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Abstract: The measurement of atmospheric NO2 pollution concentrations has become a critical topic
due to its impact on human health. Ground sensors are the most popular method for measuring
atmospheric pollution, but they can be expensive to purchase, install, and maintain. In contrast,
satellite technology offers global coverage but typically provides concentration estimates at the
tropospheric level, not at the ground level where most human activities take place. This work
presents a model that can be used to estimate NO2 ground-level concentrations in metropolitan areas
using Sentinel-5P satellite images and ERA5 meteorological data. The primary goal is to offer a
cost-effective solution for Low- and Medium-Income Countries (LMICs) to assess air quality, thereby
addressing the air quality measurement constraints. To validate the model’s accuracy, study points
were selected in alignment with the Regional Agency for the Environment Protection (ARPA) NO2

sensor network in the Metropolitan City of Milan. The results showed that the RMSE of the model
estimations was significantly lower than the standard deviation of the real measurements. This work
fills the gaps in the literature by providing an accurate estimation model of NO2 in the Metropolitan
City of Milan using both satellite data and ERA5 meteorological data. This work presents as an
alternative to ground sensors by enabling more regions to assess their air quality effectively.

Keywords: earth observation; machine learning; Sentinel-5P; NO2; ERA5

1. Introduction

Air quality deterioration represents a public health issue, particularly in relation to
nitrogen dioxide (NO2) [1]. As a matter of fact, 549,715 deaths attributed to urban NO2 could
have been prevented if the World Health Organization (WHO) NO2 air quality guidelines
had been followed [2]. As a response to tackle this and other global pressing challenges, the
United Nations (UN) created the Sustainable Development Goals (SDGs). These provide a
global unified agenda to address topics such as poverty, health, inequality, climate change,
or environmental degradation. SDGs serve as a guide for governments, organizations,
and individuals for collective action. Air quality is a factor that is directly mentioned in
2 out of the 17 SDGs. On the one hand, SDG 3.9—Good Health and Well-Being—targets
the reduction of the number of deaths and illnesses from hazardous chemicals and air
pollution. On the other hand, SDG 7—Affordable and Clean Energy—targets access to
clean energy technology, which would have an impact on emissions produced by vehicles
and as a consequence reduce NO2 [3,4].

To reduce the impact that NO2 has on human health, the WHO established a set of
Air Quality Guidelines (AQGs). According to their latest update (2021), NO2 atmospheric
concentration must not surpass 200 µg/m3 per hour, 25 µg/m3 per 24 h period, and
10 µg/m3 per calendar year [5]. It is relevant for governments, organizations, and indi-
viduals to follow these guidelines because surpassing the recommended threshold can
have a negative impact on the population’s health. According to a study developed by
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the Bradford Institute for Health Research, UK, NO2 exposure has an immediate neg-
ative impact on the urban population. It has been demonstrated that an increase of
10 µg/m3 in the NO2 24 h period WHO threshold caused an immediate relative risk
of patients that visited either general practice or emergency services (Figure 1) [1]. This
indicates that constant NO2 monitoring in urban areas is necessary to take measures that
have instant negative effects on the population’s health.

Figure 1. Direct consequences when the ground-level atmospheric NO2 surpasses the limits
established by the WHO.

In most cases, governments standardize the way in which measurements have to be
retrieved, providing guidelines that ensure their homogeneity, accuracy, and veracity of
them. Such is the case of the United States Environmental Protection Agency (US EPA) or
the European Environment Agency (EEA). The NO2 measurement method established by
these institutions is the use of direct analysers (e.g., BS EN 14211: Ambient air—Standard
method for the measurement of the concentration of nitrogen dioxide and nitrogen monox-
ide by chemiluminescence). These analysers are used to sample directly air from points
of interest, and then the volume of NO2 is measured [6]. This methodology hinders the
possibility of atmospheric NO2 measurements in Low- and Medium-Income Countries
(LMICs). As mentioned by Pinder et al., millions of dollars in investments are needed to
establish, operate, and maintain ground monitoring stations [7].

As an alternative to installing and managing ground stations, space agencies like
the National Aeronautics and Space Administration (NASA) and the European Space
Agency (ESA), have independently developed satellite technology to measure atmospheric
pollution. On the one hand, the Ozone Measurement Instrument (OMI) from the Aura
NASA satellite is capable of measuring NO2 atmospheric concentration at a resolution
of 13 km × 24 km [8]. On the other hand, the TROPOspheric Measurement Instrument,
developed for the Sentinel-5P satellite from the ESA’s Copernicus program, is designed to
measure the NO2 tropospheric column with a resolution of 3.5 km × 5 km [9].

There are some drawbacks when measuring atmospheric pollution by using satellite
technology. The first is the level of measurement. For instance, OMI NO2 concentrations
are measured at an atmospheric level (air column of approximately 100 km from the
ground), and for TROPOMI at a tropospheric level (between 8 km and 14 km air column
height) [10,11]. These two do not necessarily represent the reality of NO2 concentration
at ground level, where human activities take place [12]. The second is regarding the
method by which NO2 concentrations are retrieved. Given that satellite measurements are a
hyperspectral image, nitrogen dioxide estimations are delivered as the Tropospheric Vertical
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Column Density (TVCD) [13]. Usually, passing from a TVCD to a volumetric measurement
requires the user to consider many factors, like NO2 variability, meteorological conditions,
chemical reactions, and emissions [14]. However, it has been determined that there is a
strong correlation between TVCD Sentinel-5P measurements and ground stations [12].

This study evaluates the daily atmospheric nitrogen dioxide (NO2) at ground level
from 12:00 h to 15:00 h UTC+1. This estimation uses a Machine Learning (ML) algorithm
relying solely on satellite and global meteorological data (i.e., without the use of ground
stations). Previously, this algorithm was evaluated using satellite data (Sentinel-5P)
and ground-based meteorological sensors. It was demonstrated that by using ground
meteorological data, a Root Mean Square Error of 2.89 µg/m3 was achieved [15]. Although
meteorological ground stations are virtually available worldwide, some regions have lower
station densities, predominantly in low-income countries. Figure 2 shows that countries
in the Sub-Saharan region of Africa, Central Asia, and South America have lower sta-
tion densities (green markers). To address this issue, we focused on replacing the use of
meteorological ground sensors with a global estimation model. For this, we chose the
global reanalysis model (ERA5) from the European Centre for Medium-Range Weather
Forecasts (ECMWF), which is described in detail in Section 2.1.2.

Figure 2. Location of meteorological ground stations according to the World Meteorological
Organization [16].

We chose the Metropolitan City of Milan (MCM) in Italy as the study area. The reason
for this is that it is a densely populated urban area (more than 2000 inhabitants per km2) [17]
with a wide range of industrial activities, located in an atmospheric pollution hotspot. The
Alps to the north and the Apennines to the south trap air trace gases (Figure 3). This
hotspot affects more than 17 million inhabitants daily [18]. Therefore, air quality in the
MCM is constantly monitored by a network of more than 15 ground stations operated by
the Regional Environment Protection Agency (ARPA: Agenzia Regionale della Protezione
del Ambiente). The observations of these sensors have been useful for the training and
validation process of this work.

The selected time span for this work was from 1 January 2019, until 27 September 2022
daily average (from 12:00 h to 15:00 h UTC+1). The reason for such a long period was to
consider a variety of factors like anthropogenic, seasonal, and historical physicochemical
behaviour of NO2 (Section 2.1). NO2 concentration estimation was performed for a set
of single points, at specific locations of the ARPA ground stations. Estimating single
points opens the possibility for decision makers to more efficiently detect atmospheric NO2
hotspots, compared to estimating the average of the complete area of the MCM (1500 km2).
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Results demonstrate that by using solely satellite and meteorological models, it is
possible to estimate NO2 ground concentrations. We found that the best model used a
combination of Multi-Layer Perceptron Regressor (MLPR) and Support Vector Regression
(SVR). With an average NRMSE of 55% we demonstrate that the RMSE is significantly lower
than the standard deviation, which means that the model performs well for estimating
daily atmospheric NO2 at ground level for the time from 12:00 h to 15:00 h UTC+1.

Figure 3. Satellite image (MODIS Aqua radiometer) of the Northern Italy Po Valley showing the
aerosol layer entrapped in the area. The location of Milan is indicated with a red circle [15].

The goal of this research is to train and test a Machine Learning model to estimate
ground-level nitrogen dioxide (NO2) concentrations at single point locations using Sentinel-5P
satellite data and ERA5 reanalysis meteorological variables. This work is of particular rel-
evance for policy-makers in LMICs where cost-effective air quality assessment is essential.
Therefore, the development of alternatives to ground sensors for measuring atmospheric
pollution is a key priority. Although the case study in this research was the MCM in Italy, a
high-income country [19], this work provides the foundation for developing and deploying
cost-effective air quality assessment solutions in other parts of the world where NO2 ground
stations are not available.

2. Materials and Methods
2.1. Data Description

The primary source of NO2 emissions is combustion engines (i.e., transportation) [20].
In Italy, during the period from 9 March 2020 to 3 April 2020, the government declared a
full lockdown due to the COVID-19 pandemic. This restricted the population’s mobility,
thus reducing the use of vehicles. Therefore, the data considered for this study comprised
the dates from 1 January 2019 to 27 September 2022. This time period included the years
2019 and 2021 as a pre-and post-lockdown baseline. We also considered the dates from
1 January 2022 to 27 September 2022 to assess the performance of the ML model against
previous works [15].

The three data sources we used for this work as training for the ML model were
Sentinel-5P tropospheric NO2 concentrations, ERA5 reanalysis global data, and ARPA
Lombardia NO2 ground measurements. These will be described in the following sections.

2.1.1. Sentinel-5P Data

Copernicus satellites provide a wide range of environmental data, including data on
land cover, sea surface temperature, and ice cover. Sentinel-5P is a Low Earth Orbit (LEO)
satellite mission dedicated to monitoring the atmosphere. The Sentinel-5P mission was
developed by the European Space Agency (ESA) in cooperation with the Netherlands Space
Office (NSO). The TROPOMI instrument was developed by the Netherlands Aerospace
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Centre (NLR) and Airbus Defence and Space. It is the first Copernicus satellite mission
dedicated to atmospheric monitoring. Sentinel-5P data are used by Copernicus services to
provide information on air quality, ozone and UV radiation, and climate [21,22].

Sentinel-5P carries a single instrument, the Tropospheric Monitoring Instrument
(TROPOMI). TROPOMI is a spectrometer that measures sunlight reflected and scattered
by the Earth’s atmosphere and surface. It has a wide spectral range, covering ultraviolet,
visible, near-infrared, and shortwave infrared wavelengths. This allows TROPOMI to
observe a wide range of atmospheric constituents, including ozone, nitrogen dioxide, sulfur
dioxide, carbon monoxide, methane, and aerosols. Sentinel-5P has a sun-synchronous
orbit, which allows TROPOMI to provide global coverage of the atmosphere with a high
temporal resolution. Sentinel-5P has a spatial resolution of 3.5 km × 5 km, making it the
best in its class that is publicly available [22].

Sentinel-5P data are available to users through a variety of channels, including:

• The Copernicus Open Access Hub (https://scihub.copernicus.eu, accessed on 30
October 2023), which provides free access to Sentinel-5P data and other Copernicus
data products.

• The S5P Data Portal (https://data-portal.s5p-pal.com, accessed on 30 October 2023),
provides access to Sentinel-5P data and related information, such as product specifica-
tions and documentation.

• The ESA Earth Observation Data Services (https://www.copernicus.eu/en/access-
data/dias, accessed on 30 October 2023), where the Data and Information Access
Services (DIAS) provide access to a wide range of Earth observation data, as well as
processing and analysis services.

Sentinel-5P was designed to meet certain requirements. Specifically, for NO2, it was
required that Sentinel-5P must measure nitrogen dioxide column density with an accuracy
of 5% and a precision of 2%. Since its measurements were made available to the public,
Sentinel-5P has been meeting or exceeding all of its design accuracy requirements. Sentinel-
5P also complies with its design specifications in terms of other performance metrics, such
as spatial resolution, temporal resolution, and radiometric resolution. The accuracy and
precision of Sentinel-5P’s measurements of nitrogen dioxide column density were measured
using a variety of methods, including [23]:

• Ground-based validation: Sentinel-5P data was compared to data from ground-based
stations that measure nitrogen dioxide column density. The ground-based stations use
a variety of different measurement techniques, such as Dobson spectrophotometers
and MAX-DOAS instruments.

• Aircraft validation: Sentinel-5P data was also compared to data from aircraft cam-
paigns that measure nitrogen dioxide column density. The aircraft campaigns use a
variety of different measurement techniques, such as in situ instruments and remote
sensing instruments.

• Intercomparison with other satellites: Sentinel-5P data were also compared to data
from other satellites that measure nitrogen dioxide column density, such as OMI and
GOME-2.

In addition to the validation studies, the Sentinel-5P mission team also uses a number
of other methods to assess the accuracy and precision of Sentinel-5P’s measurements. These
methods include [23,24]:

• Internal consistency checks: The Sentinel-5P mission team checks the internal con-
sistency of the Sentinel-5P data to identify any anomalies. For instance, the team
verifies whether the data align with established physical correlations among various
atmospheric components.

• Trend analysis: The Sentinel-5P mission team analyzes trends in the Sentinel-5P data
to identify any systematic errors. For example, the team checks to see if the data are
showing trends that are consistent with other known trends, such as the trend of
decreasing nitrogen dioxide emissions in Europe.

https://scihub.copernicus.eu
https://data-portal.s5p-pal.com
https://www.copernicus.eu/en/access-data/dias
https://www.copernicus.eu/en/access-data/dias
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• Intercomparison with models: The Sentinel-5P mission team compares their data to
data from atmospheric models. The atmospheric models are based on our understand-
ing of the physics of the atmosphere, and they can be used to predict the distribution
of nitrogen dioxide and other atmospheric constituents.

When comparing baseline 2019 measurements in the COVID-19 lockdown period
(2020), Sentinel-5P and ARPA Lombardia ground measurements showed a strong Pearson
correlation. Table 1 shows that the non-linear prediction model ρs outperformed the linear
prediction model ρp in terms of the mean and median values of NO2 ground concentrations
estimated using Sentinel-5P satellite data. This suggests that non-linear prediction models
are more suitable for inferring NO2 ground concentrations from satellite data. This insight
is important for developing satellite-based local air quality prediction models.

Table 1. Pearson correlation coefficients (ρp) and Spearman correlation coefficients (ρs) of Sentinel-5P
measurements with respect to ARPA Lombardia atmospheric NO2 ground measurements at the time
of passage of the satellite.

ρp ρs

2019 2020 2019 2020

mean 0.72 0.76 0.74 0.79
median 0.75 0.79 0.78 0.83

standard deviation 0.11 0.15 0.12 0.14

For this work, Sentinel-5P images were downloaded through the WEkEO DIAS (https:
//www.wekeo.eu/, accessed on 30 October 2023) Application Programming Interface (API).
This download method is considerably faster than using the Open Access Hub because it
provides automated batch download. Instead, the Open Access Hub only provides a non-
batch manual download functionality. Downloading data through the DIAS is currently
the only way to download data automatically in batch mode through Python scripting. For
large datasets or long time periods, like the one used in this work, this is a fundamental
tool to accelerate the data provision.

Figure 4 shows how the pixels delivered by the Sentinel-5P look over the area of Milan.
After we downloaded the data from the WEkEO DIAS API, we preprocessed the images to
exclude data that did not meet the suggested quality standards. This was carried out by
selecting a quality value (qa_value) of 0.75, as suggested in Copernicus literature [22].

2.1.2. ERA5 Data

As mentioned before, we chose ERA5 (https://cds.climate.copernicus.eu/cdsapp#!/
dataset/reanalysis-era5-single-levels, accessed on 30 October 2023) as the data source to
replace the use of ground meteorological sensors in this work. ERA5 is the fifth generation
of global reanalysis produced by the European Centre for Medium-Range Weather Forecasts
(ECMWF). It is a dataset of atmospheric, land, and oceanic climate variables covering the
period from 1950 to the present. The ERA5 reanalysis was developed by the ECMWF in
collaboration with a number of other organizations, including the Copernicus Climate
Change Service (C3S). The ERA5 project was funded by the European Union and the
ESA [25,26]. The main objective of replacing ARPA meteorological data that were used in
previous works [15] is to provide a model that relies on datasets that can be used worldwide,
especially in LMICs.

The ERA5 reanalysis is based on the IFS (Integrated Forecasting System) numerical
weather prediction model. It is used by ECMWF to produce daily weather forecasts, as
well as by many other meteorological centres around the world. The ERA5 reanalysis
also uses a vast range of historical observations. These observations come from a variety
of sources, including ground stations, ships, aircraft, and satellites. The observations are
used to constrain the IFS model and to produce the ERA5 reanalysis. ERA5 is produced

https://www.wekeo.eu/
https://www.wekeo.eu/
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels
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using a state-of-the-art numerical weather-prediction model and a vast range of historical
observations. ERA5 is a major advance over previous reanalyses in terms of resolution,
spatial coverage, and temporal coverage. It has a horizontal resolution of 31 km and a
vertical resolution of 137 levels. It also includes a number of new variables, such as land
surface temperature, soil moisture, and sea ice concentration [26,27].

Figure 4. NO2 ground sensors (green and orange markers) belonging to the ARPA Lombardia
network. The Sentinel-5P pixels are displayed in blue. The administrative borders of the MCM are
outlined in red.

The ERA5 reanalysis is verified using a variety of methods. The first is a comparison
to observations, where ERA5 data are compared to a wide range of historical observations,
including independent ground stations, ships, aircraft, and satellite data. This comparison
helps to identify any biases or errors in the ERA5 data. ERA5 data are also compared to
data from other reanalyses, such as the NCEP-DOE Reanalysis 2 (R2) and the Japanese
55-year Reanalysis (JRA-55). This intercomparison helps to identify any differences in
the way that different reanalyses represent the climate system. Finally, ERA5 data are
also subject to a variety of diagnostic checks to identify any inconsistencies or unrealistic
features. For example, the ERA5 team checks to make sure that the energy and water
budgets of the climate system are balanced. The ERA5 scientific team then uses the results
of the verification process to adjust the ERA5 reanalysis to make it as realistic as possible.
For example, if the ERA5 data show a bias in temperature relative to observations, the team
may adjust the ERA5 model to compensate for this bias [25–27].

2.1.3. ARPA Data

ARPA Lombardia’s NO2 ground measurements are collected using a network of
85 monitoring stations located throughout the Lombardy region of Italy. A total of 17 of
these ground stations are located inside the Metropolitan City of Milan (Figure 4). The
stations are equipped with continuous chemiluminescence analyzers, which measure the
concentration of NO2 in the air with a time resolution of 1 h. As shown in Figure 4, the
NO2 sensors have a sparse distribution, having a higher number of sensors close to the
centre of the city of Milan [28].

The validation process for the ARPA Lombardia NO2 sensors is rigorous and it is
designed to ensure the accuracy and reliability of the measurements. The validation process
includes the following steps [28,29]:
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1. Pre-deployment calibration: Before each sensor is deployed, it is calibrated in a
laboratory using a known concentration of NO2. This ensures that the sensor is
measuring NO2 accurately.

2. Field calibration: After each sensor is deployed, it is calibrated in the field using a
portable NO2 calibrator. This ensures that the sensor is still measuring NO2 accurately
in the field environment.

3. Data quality checks: ARPA Lombardia performs regular data quality checks on the
NO2 measurements. These checks include looking for outliers and inconsistencies in
the data.

4. Collocation studies: ARPA Lombardia conducts collocation studies by placing two or
more sensors at the same location. The measurements from the different sensors are
compared to ensure that they are consistent.

5. Interlaboratory comparisons: ARPA Lombardia participates in interlaboratory com-
parisons to compare the measurements from its NO2 sensors to the measurements
from other laboratories. These comparisons help to ensure that ARPA Lombardia’s
NO2 sensors are measuring NO2 accurately compared to other sensors.

If a sensor fails any of the validation steps, it is recalibrated or repaired. If a sensor is
unable to be recalibrated or repaired, it is replaced.

ARPA Lombardia’s NO2 validation process is designed to ensure the accuracy and
reliability of the NO2 measurements. This is important because the NO2 measurements
are used to monitor air quality and to assess compliance with EU air quality standards.
All of the data can be accessed and downloaded through the dedicated open portal (https:
//www.dati.lombardia.it/browse, accessed on 30 October 2023).

2.1.4. Additional Data

Atmospheric mixing/stability and boundary layer height are two components that
in some cases play an important role in NO2 atmospheric analysis. Atmospheric mix-
ing/stability is the process by which pollutants are dispersed in the atmosphere and is a
measure of how resistant the atmosphere is to trace gas mixing. Atmospheric mixing and
stability have a significant impact on the concentration of pollutants at the surface [30]. In
stable atmospheres, pollutants are more likely to be trapped near the surface, resulting in
higher concentrations. In unstable atmospheres, pollutants are more likely to be dispersed
throughout the atmosphere, resulting in lower concentrations at the surface [31]. The
boundary layer height is the height of the lowest layer of the atmosphere, where most of
the human activity and pollution takes place. It is usually a feature used in air quality
modelling and forecasting [32].

Although atmospheric mixing/stability and boundary layer height are known to
be factors used in estimating ground-level NO2 atmospheric concentrations, they were
not considered in this work. The main reason for this is two-fold. On the one hand, the
Metropolitan City of Milan is considered to be flat: according to NASA’s Shuttle Radar
Topography Mission (SRTM) global elevation data, the MCM has a total elevation range of
85 m. On the other hand, it has a total surface area of 1575 km2 [33]. This means that the
atmospheric mixing/stability and boundary layer height are likely to be relatively uniform
across the city. In this case, local emissions and meteorology are likely to have a greater
impact on the concentration of NO2 at smaller scales.

Additionally, given the topographic characteristics of the study area and the geospatial
focus of this work, we decided to exclude from the selected features the SRTM altitude
model. In future work, we will consider using both of these features, since they may be
important contributors when utilizing this model on a global scale.

2.1.5. Processing and Training Pipeline

We used a pipeline that was developed in a previous work [15] for training the models.
The reason for this is two-fold. On the one hand, it was developed to process ARPA
Lombardia NO2 ground measurements, meteorological measurements, and Sentinel-5P

https://www.dati.lombardia.it/browse
https://www.dati.lombardia.it/browse


Remote Sens. 2023, 15, 5400 9 of 22

images. On the other hand, it has been proven to have good accuracy when estimating
atmospheric NO2 ground-level observations from 12:00 h to 15:00 h UTC+1. It is important
to note that the algorithm was modified to take into consideration ERA5 meteorological
measurements instead of those acquired by the ARPA Lombardia ground network. Given
that the development of this pipeline development is not the scope of this work, it will be
shortly described, as well as the modifications that took place in this work.

The processing and training pipeline comprises three steps (Figure 5).

Figure 5. Data preparation, training and verification process.

The first step is the data cleaning and formatting. This consists of giving the same
structure to all of the data sources, so they can be integrated into a single Dataframe. This
is useful to train the ML algorithms, which generally use a single data source divided into
X and y. X is considered to be the input variable and y is the desired output. The data
integration was subdivided into two main steps: time resolution and spatial resolution
harmonization. Time resolution is mainly constrained by the NO2 satellite data. Sentinel-5P
passes over the MCM generally once per day, this means that only one measurement per
day is delivered. For this reason, both ARPA Lombardia and ERA5 Dataframes were
down-sampled. To do this, we know that the satellite passage time is from 12:00 h to 15:00 h
UTC+1 [15]. Therefore we calculated the average measurement for this 3 h period for
the ARPA NO2 (as the output) and ERA5 measurements as the input. Then, only for the
ERA5 data, we calculated the average measurement of the previous 21 h period prior to the
passage of the satellite, which was added as a new feature for the inputs. Given that NO2
is a gas present in the length of the atmospheric column, the 21 h period helps to describe
better the physicochemical dynamics at ground level.

Although most ARPA stations are designed to work constantly in time, there are
periods in which no data are available for some of them. This happens because technical
problems can emerge in each of them, or maintenance has to be completed. There are also
some cases in which a ground station is completely removed and it only registers data
at the beginning of the study time period. For this reason, it is important to note that we
performed the training using all of the stations, and the testing could only be completed for
those that were available from 7 March 2022 until 27 September 2022. Both training and
testing included a total of 13 stations.

Due to the difference in spatial resolution among the data sources, we performed
a spatial resolution harmonization. For this, ARPA sensor locations were the only ones
considered for this study. Therefore, ARPA NO2 measurements were paired with the
closest Sentinel-5P pixel and the closest ERA5 pixel. Figure 4 shows the ID and locations of
these stations.

We divided the Dataframe into training and testing, with a splitting ratio of 80% as
training data and the remaining 20% as testing data. This pipeline originally performs the
splitting chronologically. This means that the training period comprises all the dates from 1
January 2019, until 6 March 2022, and the testing period from 7 March 2022 until 28 Septem-
ber 2022. For us to find the best-performing mechanism for ground-level estimations, we
compared the results using chronological data splitting with that of random data splitting.

The second step in this pipeline was to train the ML algorithm to estimate ground-level
NO2. The processing pipeline tests and compares automatically the result’s RMSE for a
set of ML algorithms. In addition to ML algorithms, the pipeline uses linear regression
models. In several cases it has been stated that ML has been overused, when in reality a
simple linear regression would be a solution [34–36]. This can be time and cost-effective, as
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well as more accurate and interpretable [37]. For this reason, we compared the ML results
with those of linear regression algorithms, which included the following:
Linear Regression:

• Spline linear regression;
• Krigging linear regression.

Machine Learning:

• Random Forest (RF);
• Support Vector Regression (SVR);
• Decision Trees Regression (DTR);
• Gradient Tree Boosting (GTB);
• Multi-layer Perceptron Regressor (MLPR).

To understand how each of the models work, the reader can find further details on
SciKit-Learn’s developer website (https://scikit-learn.org/stable/supervised_learning.
html, accessed on 30 October 2023).

To minimize the RMSE, the algorithm tests these models individually and all the
combination pairs of these. This is conducted through the use of the sklearn stacking
and voting tool (https://scikit-learn.org/stable/modules/ensemble.html, accessed on 20
October 2023). These regressors from sklearn in Python are an ensemble learning algorithm
that combines the predictions of multiple regression models to produce a more accurate
prediction. It works by first training a set of base regression models on the training data.
The predictions of the base models are then used to train a meta-regression model. The
meta-regression model is then used to make the final prediction on the test data [38,39].

The stacking or voting regressor can be used to improve the performance of any
regression algorithm. However, it is particularly useful for combining the predictions of
linear and non-linear regression models. This is because they can learn to leverage the
strengths of each individual model to produce a more accurate prediction [38].

Inside the training pipeline, we used an RF feature selection algorithm that helped us
reduce the number of variables used for the training. This was carried out with the use of
the sklearn Python libraries, which work by first training a Random Forest classifier on the
training data. The Random Forest classifier is then used to calculate the importance of each
feature. The importance of a feature is calculated by measuring how much the accuracy of
the Random Forest classifier decreases when the feature is removed. The Random Forest
feature selection algorithm then selects a subset of features based on their importance. The
number of features to select is specified by the user. The algorithm can also be used to
select a specific percentile of the most important features [40].

To evaluate the performance of our model, we used the Normalised Root Mean Square
Error (NRMSE). We considered it more suitable than the RMSE, because data from each of
the sensors have different standard deviations and, as a consequence, the RMSE magnitudes
by themselves can be misleading. NRMSE instead compares the RMSE to the standard
deviation, to obtain a better understanding of how well the model is performing relative to
the natural variability of the data. This information is essential for evaluating the relevance
of the results and determining whether the model is useful for real-world applications. In
order to find the best possible model for our use case, we used a Python processing pipeline
that iterated over different combinations of ML algorithms. The two best models were
then combined through a voting mechanism which allowed us to use the characteristics of
each model that most reduced the RMSE. Additionally, by using a Random Forest feature
selection algorithm, we selected the features that contributed the most to the reduction of
RMSE. For this validation process, we used the real ground measurements of NO2 delivered
daily by the ARPA Lombardia network from 12:00 h to 15:00 h UTC+1.

3. Results and Discussion

When training a machine learning regression algorithm with a large number of
variables, it is important to carefully select the ones that will be used in the model.

https://scikit-learn.org/stable/supervised_learning.html
https://scikit-learn.org/stable/supervised_learning.html
https://scikit-learn.org/stable/modules/ensemble.html
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To decrease the processing resources needed to train the model, we selected the vari-
ables using two methods: correlation coefficient and RF feature selection. According to
Murphy [41], Pearson correlation coefficients can be interpreted as weak, medium, or
strong in machine learning depending on the context and the specific application. A weak
correlation coefficient (ρp < 0.3) indicates a small or negligible relationship between two
variables. A medium correlation coefficient (0.3 ≤ ρp < 0.7) indicates a moderate rela-
tionship between two variables. A strong correlation coefficient (ρp ≥ 0.7) indicates a
strong relationship between the two variables. For this work, we considered variables
with a moderate or strong correlation (0.3 ≤ ρp) with respect to ARPA ground-level NO2
measurements. Even though variables with a medium correlation are disregarded in some
fields, we did not, because as a complement to Pearson’s correlation, we used a Random
Forest feature selector (described in detail in Section 2.1.5). This helped us to reduce the
dimensionality of the data sources. Table 2 shows the ρp correlation coefficients for each
of the variables. The variables we used were current temperature, current surface solar
radiation, current surface pressure, previous temperature, previous surface solar radiation,
and previous surface pressure.

Table 2. Pearson correlation coefficient ρp of meteorological indicators with respect to the ARPA
Lombardia atmospheric NO2 measurements.

Meteorological Variable Pearson Correlation (ρp)

Sentinel-5P NO2 0.83

Current Values 1

Temperature −0.68
Surface solar radiation −0.63

Surface thermal radiation 0.14
Surface pressure 0.31

Total precipitation −0.05
Wind direction −0.020

Wind speed 0.20

Prior Values 2

Temperature 0.70
Surface solar radiation −0.65

Surface thermal radiation 0.19
Surface pressure 0.31

Total precipitation −0.12
Wind direction 0.18

Wind speed −0.19
1 Current values refer to those measured during the satellite passage time 3 h period. 2 Prior valures refer to those
measured during the 21 h period prior to the passage of the satellite.

As it has been found in other works [14,42], Sentinel-5P has the strongest correlation
(ρp > 0.8) with NO2 ground-level measurements among the independent variables (Table 2).
For this reason, as an alternative to using meteorological variables, we trained the models
only using Sentinel-5P and ARPA NO2 data and compared them with the results obtained
by integrating the ERA5 meteorological model. The results of this comparison will be
explained in detail later in this section. Regarding the correlation results, these show
that for most of the meteorological indicators, the 21 h period has an equal or stronger
correlation than that of the satellite passage time (from 12:00 h to 15:00 h UTC+1). This has
two possible explanations. The first is that the 21 h period is the mean of a larger set of data,
reducing possible bias that could be present in the satellite passage time 3 h period. Also,
this correlation trend could indicate that the physico-chemical behaviour of ground-level
NO2 receives a larger influence from the meteorological conditions that took place before
the satellite measured the NO2 tropospheric column. Opposite to what we expected, wind
direction seems to have a weak correlation with respect to ground NO2, meaning that the
dynamics of atmospheric pollutants cannot be simply explained by wind transportation.
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As stated in Section 2.1, we split the data by using two techniques. On the one hand,
we divided the dataset into training and testing chronologically. This means that instead
of randomly extracting data samples to build the testing dataset, we used the last 20% of
the data period (from 7 March 2022 until 27 September 2022) as the testing time frame.
On the other hand, we split the data randomly, by assigning 20% of the data as part
of the testing and the remaining 80% as the training. We used both methods to have a
comparison point from previous works [15], where data was split chronologically, but
we also extracted randomly to compare if there is an improvement in the results. Table 3
shows the general statistics of the training, testing, and complete dataset. When comparing
the statistics of training against testing, we see that for the chronological data splitting,
the strongest differences are the mean and the standard deviation. The reason for this is
that the testing period covers only the spring and summer seasons. Historically, these
periods are known to have lower NO2 concentrations and less variability, which is caused
primarily because, during the winter season, heating systems are running [43]. To ensure
that the chronological data extraction could be used, we compared the density distribution
of the training and testing data. First, we used as testing period from 7 March 2022 until 28
September 2022 NO2 and obtained their density distributions. Figure 6a, shows that the
relationship between both training and testing periods in this case is linear, meaning that
training and testing distributions are equal. Given that the data which is present in the
quantiles is different, we decided to also compare the period from 7 March 2021 until 28
September 2021 against the same dates of 2022 (Figure 6b). The relationship is still linear
and the data present in the quantiles is closer to each other. This allowed us to use the
chronological training–testing splitting technique as part of our study.

(a) (b)

Figure 6. Quantile–Quantile Plots comparing data distribution of training period against testing
period. The blue dots correspond to one quantile of the first distribution against the same quantile of
the second distribution. The red line is used as a reference to represent an ideal linear relationship
between the distributions. The image on the (a) compares the totality of the training against the
testing period using chronological data splitting. The image on the (b) compares the period from 7
March 2021 until 28 September 2021 against the same dates of 2022.

In addition to the original time period (1 January 2019 until 28 September 2022), which
considers only the Summer season, we performed testing for the period from 27 September
2022, to 25 April 2023 (Winter period). We did this to evaluate the model in the period
of most variability (Figure 7). When comparing the results of the Winter with those of
the Summer testing period, we obtained an RMSE significantly higher and closer to the
standard deviation. To understand this deterioration in performance we compared the
density distribution using the 2023 winter as testing period. Figure 8a shows that the
quantiles of testing and training do not have a linear relationship. This indicates that their
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density distributions are not similar. To improve this, we compared it with a random
extraction of the testing data. as it can be seen from Figure 8b the training and testing
have similar distributions, resulting in a lower RMSE and confirming the performance of
the model.

Table 3. Statistics for atmospheric NO2 of the MCM measured by ARPA Lombardia network.

Whole Period Value (µg/m3)

Mean 26.95
Median 20.33

Minimum 2.75
Maximum 107.57

Standard Deviation 18.45

Training Period Chronological Splitting Random Splitting
(µg/m3) (µg/m3)

Mean 28.38 25.09
Median 21.41 19.35

Minimum 2.75 0.10
Maximum 107.57 134.17

Standard Deviation 19.45 18.29

Testing Period Chronological Splitting Random Splitting
(µg/m3) (µg/m3)

Mean 19.90 26.83
Median 17.12 19.87

Minimum 7.57 1.09
Maximum 58.54 114.24

Standard Deviation 9.06 20.30

Figure 7. Metropolitan City of Milan average NO2 air concentration measurements time-series.
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(a) (b)

Figure 8. Quantile –Quantile Plots comparing data distribution of training period against testing
period. The blue dots correspond to one quantile of the first distribution against the same quantile of
the second distribution. The red line is used as a reference to represent an ideal linear relationship
between the distributions. (a) Quantile-Quantile Plot comparing data distribution of 1 January 2019
until 13 November 2022 as the training period against 14 November 2022 until 25 April 2023 as the
testing period. (b) Quantile-Quantile Plot comparing data distribution of training vs. testing data
using random extraction.

To choose the model that better reduces the RMSE for each of the 13 ARPA locations,
we performed the training for the atmospheric NO2 ground-level estimation by using a
dataframe containing all the ARPA stations separately for each day. The RMSE for each
model was then compared to those obtained by using the daily average (at the satellite
passage period) of all the ARPA stations. As shown in the results (Table 4 column 2 and
3) the first method appears to perform better, but this preliminary testing was carried
out without selecting the station locations. We found that in this initial testing phase, the
algorithm that minimized the RMSE the most (Table 4) was the combination of MLPR and
SVR, by using the Sklearn voting mechanism and a Random Forest feature selection. This
model outperformed the rest and was chosen as the regression method to estimate the
ground-level NO2 for individual stations. Even though Krigging is close to this estimation,
it is computationally more expensive, taking three times more processing time than the best
model. Therefore, we decided to use for this work the RF feature selection + Voting (SVM +
MLPR). Given that each of the ML algorithms uses different hyperparameters, we decided
to use the Keras tuner to automate this operation. Once we found the best model for our
case study, we performed additional tuning, resulting in the hyperparameters reported in
Table A1.

Table 4. RMSE and NRMSE (%) obtained for the atmospheric average MCM NO2 ground level
estimation.

Regression Method RMSE
(Training Average MCM)

RMSE
(Training Separate Sensors)

B-spline Linear Regression 6.54 7.31
Krigging Linear Regression 5.73 8.00

Random Forest 6.28 8.22
Decision Trees Regression 8.45 13.42
Support Vector Regression 5.56 7.53

Gradient Tree Boosting 6.05 8.61
Multi-layer Perceptron

Regression 6.04 7.38

Voting (SVR + MLPR) 6.02 8.12
Stacking (SVR + MLPR) 5.97 8.06

RF feature selection + Voting
(SVR + MLPR) 5.53 7.24
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Table 5 shows the results when estimating the ground-level NO2 atmospheric concen-
tration at the Sentinel-5P passage time. The first column indicates the ARPA ground sensor
number of the estimated accuracy (RMSE and NRMSE). Ideally, we are looking for RMSE
values that are lower than the standard deviation for them to be considered relevant. The
highest NRSME is in the location of sensors 5520, 5548, and 9999. A possible explanation for
the 5520 and 5548 poor performance is that they both have the lowest standard deviation
combined with the least amount of data. Figure 9 shows that both of these have the lowest
inter-quantile range, confirming the behaviour of the model when predicting in this specific
area. Regarding station 9999, it is characterised to be a traffic station that is far away from
the MCM city center. This means that there are some uncommon events that are more
difficult to predict.

Table 5. RMSE and NRMSE (%) obtained for the atmospheric NO2 ground level estimation for each
of the sensor locations.

Chronological Extraction Random Extraction
Sensor ID Measure Current Model Only Satellite Current Model Only Satellite

5504 NRMSE (%) 81.46 82.52 59.90 69.41
RMSE (µg/m3) 9.68 9.80 13.83 16.02

5507 NRMSE (%) 64.38 61.55 46.00 61.00
RMSE (µg/m3) 6.89 6.59 11.10 14.72

5517 NRMSE (%) 92.56 114.15 50.52 64.44
RMSE (µg/m3) 6.77 8.35 10.56 13.48

5520 NRMSE (%) 288.44 285.14 75.02 73.49
RMSE (µg/m3) 8.86 8.76 9.28 9.09

5531 NRMSE (%) 77.84 93.04 52.42 61.11
RMSE (µg/m3) 6.04 7.22 10.06 11.73

5534 NRMSE (%) 92.63 86.52 52.51 53.43
RMSE (µg/m3) 6.17 5.76 9.62 9.79

5547 NRMSE (%) 68.46 73.37 45.92 61.01
RMSE (µg/m3) 6.87 7.37 11.14 14.80

5548 NRMSE (%) 235.02 204.44 63.68 62.82
RMSE (µg/m3) 4.57 3.98 7.11 7.02

5549 NRMSE (%) 86.40 95.93 50.97 62.41
RMSE (µg/m3) 4.17 4.63 7.31 8.95

5554 NRMSE (%) 196.28 194.27 46.36 63.46
RMSE (µg/m3) 7.03 6.96 8.17 11.19

5609 NRMSE (%) 95.03 94.21 57.35 67.02
RMSE (µg/m3) 6.73 6.68 8.62 10.07

9999 NRMSE (%) 125.59 127.32 79.31 84.08
RMSE (µg/m3) 8.77 8.89 11.98 12.70

10279 NRMSE (%) 76.15 72.91 47.01 55.65
RMSE (µg/m3) 7.46 7.14 10.35 12.26



Remote Sens. 2023, 15, 5400 16 of 22

(a)

(b)

Figure 9. Box-plots of the testing datasets. (a) Boxplots for the ARPA NO2 testing data obtained
by chronological data splitting. (b) Boxplots for the ARPA NO2 testing data obtained by random
data splitting.

Atmospheric ground-level NO2 has been similarly estimated in other works. An
example is Grzybowski et al.’s research [14], which considered data yearly averages for
the country of Poland. The second example is the work developed by Chi et al. [44]. Here,
NO2 was estimated at a daily time resolution and a spatial resolution of 0.125° over the
whole country of China. An interesting approach developed by this was the subdivision of
China into six different regions, which were then used as an input for the algorithm. This
work differentiates from those of [14,44] because we estimate atmospheric NO2 ground
concentrations at single-point locations. This poses a different challenge regarding spatial
resolution, variables, and selection of the ML algorithm. In the results from these and other
studies, we observe an average R2 of 0.5 [45,46], but are not fully comparable with our
work, due to spatiotemporal resolution, location, and dataset differences from our study.
In this work, for 13 locations inside the MCM, the daily ground-level NO2 estimations
(from 12:00 h to 15:00 h UTC+1) had an average R2 of 0.76. Results vary depending on the
sensor due to the standard deviations and number of data available (Table 6). This can
be interpreted as a result that indicates a strong relationship of our model with respect to
the ground truth. This can also be observed in Table 7, where the correlation coefficients
indicate a strong relationship between our results and the direct NO2 measurements.
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Table 6. Standard deviations and test data size (in days) for each sensor location using random
splitting.

Sensor ID SD Chronological Extraction SD Random Extraction Test Data Size (Days)

5504 11.88 23.09 160
5507 10.71 24.13 161
5517 7.32 20.91 156
5520 3.07 12.37 67
5531 7.76 19.20 164
5534 6.66 18.32 161
5547 10.04 24.26 157
5548 1.94 11.17 69
5549 4.83 14.35 69
5554 3.58 17.63 70
5609 7.09 15.03 164
9999 6.98 15.11 147
10279 9.80 22.03 150

Table 7. Pearson Correlation Coefficient (ρp) and R2 obtained for the atmospheric NO2 ground level
estimation for each of the sensor locations.

Sensor ID Pearson Correlation (ρp) R2

5504 0.83 0.70
5507 0.90 0.81
5517 0.86 0.74
5520 0.89 0.80
5531 0.86 0.74
5534 0.91 0.83
5547 0.89 0.80
5548 0.85 0.73
5549 0.86 0.75
5554 0.89 0.80
5609 0.86 0.75
9999 0.74 0.55

10279 0.90 0.81

Mean 0.87 0.76

Figure 10 shows the plots for the atmospheric NO2 ground-level estimation for the
selected sensors from 12:00 h to 15:00 h UTC+1. In orange, we can observe the estimations
obtained from the algorithm, and in blue the ground truth. With these plots, we can visually
inspect the output from the estimation model to determine that they are close to the ground
truth. As a result of the results presented in this section, it can be determined that the data
processing pipeline and its estimations are close enough to the ground-level measurements
from the ARPA Lombardia network. This model can be confidently used in this region
as an alternative to direct atmospheric NO2 ground-level measurements. The results and
methodology presented in this work can be taken as a baseline for other regions of the
world, especially those located in LMICs. Future work will include data from other urban
areas that can contribute to better monitoring of atmospheric pollution.
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Figure 10. Atmospheric NO2 ground-level estimation for the selected sensors from 12:00 h to 15:00 h
UTC+1.
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4. Conclusions

The goal of this research was to train and test Machine Learning models to estimate
ground-level nitrogen dioxide (NO2) concentrations at single-point locations using Sentinel-
5P satellite data and meteorological variables. The models were trained and evaluated
on a dataset with Sentinel-5P and ERA5 reanalysis data as input and as output, NO2
measurements from 13 ARPA ground stations in the Metropolitan City of Milan, Italy.
Although previous studies performed training/testing chronological splitting, this study
achieved better results by using random data splitting. This was also found to be more
appropriate because the density distribution and statistics of the testing group are closer
to the training compared to chronological data splitting. Among the combinations of ML
and linear regression reported in Table 4, the model that better reduced the RMSE was a
voting combination of SVR and MLPR with RF feature selection. The model achieved a
good performance, with an average NRMSE of 55.92% and R2 of 0.76 for daily ground-level
NO2 estimations (from 12:00 h to 15:00 h UTC+1) in the MCM. Although this is higher than
the average R2 of 0.5 reported in other studies, it must be highlighted that we estimated
ground-level NO2 at different spatial and temporal resolutions.

The model was also able to capture the variability of NO2 concentrations over time, as
shown in Figure 10. The model’s predictions are close to the ground truth measurements,
indicating that it can be reliably used to estimate ground-level NO2 concentrations at single
point locations.

The results of this study demonstrate that the proposed Machine Learning model is a
promising tool for estimating ground-level NO2 concentrations using Sentinel-5P satellite
data and ERA5 reanalysis meteorological variables. The model can be used to monitor air
quality and to support public health and environmental management, especially in regions
where direct ground-level NO2 measurements are not available. By using globally available
data sources, future work will propose and test a model that can be used in most parts of
the world, emphasizing LMICs’ atmospheric NO2 ground-level concentration estimation.
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The following abbreviations are used in this manuscript:

AQG Air Quality Guidelines
ARPA Agenzia Regionale per la Protezione dell’Ambiente:

Regional Agency for Environmental Protection
API Application Programming Interface
C3S Copernicus Climate Change Service
COVID-19 Coronavirus Infectious Disease 2019
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DEM Digital elevation model
DIAS Data and Information Access Services
DIAS Data and Information Access Services
DTR Decision Trees Regression
ECMWF European Centre for Medium-Range Weather Forecasts
EEA European Environmnet Agency
ERA5 European ReAnalysis 5
ESA European Space Agency
EU European Union
GTB Gradient Tree Boosting)
IFS Integrated Forecasting System
JRA-55 Japanese 55-year Reanalysis
LEO Low Earth Orbit
LMICs Low- Medium-Income Countries
MCM Metropolitan City of Milan
ML Machine Learning
MLPR Multi-layer Perceptron Regressor
NASA National Aeronautics and Space Administration
NGA National Geospatial-Intelligence Agency
NLR Netherlands Aerospace Centre
NO2 Nitrogen dioxide
NRMSE Normalised Root Mean Squared Error
NSO Netherlands Space Office
OMI Ozone Measurement Instrument
PRIN Project of National Interest
RF Random Forest
RMSE Root Mean Squared Error
SDGs Sustainable Development Goals
SRTM Shuttle Radar Topography Mission
SVR Support Vector Regression
TROPOMI TROPOspherical Measurement Instrument
TVCD Tropospheric Vertical Column Density
USGS United States Geological Survey
UN United Nations
UK United Kingdom
UTC Coordinated Universal Time
UV Ultra Violet
WHO World Health Organization

Appendix A

Table A1. Hyperparameters for the ML models that most reduced the RMSE for MCM case study.
For the hyperparameters that are not listed, we used the default values.

Model Hyperparameters

SVR C = 0.7
Epsilon = 0.015

MLPR

Hidden layer sizes = 8000
Learning rate = Constant
Learning rate init = 0.001

Max iter = 1000
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