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Abstract: Catastrophic landslides occur frequently in Guizhou Province, China, and the landslides
in this area have special geomorphological, geological, and anthropogenic features. In order to
detect and explore the distribution pattern and control factors of active landslides in Guizhou,
firstly, a total of 693 active landslides throughout Guizhou Province were mapped based on the
deformation rate, which was obtained by spatiotemporal filtering and Intermittent Small Baseline
Subset (ISBAS) Interferometric Synthetic Aperture Radar (InSAR) techniques. Then, the relationships
between the detected landslides and elevation, aspect, slope gradient, and stratigraphic lithology were
analysed. Moreover, it was found that the landslides were mainly concentrated in three stratigraphic
combinations, that is T1 f ∼ P2l − d, T1 f ∼ T1yn, and T2g ∼ T1yn. Thereafter, the correlation
coefficients between the landslide density and elevation and distance to the stratigraphic boundary
were 0.54 and −0.19, indicating that the distribution of landslides was significantly controlled
by the elevation and the boundary of specific stratigraphic combinations. Finally, we chose a
typical landslide to explore how landslide development was controlled by the combined effects
of elevation and stratigraphy by using ascending and descending InSAR results. We revealed
that landslides occurred primarily in areas with a steep slope and a stratigraphy characterized by
mudstone and sandstone.

Keywords: InSAR; deformation; control factors; stratum; landslide detection; karst mountain

1. Introduction

The Yunnan-Guizhou Plateau in southwestern China is one of the largest karst moun-
tain areas in the world, with special geomorphological and geological features. The rocks
are mainly carbonate and clastic, with a special structure. In recent decades, catastrophic
landslides have frequently occurred in this area. For example, on 18 February 2013, a rock-
slide in Longchang County, Guizhou Province, China, buried five people and six houses
and dammed a river [1]. On 28 August 2017, a long-runout landslide in Pusa Village,
Zhangjiawan Town, Guizhou Province, China, killed 35 people [2]. Extensive development
of folded mountains leads to the existence of soft and weak interlayers in rock, which
control the strength of the rock bodies. In addition, this karst mountain area has widely
developed rich coal seams. Consequently, long-term and large-scale underground mining
has become a major triggering factor for landslides [3,4]. Therefore, these characteristics
determine the particularities of landslide detection in this region.

To date, the satellite-based Interferometric Synthetic Aperture Radar (InSAR) tech-
nique can be used to sense slight surface deformation in mountainous areas, providing
effective means for landslide detection over large areas [5–10]. Bekaert et al. detected slow-
moving landslides by using a novel InSAR and pixel clustering method in the Himalayas,
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centred on the Trishuli River catchment, Nepal [11]. Bouali et al. investigated landslides in
the Palos Verdes Peninsula, California, by persistent scatterer interferometry and classified
the detected landslides into different categories [12]. Even in the Guizhou karst mountain
regions, Zhu et al. detected active landslides in western Guizhou Province, China, by
combining Sentinel-1 and ALOS/PALSAR-2 data and categorized the landslides into natu-
ral, reservoir, and mining-induced landslides [13]. Shen et al. obtained the deformation
of potential landslides in Bijie City, Guizhou, with RADARSAT-2 and Sentinel-1 datasets
using an improved InSAR technique [14]. However, as for the entire Guizhou Province,
there remain some key problems in active landslide detection based on surface deformation.
Most importantly, even though Yue et al. has shown the relationship between the spatial
distribution pattern of landslides and environmental factors in Guizhou Province [15]
and Yao et al. has illustrated the influencing factors associated with the distribution of
landslides in Bijie, Guizhou [16], few studies have focused on the relationship between
active landslides and stratigraphic lithology.

Therefore, in this study, we applied Sentinel-1 SAR images to detect active landslides
across Guizhou Province, China, and verified the results using Google Earth optical images.
To this end, firstly, the Intermittent Small Baseline Subset (ISBAS) InSAR technique was
used to calculate the deformation velocity and time series with ascending and descending
Sentinel-1 SAR datasets, where the patched InSAR processing strategy was involved to cor-
rect the localized errors. Then, a spatiotemporal filtering method was applied to refine the
InSAR deformation results. Secondly, the active landslides were identified by combining in-
dependent InSAR deformation results and optical images. Then, the relationships between
landslides and conditional factors were analysed in terms of topography, stratigraphy, and
lithology. Thirdly, Spearman correlation was conducted to reveal the main control factors
of landslide distribution in the karst mountain areas. Finally, the topographic, stratigraphic,
and lithologic characteristics of the most landslide-prone areas were summarized.

2. Study Area

Guizhou Province is located on the Yunnan-Guizhou Plateau in southeastern China
between 103◦36′–109◦35′E in longitude and 24◦37′–29◦13′N in latitude, with a total area
of approximately 1.76 × 105 km2. As shown in Figure 1, the terrain of Guizhou Province
is high in the west and low in the east, with an average elevation of about 1100 m above
sea level. Most areas in Guizhou Province are mountainous and hilly, with a large amount
of topographic undulation, accounting for 92% of the total area. The highest and lowest
altitudes are 2900 m and 148 m, respectively. The special topography provides a prerequisite
for the occurrence of landslides and collapses. In addition, various types of karst landforms
are widely distributed in this area, resulting in a unique landslide pattern.

The stratigraphy of Guizhou is well developed and mainly belongs to the Yangtze
stratum. Sedimentary rocks are the most widely distributed, mainly as limestone and
dolomite or as clastic rocks. Carbonate rocks are the main material in the study area,
mainly including continuous limestone, the interlayer between limestone and clastic rocks,
continuous dolomite, and the interlayer between dolomite and clastic rocks. A series
of tectonic movements since the Late Triassic led to the formation of folded mountains.
Therefore, these conditions provide the basis for the formation of landslides.

Guizhou Province has a subtropical warm and humid monsoon climate, with an
average annual temperature around 15 ◦C, ranging from 3 ◦C to 25 ◦C. The province has
abundant but uneven precipitation. That is, it has more rainfall in the east than in the west
and more in the south than in the north. And the precipitation from May to September
accounts for 50% to 70% of the total annual precipitation. In the karst regions, precipitation
is an important supplement to groundwater, which becomes a key factor in landslide
development.
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Figure 1. Location of Guizhou Province and coverage of the SAR datasets. Red and blue rectangles 
indicate the coverage of ascending and descending Sentinel-1 SAR data, respectively. 
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Figure 1. Location of Guizhou Province and coverage of the SAR datasets. Red and blue rectangles
indicate the coverage of ascending and descending Sentinel-1 SAR data, respectively.

Furthermore, coal seams are widely distributed in Guizhou Province, mainly concen-
trated in the strata of the Permian Liangshan and Longtan Formation. The rocks are mainly
limestone, dolomite and other carbonate rocks, sandstone, and other clastic rocks, with
4–6 layers of thin mud shale and other soft rock. Long-term underground mining activities
result in the formation of mined-out areas under the mountains, leading to the development
of fissures at the surface of the mountain, increasing destruction of the rock mass, and large
gradient deformation. Eventually, large-scale landslides often occur [17–19].

3. Data and Methods
3.1. Data

Guizhou Province is associated with karst mountains covered with dense surface
vegetation. In order to detect active landslides in this area, the deformation rate over
Guizhou Province was obtained using Sentinel-1 SAR images with high temporal resolu-
tion. A total of 722 scenes in ascending images were collected from nine different orbits,
involving three paths and six frames, as shown in Figure 1. The average date duration was
approximately 2.5 years, and most tracks were acquired between January 2018 and April
2020, as shown in Table 1, which are conducive to the identification of potential landslides.
We also collected descending Sentinel-1 data covering parts of Guizhou Province, where
there were 262 scenes in archived images from three frames covering the western region of
Guizhou Province, as shown in Figure 1. Therefore, we used descending data to strengthen
the location of detected landslides from ascending orbits within the overlapping area. In
addition, a one arc-second Shuttle Radar Topography Mission (SRTM) Digital Elevation
Model (DEM) was used for InSAR processing, and for calculating the aspect and slope data
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for the study area. The resolution of SRTM DEM was 30 m, and the data were acquired in
2000. The geological data were digitized from a printed map. In addition, Google Earth
images were combined with InSAR deformation data to detect active landslides.

Table 1. The information in Sentinel-1 SAR images for Guizhou Province.

No. Path Frame Flight
Direction Epoch Image

Number

1 128 84 Ascending 2 January 2018–21 April 2020 65
2 128 79 Ascending 20 March 2017–5 May 2022 155
3 128 74 Ascending 2 January 2018–21 April 2020 71
4 55 87 Ascending 9 January 2018–28 April 2020 69
5 55 82 Ascending 9 January 2018–30 November 2020 65
6 55 77 Ascending 9 January 2018–30 November 2020 85
7 157 87 Ascending 4 January 2018–23 April 2020 70
8 157 82 Ascending 4 January 2018–23 April 2020 71
9 157 77 Ascending 4 January 2018–23 April 2020 71
10 164 500 Descending 4 January 2018–23 April 2020 70
11 164 505 Descending 10 March 2017–24 May 2022 122
12 164 510 Descending 4 January 2018–23 April 2020 70

3.2. Methods

Figure 2 shows the flowchart for detection and control factor analysis of active land-
slides in Guizhou Province. Firstly, improved InSAR processing was applied to obtain
the surface deformation over Guizhou Province. We processed the multi-orbit SAR data
independently, where the same orbit SAR data were processed with multiple patches,
which can effectively reduce the atmospheric error [20]. Then, spatial and temporal base-
line thresholds were set to generate original interferograms [21]. An adaptive filtering
method in γ software 2015 was used to reduce the interferogram phase noise [22]. We
filtered each interferogram twice with window sizes of 32 and 16; the exponent and step
for filtering were set to 0.4 and 2, respectively. Subsequently, the minimum cost flow (MCF)
algorithm was used to unwrap the interferograms [23,24]. The coherence threshold for
phase unwrapping was set to 0.3. Thereafter, the optimal unwrapping of interferograms
was automatically selected based on coherence, and the original deformation rate and time
series were calculated using the ISBAS InSAR method. This method allows the optimal
selection of interferometric pairs independently for each pixel, which can increase effec-
tively the number of monitoring points. After removing atmospheric and ramp errors
from the original results, residual tropospheric noise, ionospheric noise, and orbital er-
rors were corrected using a spatiotemporal filtering method. The deformation velocity
over all of Guizhou Province and the deformation time series of typical landslides were
finally obtained.

Secondly, the active landslides were mapped by combining deformation and multi-
temporal optical satellite images, where obvious sliding signs were detected. Furthermore,
in order to analyse the control factors of landslide distribution, the detected landslide
pattern is discussed in terms of topographic and geological data. As for the stratigraphy, we
searched the nearest stratigraphic boundary for each landslide and calculated automatically
the shortest distance between the landslide location and the stratigraphic boundary. Finally,
we used Spearman correlation coefficients to find factors significantly associated with
landslide distribution.
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3.2.1. ISBAS-InSAR

In order to increase the density of monitoring points, the ISBAS-InSAR method was
applied to calculate the deformation rate and time series. Unlike in the traditional SBAS-
InSAR method, in the ISBAS-InSAR method, the deformation time series is obtained
using a fixed combination of interferograms at each pixel, and if one of the selected
unwrapping interferograms fails to have an effect value due to low coherence, the pixel
is discarded. We addressed this problem effectively using ISBAS-InSAR [25,26]. Firstly,
we set the thresholds of coherence and minimum number of selected interferograms. For
each pixel, if the coherence of an interferometric pair exceeded the coherence threshold,
it was selected to calculate the deformation time series; moreover, when the number of
selected interferograms exceeded the threshold, the deformation time series at the pixel was
acquired; otherwise, it was discarded. Secondly, when the interferograms were selected,
the deformation rate between every two neighbouring dates was calculated, and finally,
the deformation time series was readily obtained by integrating each deformation rate in
the time domain [27].

3.2.2. Temporal and Spatial Filtering

There still existed some atmospheric delays and ramp errors in the original deforma-
tion time series and velocity that could not be removed effectively by using traditional
methods. Therefore, a spatiotemporal filtering approach was adopted [28,29]. The time
series results were filtered by a high pass in the time domain and a low pass in the spatial
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domain using one- and two-dimensional Gaussian kernels, respectively. Furthermore,
the short temporal filter width was used for Sentinel-1 to preserve the real nonlinear
deformation of the landslide.

4. Results
4.1. Error Correction and Monitoring Point Improvement

Firstly, as shown in Figure 3a, although the atmospheric error was corrected with a
linear model between the residual phase and the elevation, there still existed residual atmo-
spheric errors, which would destroy the deformation result and misinform the landslide
identification. But in Figure 3b, the residual atmospheric phase is well decreased using the
spatiotemporal filtering method, which benefitted landslide detection. Further, to overcome
the sparse monitoring points caused by the decorrelation over vegetation regions shown in
Figure 3c using the traditional SBAS method, the ISBAS method was used to obtain dense
monitoring points, especially in the high deformation area shown in Figure 3d, where
complete landslide boundaries can be well mapped. In addition, the processing times of
the experiments shown in Figure 3c,d were 3.6 and 1.7 s, respectively. The experiments
were performed based on the Ubuntu 16.04 system with an Intel(R) Xeon(R) CPU E5-2630
v4 on a 2.20-GHz computer, which was manufactured by Dell.
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for atmospheric and ramp errors. (b) The deformation rate after spatiotemporal filtering. (c,d) The
deformation rates obtained using the SBAS and ISBAS methods, respectively.

4.2. InSAR Deformation Rates for Guizhou Province

The LOS deformation rates for Guizhou Province were obtained from the ascending
and descending Sentinel-1 SAR images shown in Figure 4, where positive values indicated
that the surface was close to the satellite and negative values showed that it moved away
from the satellite. Firstly, overall, it is clear in Figure 4a that the ascending results covered
all of Guizhou Province, with a total area of approximately 1.76 × 105 km2, while the
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descending results in Figure 4b covered only the western area of Guizhou. The ISBAS-
InSAR method can increase the point density of the InSAR deformation effectively. For
the ascending results, a total of 5.892 × 108 InSAR monitoring points were acquired across
Guizhou Province. The average density of efficient points was about 3.348 × 103 per square
kilometre. Regarding the descending results, the number of InSAR monitoring points was
1.993 × 108, and the average density was 3.517 × 103 per square kilometre. Further, three
typical areas were selected to demonstrate the ascending and descending deformation
rate clearly, as shown in Figure 4c–h. It can be seen that the locations where deformation
existed in the ascending and descending results were essentially the same. Furthermore,
the different deformation patterns between the ascending and descending results were due
to the different SAR geometry and local topography. Therefore, the combination of the two
orbits in the overlapping area ensured more accurate detection of landslide locations.
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4.3. The Distribution of Active Landslides in Guizhou

As only partial areas were monitored by descending SAR images, we used the ascend-
ing deformation rate to identify the landslides shown in Figure 4a. The active landslides
were detected by combining the deformation rate and Google Earth optical images. Specif-
ically, since there are so many underground mining zones in Guizhou, which result in
large amounts of surface subsidence, they were discarded based on topography and signs
of surface deformation. Therefore, a total of 693 active landslides were detected, and
their distribution is shown in Figure 5. It can be seen that active landslides were mainly
concentrated in the western and northern parts of Guizhou Province [15]. The numbers
of landslides detected in each city were as follows: 148 in Liupanshui City, 139 in Bijie
City, 82 in Zunyi City, 76 in Qianxinan City, 66 in Qiannan City, 58 in Tongren City, 51 in
Qiandongnan City, 48 in Guiyang City, and 25 in Anshun City. Moreover, the large-scale
active landslides were mainly located in the cities of Liupanshui and Bijie, where intensive
mining activities took place for a long time.

Remote Sens. 2023, 15, x FOR PEER REVIEW 9 of 18 
 

 

active landslides were mainly located in the cities of Liupanshui and Bijie, where intensive 
mining activities took place for a long time. 

 
Figure 5. The distribution of the detected active landslides. 

In addition, five typical landslides were selected for verification and are shown in 
Figure 6, where obvious signs of collapse on the surface and visible mining plants at the 
foot of the slopes can be seen, indicating the mining-induced landslides. Moreover, sig-
nificant deformation can be seen in both the ascending and descending InSAR results, 
among which, the Baiyan landslide, shown in Figure 6(a1) occurred on 8 May 2022, re-
sulting in the death of three people [30]. 

Figure 5. The distribution of the detected active landslides.

In addition, five typical landslides were selected for verification and are shown in
Figure 6, where obvious signs of collapse on the surface and visible mining plants at the foot
of the slopes can be seen, indicating the mining-induced landslides. Moreover, significant
deformation can be seen in both the ascending and descending InSAR results, among
which, the Baiyan landslide, shown in Figure 6(a1) occurred on 8 May 2022, resulting in the
death of three people [30].



Remote Sens. 2023, 15, 5468 9 of 17Remote Sens. 2023, 15, x FOR PEER REVIEW 10 of 18 
 

 

 
Figure 6. The ascending and descending deformation rate maps and optical images for five typical 
landslides illustrated in Figure 5. ((a–e)1) the ascending deformation rate, ((a–e)2) the descending 
deformation rate, ((a–e)3) the optical images. The white solid lines are landslide boundaries. The 
optical images are from Google Earth. 

4.4. Distribution Pattern of the Active Landslides in Terms of Topographic Factors 
To explore the control factors of the detected active landslides, the distribution pat-

tern of the landslides in terms of topographic factors was analysed including the elevation, 
aspect, and slope. Firstly, the relationship between the landslide distribution and 
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landslides illustrated in Figure 5. ((a–e)1) the ascending deformation rate, ((a–e)2) the descending
deformation rate, ((a–e)3) the optical images. The white solid lines are landslide boundaries. The
optical images are from Google Earth.

4.4. Distribution Pattern of the Active Landslides in Terms of Topographic Factors

To explore the control factors of the detected active landslides, the distribution pattern
of the landslides in terms of topographic factors was analysed including the elevation,
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aspect, and slope. Firstly, the relationship between the landslide distribution and elevation
is shown in Figure 7a, where the intensive distribution area of landslides is mainly concen-
trated in the western part of Guizhou, and the altitude of this area is high and the terrain
fluctuates greatly. In Figure 7d, we can see that the number of landslides increases with
the elevation and that the landslides are mainly distributed between 900 m and 1900 m.
Secondly, the relationship between landslide distribution and the aspect of the terrain is
shown in Figure 7b. Quantitatively, Figure 7e shows that 202 landslides occurred between
112.5◦ and 202.5◦. Finally, the relationship between landslide distribution and slope is
shown in Figure 7c,f. Most landslides are located on the slopes between 10◦ and 30◦, which
are mainly due to the local karst topography and the SAR incidence angle.
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Figure 7. The distribution pattern of the active landslides in terms of topographic factors. (a–c) The
distribution of active landslides overlying an elevation, aspect, and slope map, respectively. (d–f) The
histograms of landslide number in terms of elevation, aspect, and slope, respectively.

5. Discussion
5.1. Distribution Pattern of the Active Landslides in Terms of Geological Factors

In order to reveal the control factors of karst landslides, we illustrated the relationship
between active landslides and stratigraphic lithology in Guizhou Province in Figure 8,
where we can notice that the landslides are mainly concentrated on several typical strata,
including the T1 f triassic system, lower series, feixianguan formation, silty mudstone, and
mudstone, the P2l − d permian system, upper series, xuanwei group, longtan and dalong
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formation, sandstone, siltstone, marl, and coal, and the T2g triassic system, middle series,
guanling formation, dolomite, limestone, and marlstone.
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Figure 8. The relationship between the active landslides and stratigraphic lithology.

Moreover, we can see that most landslides are concentrated on the boundary of two
specific neighbouring strata, especially in the western and northern Guizhou Province. In
order to further reveal the formation of landslides in karst mountains, the distribution of
landslides for each stratigraphic combination is statistically analysed. Firstly, the landsides
in each stratum combination are detected. Then, in each stratum combination, the shortest
distance from two neighbouring stratum boundaries to each landslide is calculated. Next,
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the counting and drawing of the landslide number in each stratum are performed. To
this end, we illustrate landslides belonging to 29 stratigraphic combinations in Figure 9,
where each column represents one adjacent stratigraphic combination, with stratigraphic
names labelled on two ends, the centre is the stratigraphic boundary, the size of the cycle
indicates the number of landslides, and the position of the circle indicates the distance
away from a stratigraphic boundary. It can be clearly seen in Figure 9 that most landslides
are mainly concentrated in the three left stratigraphic combinations, that is T1 f ∼ P2l − d,
T1 f ∼ T1yn, and T2g ∼ T1yn. Moreover, the closer to the stratigraphic boundary, the more
landslides are distributed, which indicated that a special stratigraphic combination and
stratigraphic boundary control the formation of active landslides in Guizhou Province.
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Figure 9. The relationship between active landslides and stratigraphic combinations. The size of the
circle represents the landslide number, and the location of the circle represents the distance from the
landslide to the stratigraphic boundary.

As we can see in Figure 9, the greatest number of landslides occurred between strata
T1 f and P2l − d. We selected a typical landslide-prone area in Figure 10 to analyse their
geomorphological and lithological characteristics, where the ascending and descending
InSAR deformation rates and stratigraphic lithology are shown in Figure 10a,b, respectively.
The strata from high to low elevation are T1 f , P2l − d, and P2β, respectively. Firstly, both
ascending and descending results can be used to detect landslides with similar deformation
patterns. Secondly, the detected landslides mainly occurred near the boundary of T1 f
and P2l − d, where the surface of landslide-prone areas experienced obvious avalanches
and slides according to the optical images. This example thoroughly illustrates the spatial
relationship between landslides and typical stratigraphic lithology.
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Guizhou Province. (a) The ascending deformation rate, and (b) the descending deformation rate.

5.2. The Key Control Factors of Landslide Distribution

We explored the correlation between the landslide density and elevation, slope, aspect,
and the distance to the boundary to reveal the key control factors of landslide distribution.
Firstly, the landslide density in the Guizhou area was calculated based on 693 detected
landslides. Then, Spearman correlation coefficients between the landslide density and
each of four factors were calculated, as shown in Figure 11a, where the significance level
was 0.05. Spearman correlation coefficients can be used to measure correlations, including
nonlinear correlations, which can take a value between +1 and −1; the closer the value is
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to 0, the weaker the association between the two variables, whereas the closer the value
is to the ±1, the stronger the monotonic relationship. The magnitude of the correlation
coefficients for elevation and distance to the stratigraphic boundary were much greater
than that of the slope and aspect; therefore, Figure 11a shows that the landslide density
is significantly correlated with elevation and distance to the stratigraphic boundary. The
correlation coefficient for elevation is 0.54, which indicates that the higher the elevation
is, the greater the number of landslides that are distributed. This fact can also be seen in
Figure 11b. The correlation coefficient of distance is −0.19, which means that landslides
are more possibly distributed in an area near a neighbouring stratigraphic boundary; this
relationship can also be observed in Figure 11c. Therefore, the landslides in Guizhou
Province are mainly controlled by the combination of elevation and specific strata.
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Figure 11. The correlation analysis between the landslide density and control factors. (a) Spearman
correlation coefficients between the landslide density and elevation, distance to the stratum boundary,
slope, and aspect, respectively, where the significance level is 0.05. The size of the circle indicates
the magnitude of the correlation coefficient, the cross sign indicates non-significant correlation.
(b,c) The relationships between the detected landslide density and elevation and the distance to the
stratum boundary.

5.3. Verification of Key Landslide Control Factors

To further illustrate two control factors on landslide development, we focussed on one
typical landslide and extracted the deformation profile along line EF in Figure 10 from the
ascending and descending results, where the topography and three stratigraphic lithologies
are superimposed. Figure 12 is the InSAR deformation rate and geological setting along the
profile, where the InSAR deformation along the profile can be divided into two sections,
including the deformation and stable sections, and the lithology from high elevation to low
are mudstone in T1 f , sandstone in P2l− d, and lava rock in P2β, respectively, corresponding
to a hardness from soft to hard. The topography is extremely steep at high elevation and
relatively slow at low elevation. From Figure 12, surface deformation mainly happened
at a higher elevation with a mudstone and sandstone stratigraphic combination, which is
more susceptible to landslide formation.
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6. Conclusions

In this study, ascending and descending Sentinel-1 images are applied to detect active
landslides and reveal their key control factors in Guizhou Province, China. The spatiotem-
poral filtering and ISBAS method improve the InSAR deformation precision and monitoring
density. A total of 693 active landslides are detected by combining InSAR deformation,
topographic data, and optical images. The detected landslides are mainly distributed in
the area with an elevation of 900–1900 m, an aspect of 112.5–292.5◦, a slope of 10–30◦, and
three strata, namely, T1 f , P2l − d, and T2g. Further, more landslides occurred close to the
boundary of the three stratigraphic combinations, that is, T1 f ∼ P2l − d, T1 f ∼ T1yn, and
T2g ∼ T1yn. It is revealed that the landslide distribution in Guizhou Province is mainly
controlled by elevation and distance to the stratigraphic boundary. One typical landslide
verifies that it mainly occurred at a high elevation with a steeper slope and soft stratum.
This study provides a new perspective for landslide detection in karst mountain regions in
terms of InSAR deformation, elevation, and stratigraphy.
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