model

RMSE MBE R RMSE MBE R RMSE MBE R

Water
and mixed-
phase cloud

(0, 50] (0, 2] 5948 22.4 5.2 0.91 22.1 −2.7 0.91 21.2 −3.3 0.91
(2, 8) 5735 17.5 −1.4 0.86 17.0 −3.4 0.86 15.8 −2.2 0.88
All 11,683 20.1 1.9 0.95 19.8 −3.1 0.95 18.7 −2.7 0.96

(50, 100] (0, 2] 10,319 22.4 5.5 0.91 22.5 −3.6 0.91 21.6 −2.1 0.91
(2, 8) 7133 17.4 −2.5 0.86 17.2 −6.0 0.87 15.8 −1.6 0.87
ALL 17,452 20.5 2.2 0.96 20.5 −4.6 0.96 19.4 −1.9 0.96

(100, 4000) (0, 2] 106,999 26.5 6.4 0.90 26.0 −1.9 0.90 24.8 0.4 0.90
(2, 8) 68,320 18.3 0.0 0.82 17.6 −4.1 0.84 17.3 −2.7 0.84
ALL 175,319 23.7 3.9 0.95 23.1 −2.8 0.95 22.2 −0.8 0.96

Ice cloud 0 (0, 2] 45,033 21.8 −0.7 0.89 21.5 −3.1 0.89 20.6 0.0 0.90
(2, 8) 33,019 17.4 −5.3 0.89 14.1 2.6 0.91 13.6 0.0 0.91
ALL 78,052 20.1 −2.6 0.95 18.8 −0.7 0.96 18.0 0.0 0.96

Due to differences in retrieval accuracy for partly cloudy and overcast conditions,
Figure 9 further analyzes the model accuracies within various PWV and CWP ranges for
these two scenarios. Figure 9a,b illustrate that, for overcast pixels with different PWV and
CWP values, the new model exhibits superior accuracy compared to the Zhou2007 model
and the Calibrated-Zhou model. The most notable improvements are observed under the
water and mixed-phase clouds with LWP ≤ 50 g/m2 and ice clouds with larger PWV. Under
overcast conditions with water and mixed-phase clouds and PWV ≤ 2 cm (conditions 1, 3,
and 5), the Zhou2007 model shows an RMSE ranging from 23.4 to 25.3 W/m2, with an MBE
ranging from 5.9 to 11.2 W/m2. Under these conditions, the Calibrated-Zhou model yields
an MBE ranging from −0.8 to −4.3 W/m2; in comparison, the new model demonstrates an
MBE ranging from −0.4 to −1.6 W/m2, indicating a significant improvement in reducing
SDLR overestimation under low-PWV conditions. For the ice clouds with PWV > 2 cm
(condition 8), the Zhou2007 model shows an obvious negative bias, with an RMSE of
17.3 W/m2 and an MBE of −5.8 W/m2. The Calibrated-Zhou model reduces RMSE and
MBE to 13.7 and 2.4 W/m2, while the new model reduces the RMSE and MBE to 13.3
and −0.5 W/m2. As shown in Figure 9c, for partly cloudy conditions, the new model
demonstrates a noticeably improved accuracy compared to the Zhou2007 model under
LWP ≤ 100 g/m2 and PWV > 2 cm, LWP > 100 g/m2 and PWV ≤ 2 cm, and ice clouds with
PWV > 2 cm conditions (conditions 2, 4, 5, and 8), with RMSE decreasing in range from
1.15 to 1.97 W/m2. Slight improvements are also observed under other conditions. On the
contrary, the Calibrated-Zhou model shows larger errors for LWP ≤ 100 g/m2 conditions.
Figure 9d shows that, for partly cloudy pixels, the Zhou2007 model tends to overestimate
under different cloud conditions when PWV ≤ 2 cm (conditions 1, 3, 5, and 7), while the
new model rectifies this issue.
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Figure 9. The RMSE and MBE of calculated SDLR for the eight conditions of Table 2 for overcast
(a,b) and partly cloudy (c,d) pixels. Conditions 1 to 6 are for liquid water clouds and mixed clouds,
corresponding to six combinations of LWP ranges of (0, 50] g/m2, (50, 100] g/m2, and (100, 4000) g/m2

and PWV ranges of (0, 2] cm and (2, 8) cm. Conditions 7 to 8 indicate ice clouds with PWV ≤ 2 cm
and PWV > 2 cm.

Figure 10 shows the box plot of SDLR errors from various models at different ranges
of PWV. The corresponding values of the box plot are provided in the Supplementary
Materials. The Interquartile Range (IQR) of SDLR errors, represented by the length of the
boxes in the figure, is used to analyze the distribution of SDLR errors. It can be observed that
when PWV ≤ 1 cm, the new model exhibits the greatest SDLR error (IQR = 35.9 W/m2).
As PWV increases, SDLR errors show a decreasing trend, with an IQR of 8.7 W/m2

when PWV > 7 cm. Compared to the Zhou2007 model, the new model shows significant
improvements in different PWV regions, with both the IQR and median of SDLR errors
decreasing. Within the PWV ≤ 3 cm range, the Zhou2007 model notably overestimates,
while both the IQR and median of the new model decreased. Additionally, the Zhou2007
model exhibits a substantial underestimation when PWV > 5 cm, with an error median as
large as −24.4 W/m2, while the new model corrects it to be near 0. Although the Calibrated-
Zhou model also shows improvements compared to the Zhou2007 model, its performance
is noticeably inferior to the new model, particularly when 1 cm < PWV ≤ 2 cm, where this
model exhibits a significant negative bias.

Figure 11 shows the variation in SDLR error from the model with LWP and IWP.
Due to the scarcity of samples with LWP > 1000 g/m2 and IWP > 1000 g/m2, these
samples were not included in the statistics. In Figure 11a, it can be observed that for
each LWP range, the IQR of SDLR error from the new model is smaller than the other
two models. The new model exhibits a minimum error comparable to the other two, while
the maximum error is smaller. These findings indicate that the new model has a more
concentrated error distribution within each range. At the same time, for LWP ≤ 100 g/m2

and 250 g/m2 < LWP ≤ 300 g/m2, the Zhou2007 model overestimates significantly, while
the SDLR error median of the new model is closer to 0, showing significant improvement
within these LWP ranges. Figure 11b indicates that for various IWP ranges of ice clouds,
both the IQR and median of SDLR error from the new model are better than those of the
Zhou2007 model. The new model shows improvement in all IWP ranges. The new model
corrects the increasing negative-bias trend with the increasing IWP that observed in the
Zhou 2007 model.
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Figure 10. The box plot of SDLR error in different PWV ranges. The numerical values on the
horizontal axis represent the upper limits of PWV. The PWV ranges are (0, 1], (1, 2], (2, 3], (3, 4], (4, 5],
(5, 6], (6, 7], and (7, 8) cm. The top edge, center, and bottom edge of the box represent the 25th, 50th
(or median value), and 75th percentiles, respectively. The box represents the interquartile range (IQR),
containing the middle 50% of the data. The whiskers represent the maximum and minimum values,
and the dots represent outliers.
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Figure 11. The box plot of SDLR error in different LWP ranges (a) and IWP ranges (b). In (a), the
ranges of LWP are (0, 50], (50, 100], (100, 150], (150, 200], (200, 250], (250, 300], (300, 350], (350, 400]
and (400, 1000] g/m2. In (b), the ranges of IWP are (0, 100], (100, 200], (200, 300], (300, 400], (400, 500],
(500, 600], (600, 700], and (700, 1000] g/m2.

Figure 11a,b also reveal that for water clouds and mixed clouds, the SDLR error is
much larger, in the range of 250 g/m2 < LWP ≤ 300 g/m2, and a noticeable number of
outliers are present. Concerning ice clouds, the most significant errors are found within
the range of 0 g/m2 < IWP ≤ 100 g/m2. Upon analysis, this phenomenon is attributed to
a substantial number of missing LWP and IWP values in satellite data, for which default
values of 300 g/m2 and 100 g/m2 are assigned based on the cloud phase. In such cases,
most SDLR errors fall within ±50 W/m2, but a few have errors exceeding this range. In
practical applications, the approach recommended in [10] can be employed, utilizing ERA5
cloud water paths to fill in missing values.

4.4. Seasonal Changes of Cloudy Skies SDLR

We further analyzed the agreement between the model estimations and observed val-
ues on a temporal scale. In this paper, data from nine sites located within the Qinghai–Tibet
Plateau were used to analyze the seasonal variations of cloudy SDLR. Figure 12 presents
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the daily mean errors (Edaily) and daily mean values (Fdaily) of the estimated SDLR from
various models. The calculation formulas are as follows:

Edaily =
N
∑

j=1

(
M
∑

i=1

(
Fcacu,i,j − Fobs,i,j

))
/(M ∗ N)

Fdaily =
N
∑

j=1

(
M
∑

i=1
Fi,j

)
/(M ∗ N)

where j represents the site number, i represents a specific time of the day at that site, and
Fcacu,i,j and Fobs,i,j represent the calculated and observed SDLR values for the corresponding
site and time. N and M represent the total number of sites and the total number of valid
times at the site. Figure 12a indicates that at the Qinghai–Tibet Plateau sites, the new model
exhibits significant seasonal patterns in the average SDLR error. During the winter and
early spring (Julian days 300 to 365 and 1 to 90), the errors show substantial fluctuations,
ranging from −20 to 20 W/m2, with some days having larger negative errors exceeding
−20 W/m2. In other seasons, the errors are smaller, with daily mean errors ranging from
−15 to 10 W/m2. In terms of the time scale, the new model has smaller errors compared
to the other two models. Compared to the new model, the Zhou2007 model and the
Calibrated-Zhou model exhibit substantial positive errors during the winter and early
spring, while in other seasons, the Zhou2007 model has larger positive biases, and the
Calibrated-Zhou model has larger negative biases. Figure 12b demonstrates that the new
model captures the seasonal variations in SDLR effectively. Furthermore, the fluctuations
in the SDLR of the new model are smaller than those of the observed values. The new
model tends to overestimate the lower SDLRs during the winter and early spring, while it
underestimates the relatively higher SDLRs between Julian days 50 and 300.
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5. Discussion

Compared to other types of parameterized models, the CWP-based models are less
affected by cloud parameter uncertainties and exhibit higher accuracy in satellite estima-
tions. The existing optimal CWP-based model, the Zhou2007 model, has problems with
overestimating low SDLR values and underestimating SDLR values. This study identified
that these problems arise because the Zhou2007 model does not account for the varying
relationships between cloud radiative effects and key parameters across different ranges
of LWP and PWV. Based on this finding, this study developed a new CWP-based model,
which shows the following advantages compared to the old CWP-based model.

Firstly, the new model has higher accuracy overall. Compared to the Zhou2007 model,
the new model’s accuracy improved by 1.8 W/m2 for overcast conditions and by 1.3 W/m2
for partly cloudy conditions, respectively. The new model improved accuracy by 1.4 W/m2

for water and mixed-phase clouds and by 2.1 W/m2 for ice clouds, respectively.
Then, the new model performs better than the Zhou2007 model under almost all

atmospheric and cloud conditions. The most significant improvements are observed in
overcast conditions, low-PWV and low-LWP conditions for water and mixed-phase clouds,
high-PWV conditions for ice clouds, and conditions with PWV ≥ 5 cm. Under overcast
conditions, the Zhou 2007 model overestimated the SDLR by 5.9 to 11.2 W/m2 for water
and mixed-phase clouds with PWV ≤ 2 cm, while the new model reduced the MBE from
−0.7 to −1.6 W/m2 (Figure 9a, b). For ice clouds with PWV > 2 cm, the Zhou 2007 model
showed a notable negative bias, with an MBE of −5.8 W/m2, and the new model reduced
it to −0.5 W/m2 (Figure 9a, b). Figure 10 indicates that the Zhou 2007 model overestimates
significantly in PWV ranges (0, 1], (1, 2], and (2, 3] cm, but substantially underestimates
for PWV ≥ 5 cm (with a median error as high as −24.4 W/m2), while the new model
exhibits significantly reduced SDLR errors. In the LWP ranges of (0, 50], (50, 100], and
(250, 300] g/m2, the new model notably rectified the Zhou 2007 model’s overestimation.
For ice clouds, the new model corrects the trend of error increase with IWP that was present
in the Zhou 2007 model.

Furthermore, to exclude the influence of the training dataset on model accuracy, we
also calibrated the coefficients of the Zhou2007 model using our training dataset. While the
Calibrated-Zhou model improved the accuracy of SDLR estimation relative to the Zhou2007
model, the phenomenon of overestimation of the small-SDLR values and underestimation
of the large values still persisted, and its accuracy remained inferior to our new model.

The new model still has some limitations, which can be improved in the following
aspects: (1) The SDLR error for PWV ≤ 1 cm is notably larger than for other PWV conditions,
as shown in Figure 10. We found that even performing separate coefficient fitting for this
region alone cannot resolve this issue. In future studies, exploring new model forms
specifically for PWV ≤ 1 cm is necessary. (2) SDLR accuracy in partly cloudy conditions
is worse than in overcast situations, possibly due to inaccuracies in estimating clear-sky
flux in cloudy pixels or significant errors in cloud fraction for partly cloudy scenes. This
study only models overcast conditions, and the clear portion flux of partly cloudy SDLR
still adopts the Zhou2007 model. In future studies, the SDLR accuracy of partly cloudy
conditions can be improved by employing more accurate clear-sky SDLR models or by
modeling partly cloudy scenarios separately. (3) Because of MODTRAN’s limited flexibility
in defining ice cloud properties, this study did not theoretically analyze the impact of IWP
variations on the SDLR. In future studies, more advanced radiative transfer models can
be used in ice cloud analysis and subsequently develop parameterized SDLR models for
ice clouds.

6. Conclusions

The CWP-based model can serve as a practical parameterized model for satellite
estimation of cloudy SDLR. This study developed a new CWP-based model that expresses
overcast SDLR by PWV, Ta, LWP, and IWP, with model coefficients dependent on cloud
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phase, CWP, and PWV ranges, using FY4A/AGRI cloud parameters and ERA5 data as
data sources.

The new model exhibits good performance in cloudy SDLR estimation. The accuracy of
the cloudy SDLR estimated by the new model is 20.8 W/m2, with accuracies of 19.4 W/m2

and 23.5 W/m2 for overcast and partly cloudy conditions, respectively. The accuracy of the
new model is 21.8 W/m2 for water and mixed-phase clouds and 18.0 W/m2 for ice clouds.
In detail, results when PWV >2 cm are better than those when PWV≤ 2 cm; results when
LWP ≤ 100 g/m2 are better than those when LWP > 100 g/m2.

Compared to the old CWP-based model, the new model accounts for the varying
relationships between cloud radiative effects and key parameters across different ranges
of LWP and PWV, therefore effectively correcting the overestimation at smaller SDLR
values and underestimation at larger values produced by the Zhou2007 model. The new
model also shows improvements in different cloud cover scenarios, different cloud phase
conditions, and different PWV and CWP ranges.

Overall, by considering the model coefficients’ dependence on LWP and PWV ranges
and cloud phase, the proposed model has improved the cloudy SDLR accuracy of CWP-
based models. The new model provides an effective means for satellite estimation of cloudy
SDLR. Although this model is based on FY-4A data, it can be extended to MODIS, GOES-16,
and other satellites in the future through model coefficient calibration.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs15235531/s1, Table S1: Statistical values of SDLR errors at
different PWV ranges; Table S2: Statistical values of SDLR errors at different LWP ranges for water
and mixed-phase clouds; Table S3: Statistical values of SDLR errors at different LWP ranges for
ice clouds.
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Appendix A

Table A1. Site information.

Label Full Name Latitude (Deg) Longitude (Deg) Elevation (m) Land Cover Temporal
Resolution (min)

ASP a Alice Springs −23.798 133.888 547 Grassland 1
COC a Cocos Island −12.193 96.835 6 Grassland 1

DWN a Darwin Met
Office −12.424 130.8925 32 Grassland 1

FUA a Fukuoka 33.5817 130.375 3 Asphalt 1
GUR a Gurgaon 28.4249 77.156 259 Shrub 1

https://www.mdpi.com/article/10.3390/rs15235531/s1
https://www.mdpi.com/article/10.3390/rs15235531/s1
http://www.bsrn.awi.de/
https://data.tpdc.ac.cn/en/
https://www.usgs.gov/coastal-changes-and-impacts/gmted2010
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Table A1. Cont.

Label Full Name Latitude (Deg) Longitude (Deg) Elevation (m) Land Cover Temporal
Resolution (min)

HOW a wrah 22.5535 88.3064 51 Shrub 1
ISH a Ishigakijima 24.3367 124.1633 6 Asphalt 1
LYU a Lanyu Island 22.037 121.5583 324 Mixed forest 1

MNM a Minamitorishima 24.2883 153.9833 7 Grassland 1
SAP a Sapporo 43.06 141.3283 17 Asphalt 1
TAT a Tateno 36.05 140.1333 25 Grassland 1
TIR a Tiruvallur 13.0923 79.9738 36 Rock 1
SDL b Sidalong 38.428 99.926 3146 Forest 10
GUZ b Guazhou 41.405 95.673 2014 Desert 10

MIG b Mixed grassland
super station 37.7032 98.5949 3718 Mixed grass 30

QH b Qinghai Lake 36.5909 100.4999 3209 Water 10
DSL b DaShaLong 38.8399 98.9406 3739 Wet meadow 10
AR b Arou 38.0473 100.4643 3033 Grassland 10
JYL b JingYangLing 37.8384 101.116 3750 Grassland 10
YK b YaKou 38.0142 100.2421 4148 Grassland 10
DM b DaMan 38.8555 100.3722 1556 Cropland 10
SDQ b SiDaoQiao 42.0012 101.1374 873 Shrub 10
HEH b HeiHe 38.827 100.4756 1560 Grassland 10
HZZ b HuaZhaiZi 38.7659 100.3201 1731 Desert 10
HUM b HuangMo 42.1135 100.9872 1054 Desert 10
MIF b Mixed forest 41.9903 101.1335 874 Mixed shrub 10
ZY b ZhangYe Wetland 38.9751 100.4464 1460 Wetland 10

DYK b DaYeKou 38.556 100.286 2703 Grassland 10

DH b Dunhuang
WestLake 40.348 93.709 993 Wetland 10

LZ b LinZe 39.238 100.062 1402 Cropland 10
LC b LianCheng 36.692 102.737 2903 Forest 10

XYH b XiYingHe 37.561 101.855 3616 Grassland 10

Note: The superscripts are defined as follows: a BSRN sites, b TPDC sites.
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