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Abstract: The advent of high-spatial-resolution hyperspectral imagery from unmanned aerial vehi-
cles (UAVs) made a breakthrough in the detailed retrieval of crop traits for precision crop-growth
monitoring systems. Here, a hybrid approach of radiative transfer modelling combined with a
machine learning (ML) algorithm is proposed for the retrieval of the leaf area index (LAI) and canopy
chlorophyll content (CCC) of wheat cropland at the experimental farms of ICAR-Indian Agricultural
Research Institute (IARI), New Delhi, India. A hyperspectral image captured from a UAV platform
with spatial resolution of 4 cm and 269 spectral bands ranging from 400 to 1000 nm was processed for
the retrieval of the LAI and CCC of wheat cropland. The radiative transfer model PROSAIL was used
for simulating spectral data, and eight machine learning algorithms were evaluated for hybrid model
development. The ML Gaussian process regression (GPR) algorithm was selected for the retrieval
of crop traits due to its superior accuracy and lower associated uncertainty. Simulated spectra were
sampled for training GPR models for LAI and CCC retrieval using dimensionality reduction and
active learning techniques. LAI and CCC biophysical maps were generated from pre-processed hy-
perspectral data using trained GPR models and validated against in situ measurements, yielding R2

values of 0.889 and 0.656, suggesting high retrieval accuracy. The normalised root mean square error
(NRMSE) values reported for LAI and CCC retrieval are 8.579% and 14.842%, respectively. The study
concludes with the development of optimized GPR models tailored for UAV-borne hyperspectral
data for the near-real-time retrieval of wheat traits. This workflow can be upscaled to farmers’ fields,
facilitating efficient crop monitoring and management.

Keywords: machine learning (ML) Gaussian process regression (GPR); unmanned aerial vehicle
(UAV); hyperspectral; ARTMO; wheat; radiative transfer model

1. Introduction

Biophysical variables such as leaf area index (LAI), leaf chlorophyll content (LCC),
and canopy chlorophyll content (CCC) are the key traits to monitor crop growth [1]. LAI is
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defined as half the total leaf area per unit horizontal ground surface area [2], is strongly
associated with photosynthetic production, respiration, and transpiration properties of
plants, and is one of the key factors for crop yield [3]. The efficient estimation of LAI is an
indispensable process to ensure steadfast support towards optimised field management
practices for target yield [4]. LAI can be either directly or indirectly estimated. Direct
methods involve the completely destructive way of leaf sampling and then measuring the
LAI using a portable leaf area meter. Indirect methods involve Beer–Lambert law-based
optical methods and inclined point quadrat methods [5]. Here, non-destructive optical
instruments such as the LAI-2000 plant canopy analyser (Li-Cor, Inc., Lincoln, NE, USA)
measure the radiation from the canopy and accurately infer LAI data [6]. Nowadays, even
smartphone apps have been developed for indirectly measuring LAI in the field [7,8]. In fact,
there has been a long history of remote LAI estimation using various imaging approaches,
such as directional photography, multispectral photography, laser scanning, etc., as reported
by [5]. Specifically, in the optical remote sensing domain, various LAI retrieval techniques,
such as vegetation indices (VIs), machine learning regression algorithms, inversion of
canopy radiative transfer models (RTMs), and recently hybrid models, have also been
deployed using multispectral and hyperspectral data [9–13].

The chlorophyll pigment provides green colour to the plant and determines the
photosynthetic rate along with its productivity [14]. LCC can be considered an imperative
indicator to analyse crop growth and development [15]. The dynamics of LCC depend upon
a multitude of seasonal and environmental factors, such as intensity of light, temperature,
and so on [16]. Plant chlorophyll content is often estimated based on the reflectance,
transmittance, and absorbance of significant wavelengths of the electromagnetic spectrum
that interact with leaves, either by using hand-held chlorophyll meters or chemicals (such
as dimethyl sulfoxide) [17–19]. Further, CCC is the total amount of chlorophyll a and
b pigments existing in the photosystems of leaves in a contiguous group of plants per
unit of ground area [20]. CCC is computed as the product of LAI and LCC per unit leaf
area [21]. Numerous spectral indices have been proposed for the assessment of CCC
(e.g., [22–24]). Yet, the selection of optimal retrieval models remains challenging, because
their performance is highly dependent upon the hyperparameters, targeted plant species,
ground sampling, hyperspectral data, and various intricate factors [24–26].

Lately, a comprehensive analysis of diverse hyperspectral datasets across different
species and geolocations has been carried out due to informative narrow spectral bands over
a continuous range of the electromagnetic spectrum [27–29]. Unlike destructive techniques
for the estimation of biochemical traits, hyperspectral imaging is a non-destructive, non-
invasive, near-real-time, efficient, and robust method. This technology proved to be
promising for plant phenotyping that incorporates indoor (controlled environment) and
outdoor (field-scale) phenotyping [30]. Hyperspectral sensors mounted on unmanned
aerial vehicles (UAVs) were deployed for imaging on large farms [31–33]. Flexible, low-cost,
and high-resolution optical sensor systems mounted on UAV platforms are important for
bridging data gaps and supplementing the capabilities of manned aircraft and satellite
remote sensing systems [34].

The ultrahigh-spectral- and -spatial-resolution data obtained with UAVs amalgamated
with various in-field biophysical and biochemical variables have opened opportunities to
remotely quantify unexplored traits of plants [35]. Further, this necessitates the evolution
of data processing and analysis using machine learning algorithms for the estimation of
multiple vegetation traits. These techniques are appealing for processing hyperspectral
data due to their flexible nonparametric behaviour and the excavation of unknown facts
from raw data [26]. They readily explore the nonlinear relationship between the spectral
reflectance values and target crop biophysical variables like LAI, LCC, and CCC.

In all generality, these variables may be retrieved from hyperspectral data using
(i) parametric regression, (ii) nonparametric regression, (iii) inversion of RTMs, and (iv)
hybrid or combined methods [26,36]. In the case of parametric regression, a limited number
of spectral channels with significant information are commonly used to mathematically
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formulate a fitting function (linear or nonlinear) between the selected channels and crop
traits. Unlike the parametric approach, nonparametric methods make use of the full spectral
range and include a learning stage for model training. They often include the optimisation
of hyperparameters, which govern the efficiency of a model. Stepwise multiple linear
regression (SMLR), partial least squares regression (PLSR), decision trees, artificial neural
networks (ANNs) [37,38], support vector regression (SVR) [39], genetic algorithms [40],
and Gaussian process regression (GPR) [41,42] are some of the standard machine learning
techniques used for crop variable estimation in this category.

Regarding RTM inversion, cause–effect relationships are exploited by inverting the
RTM against actual spectral signatures to retrieve crop traits. However, the number of
unknowns is greater than the independent variables, making the model hard to invert [43].
Finally, hybrid models combine the capabilities of physical methods such as RTMs with
nonparametric regression methods. PROSPECT-4 is extensively used to simulate leaf optical
features [44], and SAIL is for solving the scattering and absorption equations at the canopy
level [45,46]. All possible combinations of input variables may be formed for multiple
model realizations to store in the directory called look-up table (LUT). Additionally, several
experimental studies demonstrated the superiority of an emerging Bayesian nonparametric
modelling approach known as GPR as opposed to alternative machine learning algorithms
in the accurate retrieval of different crop variables [47–50]. GPR is similar to kernel ridge
regression and kriging, with the additional provision of band relevance ranking [11] and
mapping of associated uncertainty estimates [51]. Among others, GPR was used to estimate
the forest’s LAI using airborne hyperspectral data in the range of 400 to 2500 nm [42].

Even though several studies presented hybrid models for estimating crop traits from
hyperspectral remote sensing datasets (e.g., [11,52–57]), UAV datasets have not yet been
fully explored. A few studies focused on standard LUT inversion [45,58–60] and the
particle swarm optimization algorithm [61] applied to PROSAIL simulations for retrieving
phenotypic information of crops from UAV hyperspectral data. Recently, hybrid retrieval
of crop traits applied to UAV-based VNIR hyperspectral data has been explored [58]. Yet,
the advantages of using active learning (AL) methods, where the training of the model
is optimized based on only the most relevant samples, are still to be considered. In
hybrid retrieval approaches, AL techniques provide an intelligent approach to informative
sampling from large data pools. Concerning the development of hybrid GPR models, AL
techniques are used to minimize a large set of PROSAIL simulations by only selecting
samples that contribute to improving model accuracy. By developing such light models,
they speed up the runtime [55].

Altogether, this study is dedicated to developing, optimizing, and validating hybrid
GPR models for retrieving the wheat biophysical traits of LAI and CCC using an ultrahigh-
resolution UAV hyperspectral dataset. Specifically, this study aims to (i) investigate the
performance of hybrid non-kernel and kernel machine learning regression algorithms for
retrieving wheat crop traits from UAV hyperspectral data; (ii) optimize a hybrid GPR
retrieval model using suitable AL sampling methods; and finally, (iii) validate the retrieved
maps against in situ measurements and mapping.

2. Materials and Methods

The block diagram of the methodology used for the proposed approach is shown
in Figure 1. The main steps involved in the workflow are (i) field experimentation, UAV
image acquisition, and pre-processing; (ii) PROSAIL simulations and model evaluation;
(iii) Gaussian process regression (GPR); (iv) dimensionality reduction using principal
component analysis (PCA); and (v) active learning methods and field verification. Each
step is explained in detail in the subsequent sections.
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2.1. Field Experimentation and UAV Image Acquisition

This study targeted an experimental wheat field of the HD 3059 variety located at the
research farm of Indian Council of Agricultural Research-Indian Agricultural Research
Institute (ICAR-IARI) (28◦38′28.314′′N latitude and 77◦9′3.106′′E longitude) 228 m above
mean sea level. The wheat field consisted of three replications of fifteen plots (7.2 × 13 m
size each), maintained at five graded nitrogen levels (0, 50, 100, 150, and 200 kg N ha−1),
and three irrigation treatments (soil moisture sensor-based treatment (I1); crop water stress
index (CWSI)-based treatment (I2); and conventional treatment (I3)). The study area map
showing the location of experimental plots and wheat fields is shown in Figure 2. The
experiment was carried out during the winter season of 2021–2022, with the crop being
sown on 13 December 2021, and harvested on 15 April 2022. LCC was estimated using the
dimethyl sulfoxide (DMSO) method [62], and LAI was measured using an LAI-2000 plant
canopy analyser (Li-Cor, Inc., Lincoln, NE, USA) [63]. Three measurements were taken
from each plot, and their average was used for the analysis. Finally, CCC was obtained by
multiplying LCC with LAI (LAI × LCC) [64].

The experimental plots were overflown by a Headwall Nano-Hyperspec hyperspectral
camera (Headwall Photonics Inc., Bolton, MA, USA) mounted on a UAV hexacopter on 17
March 2022. The hyperspectral image composed of 269 bands in the range of 400–1000 nm
with a spectral interval of 2.2 nm and spatial resolution of 4 cm was captured at a flight
height of 21 m. UgCS Mission planning software was used for planning the mission
route. Headwall SpectralView (v3.1.4) software (Headwall Photonics, Bolton, MA, USA)
and ENVI (version 5.6.3) were employed for processing the acquired hypercube. After
image acquisition, the pre-processing steps of radiance correction, reflectance conversion,
orthorectification, and image mosaicking were accomplished using the aforesaid software.
Subsequently, spectral noise was removed using the Savitzky–Golay filter [65,66]. The
wheat cropland area was segmented using a binary mask generated by multiplying the
hyperspectral normalized difference vegetation index (hNDVI) threshold and the spectral
angle mapper (SAM) classified map [67]. The endmember spectra corresponding to in situ
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crop traits were generated using a sequential maximum angle convex cone (SMACC) [68].
Compared with the pixel purity index (PPI), the SMACC shows better performance in
extracting endmembers of vegetation from hyperspectral imagery [69]. During endmember
collection, an inner buffer distance of 1 m from the borders was excluded, and a mean
spectrum of thirty endmembers from each plot was taken to attain accuracy. These trait-
specific in situ training datasets were used for optimization and validation.
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2.2. PROSAIL Simulations and Model Evaluation

The simulated dataset from PROSAIL RTM was used for retrieving wheat biophysical
traits. PROSAIL is a combined RTM of the PROSPECT-4 leaf reflectance model and the
4-SAIL canopy reflectance model [70]. The PROSPECT-4 model consists of four variables,
leaf structure coefficient (N), leaf chlorophyll content (Cab), equivalent water thickness
(Cw), and dry matter content (Cm). The PROSPECT model generates simulated directional
reflectance in the range of 400 to 1000 nm at the spectral resolution of 2.2 nm. The output
was used by the SAIL model for generating hemispherical and bi-directional top-of-canopy
(TOC) reflectance, in which the bi-directional TOC reflectance is used as the basis for retriev-
ing the wheat biophysical variables. The input variables for 4-SAIL are LAI, average leaf
angle (angl), fraction of diffuse incoming solar radiation (skyl), soil brightness coefficient
(psoil), hot-spot size parameter (hspot), solar zenith angle (tts), sensor zenith angle (tto),
and relative azimuth (psi). The sampling range for each parameter of the PROSPECT-4
and 4-SAIL models (Table 1) was selected from field measurements and previous studies
carried out at IARI, New Delhi, in wheat fields [37,71–74], as well as similar studies carried
out in other wheat fields using RT modelling [56]. The sampling size of the LUT was fixed
to 2000 simulations using Latin hypercube sampling (LHS) across the parameter space.
LHS is considered to be an adequate sampling size for hyperspectral imagery to enable fast
processing with accurate results [56]. In hybrid GPR approaches, low sampling sizes of a
few hundred were used for developing light models with low runtime. The sampling size
reported for various GPR retrieval models for space-borne hyperspectral datasets ranges
from 1000 to 2000 [53,56,75].

The ARTMO (Automated Radiative Transfer Models Operator) software package is a
modular MATLAB-based toolbox embedded with, among others, multiple leaf and canopy
RTMs, and machine learning regression algorithm (MLRA) toolboxes, which facilitate
automated model analysis and vegetation mapping [48,76]. The ARTMO toolbox was
successfully employed for generating the PROSAIL simulations by combining PROSPECT-
4 with the SAIL model [70]. Seven regression algorithms, as listed in Table 2, and GPR were
evaluated for finding the most accurate model. The prediction accuracy was measured
using the standard goodness-of-fit statistical parameters of mean absolute error (MAE),
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root mean square error (RMSE), relative RMSE (RRMSE), normalized RMSE (NRMSE), and
coefficient of determination (R2) with the help of 70% training data and the remaining 30%
validation data. The entire processing took place in the computer system with specifications
of Windows-64 OS, Intel(R) Xeon(R) W-2133 CPU @ 3.60 GHz, 32.0 GB RAM.

Table 1. List of input variables of the PROSAIL model used in the study with variable range.

S. No. Parameter Abbreviation Unit Values

Leaf Model: PROSPECT-4

1. Leaf structure coefficient N Dimensionless 1

2. Equivalent water thickness Cw cm 0.01–0.045 (0.001
interval)

3. Leaf chlorophyll content Cab µcm−2 0–80 (0.2 interval)

4. Dry matter content Cm g cm−2 0.0046

Canopy Model: 4-SAIL

5. Leaf area index LAI m2 m−2 0.1–7.5 (0.01 interval)

6. Average leaf angle angl Degree 70, 57, 45

7. Fraction of diffuse incoming solar
radiation skyl Dimensionless 0.1

8. Soil brightness coefficient psoil Dimensionless 0.1

9. Hot-spot size parameter hspot mm−1 0.78, 0.40, 0.32

10. Solar zenith angle tts Degree 51, 45, 33

11. Sensor/view zenith angle tto Degree 0

12. Relative azimuth psi Degree 0

Table 2. List of evaluated regression algorithms.

S. No. Algorithm Principle Formula and Description

1.
Kernel ridge
regression (KRR)
[77]

- Combines ridge regression and classification
along with kernel trick.

- Uses squared error loss.
- Faster for medium-sized datasets.

y = wTΦ(x) = y
(

ΦTΦ + λIn

)−1
ΦTΦ(x) =

y(K + λIn)
−1κ(x)

where x is the new test point, w is the solution,
K
(
bxi , bxj

)
= Φxi

TΦ
(
xj
)
, and K(x) = K(xi , x). Adding

bias Φ : Φo = 1.
wTΦ = ∑

a
waΦai + wo

2.
Least squares
linear regression
(LSLR)

- Approach to model the relationship between
a dependent variable and one or more
independent variables.

- Does not consider the complexity of data.

m =
∑n

i=1(xi−x)(yi−y)

∑n
i=1 (xi−x)2

c = y−mx
where x is the mean of all the values in input x and ȳ is the
mean of all the values in desired output y. m is the slope of

the line, and c is the y-intercept.

3. Neural network
(NN)

- Approach that uses a standard
back-propagation algorithm applied to a set
of input, hidden, and output layers.

- Predicts the results for unknown datasets.
- Requires labelled data for the training

process.
- The training of the network takes time.

yi = gi = g(
K
∑

j=1
wjixj + θi)

E = 1
2

k
∑

J=1

(
yj − tj

)
where y —output; x —input; g —activation function; w
—weight; θ —bias; E —error; and t —ground truth, for

instance.
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Table 2. Cont.

S. No. Algorithm Principle Formula and Description

4. Support vector
regression (SVR)

- Works on the concept of maximizing the
margins.

- Generates a decision boundary with
maximum separation.

- Proves helpful when multiple
heterogeneous classes are available.

width = 1
2 ·

w2

||w||

L =
n
∑
i

ai − 1
2

n
∑
i

n
∑
j

aiajyiyj
→
xi ·
→
xj

k(x, y) = xTy + c
where x is the sample dataset, for which SVM finds

weights w such that the data points in the dataset are
separated using the most optimum hyperplane. Further, L

is differentiated with respect to w.

5. Extreme learning
machine (ELM)

- Learning algorithm for single-layered
feed-forward neural network.

- Higher accuracy as compared with SVM and
neural networks.

- Fast learning.
- Computationally scalable.
- Independent from the tuning process.
- Evaluation speed is low.
- Requires astronomically high hidden-layer

neurons.
- Cannot encode more than one layer of

abstraction.

L
∑

i=1
β I G(ai , bi , x), x ∈ Rd, β I ∈ Rm

G(ai , bi , x) = g(ai .x + bi), ai ∈ Rd,
bi ∈ R

N
∑

j=1
|| fL(xj)− tj|| = 0

L
∑

i=1
β I G(ai , bi , x) = tj, j = 1, 2 . . . . . . N

Hβ = T
where L—hidden nodes; G(ai , bi , x)—output function at ith
hidden node; ai , bi—hidden node parameters; βi—weight

vector; g—activation function; and H—hidden-layer
output matrix.

6. Bagging trees
(BaTs)

- General-purpose procedure for reducing the
variance of a statistical learning method.

- Makes predictions on the tree’s out-of-bag
observations.

- Multiple trees can be trained simultaneously.
- All the trees trained on different bootstrap

samples are correlated.

̂fbag = f̂1(X) + f̂2(X) + · · ·+ f̂b(X)
where X is the record for which a prediction is to be

generated, f̂bag is the bagged prediction, and
f̂1(X) + f̂2(X) + · · ·+ f̂b(X) are the predictions from the

individual base learners.

7. Boosting trees
(BoTs)

- Transforms weak decision trees (called weak
learners) into strong learners.

- Tends to overfit.
- Better than random predictions.
- Good at handling tabular data with

numerical features.
- Able to capture nonlinear interactions

between the features and the target.
- Not designed to work with very sparse

features.

g(x) = fo(x) + f1(x) + f2(x) + · · ·
where final classifier g is the sum of simple base classifiers

fi .

xt+1 = xt − η
δ f
δx

∣∣∣
x=xt

where η is called the step size.

ft = argmin
N
∑

i=1
[ δL(yi ,g(xi))

δg(xi)

∣∣∣g=gt − f (xi) ]
2

where t is the iteration; L(yi , g(xi)) is the empirical loss
function at each iteration; and gt is moved towards the

negative gradient direction.

2.3. Gaussian Process Regression (GPR)

As opposed to other MLRAs, such as NN and KRR, GPR has proven to be a pow-
erful regression model with two major advantages [48]. First, it provides an additional
quantitative measurement of prediction accuracy in terms of uncertainty estimates (σ).
A lower σ indicates a better prediction for crop traits [54]. The second advantage is the
use of kernels or covariance functions to reduce the processing time. The best prediction
performance was achieved with hybrid models developed by integrating GPR with RT
models with the aid of dimensionality reduction and active learning techniques [56]. The
majority of GPR-based mapping studies are aligned to use S2 data, which are used to re-
trieve multiple crop traits [50,78]. A few case studies are discussed in this section. Another
interesting study is the quantitative estimation of soil organic carbon using S2 with the help
of GPR [79]. Moreover, GPR models can be implemented into Google Earth Engine (GEE),
which facilitates the large-scale spatio-temporal mapping of crop biophysical variables
using Sentinel-3 (S3) data [80].
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A Gaussian process is a combination of random variables d, which can be represented
as in Equation (1), where µ expresses mean values and Σ is the covariance matrix. It can
further be derived as Equation (2).

Xi, . . . , Xj ∼ N(µ, Σ) (1)

p(x) =
1√

(2Π)ddet|Σ|
exp
(
−1

2
(x− µ)TΣ−1(x− µ)

)
, x =

[
xi,...,xj

]T ∈ Rd (2)

A function can be sampled at point x, giving Equation (3), where f (x) is the function,

m(x) is a mean function, and k
(

x,
′
x
)

is a covariance function:

f (x) ∼ GP(
(

m(x), k
(

x,
′
x
))

(3)

If a training dataset and a test dataset contain N observations, they can be expressed
as Equations (4) and (5):

Dtrain = (X, y) = {xi, yi}N
i=1, xi ∈ Rd, y ∈ R (4)

Dtest = X∗ = {X∗,i}N′
i=1, X∗,i ∈ Rd (5)

where X is the matrix of training features, X∗ represents test points, and y are training
targets for regression.

The commonly used squared exponential kernel function (k
(

x,
′
x
)

) was selected for
optimizing the GPR model and is expressed as

k
(

x,
′
x
)
= exp(−‖x−

′
x‖2

2σ2 ) (6)

where only the σ hyperparameter needs to be adjusted.
The squared exponential is a widely accepted kernel function embedded in the GPR

model for trait retrieval from both hyperspectral [11,81] and multispectral [80,82] datasets.
The squared exponential kernel function is mostly used to reduce the total time taken for
model training [81]. So, it is most commonly employed for retrieving crop traits from mul-
tispectral (e.g., [82]) and hyperspectral datasets (e.g., [57]). The MATLAB implementation
of GPR with squared exponential kernel function was used in the present study for LAI
and CCC retrieval.

2.4. Dimensionality Reduction Using Principal Component Analysis (PCA)

Because the acquired hyperspectral imagery consists of 269 bands, such a large number
of contiguous bands may easily lead to suboptimal performance in the ML models due to
spectral redundancy (Hughes phenomenon). To reduce redundancy and computational
time while optimizing accuracy, a suitable dimensionality reduction strategy is to be applied.
The MLRA toolbox in ARTMO provides eleven dimensionality reduction techniques for
retrieving the most significant statistical variables. According to the analysis of all of
them as a trade-off between accuracy and runtime in various settings, the PCA with
20 components is the most recommended one for retrieving multiple crop traits from
hyperspectral datasets using GPR [54]. That strategy was also applied to the current
analysis. In the case of PRISMA data used for retrieving multiple crop traits, GPR with
PCA-20 achieved above 99.95% cumulative variance. Moreover, it slightly outperformed
the band-ranking procedure with 20 bands [56].
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2.5. Active Learning Methods and Field Verification

In RT modelling, a large, simulated dataset introduces redundancy and even makes
it impossible to develop hybrid regression models for retrieving specific crop traits. In
order to reduce the sample size without altering the model’s predictive performance,
noisy and reluctant samples may be removed by adopting an effective sample selection
criterion. In solving regression problems related to the prediction of crop traits using Earth
observation data products, two types of active learning (AL) methods are widely used, i.e.,
uncertainty and diversity methods [83,84]. The uncertainty approach includes pool active
learning (PAL), entropy query by bagging (EQB), and residual active learning (RSAL).
The diversity approach comprises Euclidean distance-based diversity (EBD), angle-based
diversity (ABD), and clustering-based diversity (CBD) [85]. The MLRA toolbox in ARTMO
facilitates applying these six AL methods as well as the random sampling techniques to the
PROSAIL-simulated spectra in combination with a regression algorithm. Random sampling
is the simplest approach to scaling down extensive datasets where there is no guarantee of
reaching the most informative datasets compared with the original [86]. In the uncertainty
approach, the samples were graded based on their uncertainties, and the least certain ones
were taken as the output [86]. In the diversity approach, diversity refers to the variation
among the samples considered, where the added samples show maximum dissimilarity
with the ones already employed in the training dataset [87,88]. These AL methods select
the most informative training samples for model development and prediction with the
highest accuracy. In related studies, the EBD technique gave the best performance when
integrated with GPR for retrieving LAI and LCC [85,89] and aboveground N content [84].
Also, the EBD-GPR models built using trait-specific AL-optimized training datasets from
simulated S2 datasets facilitated the implementation of GPR models into Google Earth
Engine (GEE) [90,91]. The efficacy of these AL techniques in retrieving various crop traits
was well explained and analysed in [83–85].

The AL method selects samples from the pool dataset and trains the model. This takes
place iteratively to check whether the data picked from the pool improve the model or not.
Therefore, the samples showing no improvement are removed from the final dataset, and
the process continues until all the samples in the pool dataset are evaluated against the
validation dataset. Here, an in situ dataset of 45 samples and five non-vegetation spectra
was used for validation purposes. The addition of non-vegetation spectra, usually soil
spectra with respective trait values of zero, to the reduced sampling makes the model
applicable to any UAV dataset with full heterogeneous classes [56]. Common goodness-of-
fit statistics, such as mean absolute error (MAE), root mean square error (RMSE), normalized
RMSE (NRMSE), and relative RMSE (RRMSE), are used for measuring retrieval accuracy.
Altogether, five AL techniques, i.e., ABD, CBD, EBD, PAL, and RSAL, were exhaustively
analysed and compared to find the optimal one for the proposed work.

3. Results
3.1. Model Evaluation and Selection of GPR

Eight multivariate models were evaluated for estimating LAI and CCC using PCA as
a dimensionality reduction method with 20 components. The theoretical results showing
the goodness-of-fit statistics calculated for each regression model are tabulated in Table 3.
Validated against simulated data, GPR outperformed all other models in predicting the LAI
by showing the highest R2 value of 0.996, and KRR was found suitable for predicting the
CCC with an R2 value of 0.9997. The MAE values reported for LAI and CCC are 0.019 and
0.016, whereas the RMSE values are 0.143 and 0.024, respectively. In the case of NRMSE, the
lowest values for estimating LAI and CCC are 1.946% and 0.433%, respectively. As evident
from Table 3, based on NRMSE and R2 values, the model performance sequence for LAI is
GPR > KRR > NN > LS > ELM > BaTs > BoTs > SVR and that for CCC is KRR > GPR > NN
> LS > ELM > SVR > BaTs > BoTs. Both GPR and KRR produced more accurate and robust
results in estimating various crop traits. Since GPR possesses the unique characteristic
of delivering uncertainties associated with mean estimates [51], the GPR algorithm was
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selected for further training optimization applicable to UAV ultrahigh-spatial-resolution
hyperspectral imagery for estimating crop traits.

Table 3. Accuracy assessment of MLRA models for retrieving LAI and CCC.

S. No. MLRA MAE RMSE RRMSE
(%)

NRMSE
(%) R2

LAI

1. GPR 0.019 0.143 3.796 1.946 0.996

2. KRR 0.114 0.153 4.065 2.084 0.995

3. NN 0.129 0.232 6.150 3.153 0.988

4. LS 0.189 0.247 6.545 3.355 0.987

5. ELM 0.189 0.321 8.499 4.357 0.978

6. BaT 0.218 0.357 9.469 4.854 0.976

7. BoT 0.303 0.413 10.933 5.604 0.963

8. SVR 0.334 0.449 11.892 6.096 0.957

CCC

1. KRR 0.016 0.024 1.562 0.433 0.9997

2. GPR 0.031 0.043 2.756 0.746 0.999

3. NN 0.031 0.050 3.262 0.904 0.999

4. LS 0.038 0.050 3.292 0.912 0.999

5. ELM 0.042 0.063 4.115 1.140 0.998

6. SVR 0.075 0.093 6.099 1.690 0.995

7. BaT 0.068 0.109 7.105 1.969 0.995

8. BoT 0.139 0.176 11.521 3.192 0.982

3.2. Performance of AL Techniques

Figure 3 represents the comparative results of various AL techniques for retrieving
LAI and CCC. Smooth convergence can be noticed, which implies the usage of NRMSE
over other statistical measures, such as R2. The usage of NRMSE over R2 for selecting the
optimal AL was proposed in many earlier works [83,85]. The addition of a new sample at
each iteration of the AL technique causes a stable decrease in RMSE and an increase in R2

when validating with the field dataset. Optimal GPR model performance was achieved
by a set of a few samples, i.e., 97 and 119 for LAI and CCC, respectively. On adding new
samples, the NRMSE of RSAL decreases from 80.76 to 16.84 for LAI. In the case of CCC, the
NRMSE of EBD shows a steady decrease from 21.6 to 19.42 for CCC. RSAL outperformed
other AL techniques for LAI, while EBD showed the highest performance for CCC. The
convergence observed at a low sampling size may be attributed to the low number of
training data points used (n = 45).

3.3. Validation of Crop-Trait Models

The performance of AL-optimized GPR models for retrieving LAI and CCC was
validated using in situ measurements from 45 plots. About five non-vegetation spectra
(particularly, soil spectrum) were extracted from UAV hyperspectral imagery. Common
statistical goodness-of-fit indicators, i.e., RMSE, NRMSE, MAE, and R2, were used for
validating the results. The validation results are shown as scatter plots between estimated
and measured crop traits along with the goodness-of-fit statistics in Figure 4. Both LAI and
CCC estimations show superior results with RMSE and MAE values less than 1. The RMSE
values obtained for GPR models for LAI and CCC retrieval are 0.624 and 0.559, respectively.
Further, the MAE values for LAI and CCC are 0.481 and 0.423, with R2 values of 0.889 and
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0.656, respectively. The most important statistical parameters, NRMSE values, reported for
LAI and CCC retrieval are 8.579% and 14.842%, respectively.
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Another remarkable observation is the improvement in NRMSE thanks to the addition
of non-vegetation spectra to the AL-optimized dataset and upon re-training. The NRMSE
value for LAI was improved from 16.8 to 8.6%, and the CCC was lowered from 19.4 to
14.8%. Five bare-soil or non-vegetation spectra (10% of in situ measurements) were added
to the AL-optimized dataset before the validation of crop traits.

3.4. Retrieval of LAI and CCC

The final GPR models were applied to pre-processed UAV hyperspectral imagery
to obtain estimates and the accompanying uncertainties. The LAI and CCC retrieval
maps and their associated coefficient of variation (CV) are shown in Figure 5. The in situ
measurements for LAI and CCC range from 3.46 to 7.27 m2 m−2 and 1.03 to 3.76 g m−2,
respectively. On inspecting the retrieval maps, it is understood that they are strictly
following the ranges of in situ measurements. The experimental plots with low values of
LAI and CCC are clearly visible with red-coloured pixels, which indicate a strong pixel-wise
variation of the retrieved values. For both the LAI and CCC maps produced, the maximum
and minimum values appear on the same plots, which suggests that the retrieved maps
are realistic and represent the best spatial variability. Even though the GPR models were
trained with non-vegetation spectra added to the training with trait values set to zero,
they were finally applied to a soil-masked pre-processed UAV image. Notably, no zero or
close-to-zero values were obtained in the final estimated maps, which indicates the absence
of non-vegetated regions, proving the advantage of including them during model training.
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As a benefit of GPR, apart from estimates, associated uncertainties such as standard
deviation (SD) and %CV maps on a per-pixel basis were provided for each parameter. Since
SD is related to the magnitude of mean estimates, comparatively higher SD values were
observed for chlorophyll content. To overcome this, a relative uncertainty measure, CV
((SD/mean estimate) × 100), expressed in % was used for the current analysis (Figure 5).
It can be observed that high uncertainties were shown by pixels corresponding to lower
values of crop traits. Usually, low values and values near zero (indicating bare soils) show
absolute uncertainties of 1 or higher, while vegetation in good health and with proper irri-
gation shows higher values and low uncertainties [92]. So, these clear demarcations shown
by uncertainty maps facilitate the spatial masking of regions with great certainty [48]. More-
over, it extends the portability of using the current model to other regions or acquisitions
from other dates [51,93].

4. Discussion

Hybrid GPR models developed using PROSAIL simulations have already been suc-
cessfully applied for retrieving crop traits from hyperspectral datasets from space-borne
platforms [47,49]. Progressing along this line, this work attempts the retrieval of crop
traits from UAV hyperspectral datasets at the ultrahigh spatial resolution of 4 cm. The
retrieval accuracy and robustness of the models were validated using in situ measurements
and showed the best results. During model evaluation, the top-most performance was
shown by the nonlinear regression algorithms GPR, KRR, and NN, which are comparable
with the results reported for multispectral S2 as well as hyperspectral datasets such as
CHRIS and HyMap data in mapping LCC and LAI [48]. Both GPR and KRR are promising
kernel-based regression algorithms that show stable and excellent results with the highest
R2 maxima. Even though KRR is mathematically simpler, with only one hyperparameter
to optimize, the advantage of GPR is the usage of kernel functions and the delivery of
predictive variance in addition to predictive mean [85]. The third best-evaluated model
appeared to be NN; it mostly delivered poor results with a lack of robustness. Less training
datasets and more noise tend to deliver unstable prediction results for NN, with a major
problem of overfitting [48].
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The advantage of using canopy RTMs for hybrid model training is that simulated
spectra can be generated, satisfying ground situations, and these datasets can be optimized
for the accurate retrieval of crop traits. Here, the crop traits of LAI and CCC of the
wheat crops in IARI experimental fields were successfully retrieved using RT modelling
applied to UAV hyperspectral imagery. This was achieved with the help of 2000 PROSAIL
simulations, which are near to impossible to collect from the field on a particular date
of UAV flight, along with field measurements of crop traits. The operational processing
chains adopted for the study involve a hybrid approach integrating RT modelling with
GPR. The application of a PCA with 20 components and optimum AL techniques with 97
and 119 samples for LAI and CCC, respectively, reduced the runtime and, at the same time,
improved regression accuracy. Thus, it was proven that the integration of dimensionality
reduction techniques and active learning methods leads to a significant decrease in the
computation load involved in training GPR with large datasets [94,95]. The superior AL
performance of EBD for retrieving LAI was also previously reported for multispectral [90]
and hyperspectral [56] datasets. Likewise, other AL techniques implemented in ARTMO
were recently also compared and selected based on the lowest NRMSE values for retrieving
various crop traits, especially from hyperspectral datasets [57,96]. Likewise, here, we
evaluated a few AL techniques, and it was found that RSAL and EBD led to the lowest
NRMSE values and were thus selected for GPR prediction of LAI and CCC. Optimizing
the training data is an important step in developing hybrid GPR models for retrieving
crop traits from remotely recorded (usually noisy) spectral data. So, a list of AL techniques
is applied against field data to select the most relevant representative simulations that
match the real data [78]. This sampling reduction strategy reduces the large datasets of
2000 to manageable and more representative datasets, which considerably reduces the
computational cost and guarantees the best stable and robust prediction results. The
running of the AL techniques against in situ data was evaluated using NRMSE, because it
provides information about the errors of the prediction model in estimating the response
variables, whereas R2 only provides information about correlation. The addition of non-
vegetation spectra is an essential step in the validation part of GPR models and common
practice in studies related to the retrieval of crop traits [53,55,56]. It helps the model
to interpret non-vegetation regions by delivering results near zero. It is observed that
the canopy variables of LAI and CCC provide low uncertainties, reaching close-to-zero
estimates, as previously reported [56].

Previous studies reported higher inconsistencies in leaf-level traits for GPR-based
retrievals [90,91], so only the canopy traits of LAI and CCC of wheat crops were estimated in
the present study. The goodness-of-fit results obtained for the present study, especially the
R2 and NRMSE values of LAI and CCC, were in the acceptable range observed during the
efficient retrieval of crop traits using other hyperspectral data [56]. The uncertainty maps
help to evaluate the performance of regression models to predict values for regions other
than training sites [51,93]. Since the associated uncertainty (SD) is related to the magnitude
of estimates, chlorophyll shows increased SD values associated with the estimated trait [48];
therefore, the CV (SD/mean estimate, in %) was instead selected to examine the relative
uncertainties. The lower uncertainty values obtained for LAI and CCC reveal more reliable
retrieval values relative to the trained model. So, the variation in uncertainty estimates
helps to evaluate the ground sampling strategy adopted for training the model as well as
the portability of applying the model to images captured from new sites or at other times.
All 45 plots of the wheat field were clearly discernible based on their field trait values
and showed stable within-plot variability. A clear distinction of in situ values could be
observed among plots and within plots, facilitating the use of these results for efficient farm
nutrient management practices. Since these variables are clear indicators of plant stress, the
retrieved within-field variability maps can be coupled with applied nutrient information to
make decisions to improve crop health and yield [97].

While previous GPR studies delivered competitive results for hyperspectral datasets [53,89,98]
by combining them with an appropriate dimensionality reduction technique [54], here,
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an attempt was made to apply this approach to a hyperspectral UAV dataset with the
ultrahigh spatial resolution of 4 cm for retrieving wheat crop traits. Crop traits in wheat
were estimated using single-growth stage data. As a continuation of the present work,
robust hybrid models will be built for estimating crop traits for a more diverse range of
crop types acquired during multiple phenological stages and will be employed in the future
using the same UAV sensor.

5. Conclusions

We introduced an integrated hybrid workflow for estimating wheat crop biophysical
variables from unmanned aerial vehicle (UAV) hyperspectral imagery in the spectral range
of 400–1000 nm. To develop hybrid models, the Gaussian process regression (GPR) machine
learning regression algorithm was applied to PROSAIL simulations. Theoretical validation
using eight regression models revealed the superiority of GPR. Suitable dimensionality
reduction and active learning techniques were combined to mitigate the problems of redun-
dancy and suboptimal model training. Two active learning (AL) techniques, i.e., residual
active learning (RSAL) and Euclidean distance-based diversity (EBD), were selected for
the GPR modelling of leaf area index (LAI) and canopy chlorophyll content (CCC). The
low NRMSE values of 8.6% and 14.8% obtained for the GPR models during field verifica-
tion suggest good retrieval accuracy and lower uncertainties for mapping LAI and CCC.
Altogether, the proposed workflow offers the benefits of using a powerful (kernel-based)
and generic hybrid approach for retrieving wheat crop biophysical variables from UAV
datasets using ARTMO, a freely available software package. The developed workflow was
successfully applied at the field level and can be upscaled for the quantitative and real-time
mapping of vegetation products from farmers’ fields using UAV technology.
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