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Abstract: Atmospheric Phase Screen (APS) is a major noise that suppresses the accuracy of InSAR
deformation time series products. Several correction methods have been developed to perform
APS reduction in the InSAR analysis, in which an algorithm called Common Scene Stacking (CSS)
method draws wide attention in the community as the method was supposed to effectively separate
atmospheric contributions without any external data. CSS was initially proposed for solving linearly
interseismic deformation. Whether CSS can be applied in nonlinear deformation cases remains
unsolved. In this study, we first conduct a series of data simulations including variable elastic
deformation components and also propose an iterative strategy to address the inherent weak edge
constraint issues in CSS under different deformation conditions. The results show that signal-to-noise
ratio (SNR) is a key parameter affecting the performance of CSS in APS separation. For example,
the recovery rate of deformation can generally be greater than 80% from datasets with SNR greater
than 10 dB. Our results imply that CSS can favor further improvement of InSAR measurement
accuracy. The proposed method in this study was applied to assessing deformation history across the
2020 Mw 5.7 Dingjie earthquake, in which logarithmic postseismic deformation history and coseismic
contribution can be successfully retrieved once.

Keywords: Interferometric Synthetic Aperture Radar (InSAR); atmospheric correction; Common Scene
Stacking (CSS); nonlinear deformation; InSAR time-series

1. Introduction

Interferometric Synthetic Aperture Radar (InSAR) has become a widely-used tool
for monitoring surface deformation at centimeter to sub-centimeter levels in multiple
earth sciences fields such as urban subsidence, landslides, volcanoes, earthquakes, and
climate change related surface processes [1–8]. With the continuous accumulation of
SAR data, particularly in a short revisit interval (≤12 days) like the Sentinel-1A/B
SAR constellation [9], InSAR becomes increasingly practical, particularly in the as-
sessment of potential geohazard risks. However, it is still challenging for InSAR to
measure small deformations due to significant noise or errors propagated from the
path of SAR signal travel [10,11], which can seriously undermine the accuracy of InSAR
deformation products.

Atmospheric perturbations are among the primary noise sources in InSAR. The propa-
gation of SAR signals through the ionosphere and troposphere can bring path information
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into the SAR signals, and the estimation of this source is commonly known as Atmo-
spheric Phase Screen (APS). Once the atmospheric conditions at two SAR acquisitions
vary, atmospheric-related components will affect the resulting interferometric phase [12,13].
In comparison to tropospheric perturbations, ionospheric effects are more sensitive to
long-wavelength SAR data (e.g., L-band SAR data). Generally, the ionospheric errors are
sometimes neglected in mid-latitude regions for C-band interferograms [14]. Tropospheric
phase delay is the major noise source for most InSAR applications. When the relative
humidity of the troposphere changes by up to 20%, the atmospheric contributions in C-
band interferograms may reach up to tens of centimeters [15]. Obviously, the magnitude
of atmospheric noise could have been much larger than the target signals in numerous
InSAR measurement scenarios [16]. Therefore, the effective reduction of atmospheric noise
in InSAR applications is a crucial step.

Regarding the separate mechanisms of the tropospheric InSAR noise, previous effec-
tive atmospheric correction methods can be roughly grouped into two types [17–19]. One
is based on external data to estimate the stratified and turbulent components, while the
other is empirical and relies on the interferograms themselves to suppress the random-
ness in time due to tropospheric turbulence. The former can depend on the correlation
between local elevation and interferometric phase [20,21] or utilize various weather data
directly to model phase delays [22–27]. For example, Chaabane et al. [21] built up a linear
model with elevation to correct interferograms for APS contributions at a global scale and
showed a 54% reduction in the average uncertainty of the stacked deformation maps over
Greece. In addition, the exact SAR signal delay from the troposphere can be modeled with
atmospheric conditions provided by Global Navigation Satellite Systems (GNSS) [22], the
Medium Resolution Imaging Spectrometer (MERIS) [23], the Moderate Resolution Imaging
Spectroradiometer (MODIS) [24], and numerical weather models such as the European
Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis v5 (ERA5) [27]. As a
typical application, the Generic Atmospheric Correction Online Service (GACOS) relies
on numerical atmospheric reanalysis datasets and regularly provides APS products glob-
ally. Their results showed consistent and even better performance with/than the global
average GPS data and MODIS data [25,26]. However, based on previous studies, corrective
effects are found to be limited to about 50% due to the challenge of modeling the turbulent
tropospheric APS using external atmospheric or DEM datasets.

Several empirical algorithms have been proposed based on the tempo-spatial
characteristics of the atmosphere itself, which typically assume a Gaussian distribution
of atmospheric delay phases, including the stacking method [28,29], Persistent Scatterer
(PS) [8,30], Small Baseline Subset (SBAS) [31–33], and the wavelet multiscale analysis
method [34]. Evidently, this assumption may not be true in some cases. The strength
of filtering is mainly based on the users’ arbitrary choices. Therefore, it is hard to
assess the performance of the APS reduction without additional observation, such as
GNSS data.

The Common Scene Stacking (CSS) method is an algorithm to estimate APS com-
ponents without external data requirements, initially proposed by Tymofyeyeva and
Fialko [35]. The algorithm is fully based on the propagation characteristics of atmo-
spheric components in interferograms sharing a common SAR acquisition with a linear
deformation trend assumption. Tymofyeyeva and Fialko [35] first tested the algorithm
using synthetic data and showed that 85–95% of the atmospheric signal could be sepa-
rated. Tymofyeyeva et al. [36] further used the CSS method for interferograms covering
the San Jacinto Fault (SJF) region with a APS reduction rate of about 67%. Xu et al. [37,38]
applied the method to subsidence rate calculations at the Cerro Prieto Geothermal Field
(CPGF), in which they revealed that the CSS approach could also seize phase disconti-
nuities across adjacent bursts due to misalignment for Sentinel-1 interferometry. The
potential of the CSS method is being recognized and ingested into time series analy-
sis [39–41]. In practice, nonlinear deformation (e.g., a sudden surface change due to an
earthquake or landslide) processes are common on Earth. Whether CSS can be applied
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to handle more complex deformation processes with the fast growth of SAR acquisitions
remains unanswered.

Theoretically, CSS estimates the APS component of a given SAR acquisition with a
pair of interferograms involved in the scene as primary and secondary images, respectively.
Then, those SAR data at the edges of the SAR series inherently cannot have enough
constraints for their APS component estimation. How the APS components of those edge
SAR acquisitions gradually propagate into deformation time series is not well understood.
Regarding the increasing attention on CSS, an efficient way to enhance APS estimation for
edge acquisitions is also highly demanded.

The aim of our study is to examine the performance of CSS in different deformation
processes, e.g., inter-, co-, and/or postseismic deformation below a certain atmospheric
level, and propose an iterative method to refine APS components of edge scenes in time
series analysis. Finally, we apply our method to retrieve the deformation history of the
2020 Mw 5.7 Dingjie earthquake.

2. Methodology
2.1. Common Scene Stacking

The APS of an interferogram is the result of primary and secondary SAR images
bringing the different atmospheric path delays into the interferometric phase. As shown in
Figure 1, the green star indicates common SAR data that are used with other SARs (blue
dots) to form interferograms. For example, three consequence SAR data, i, i− 1, and i + 1
(Figure 1), can form two interferometric phase pairs, ∆φi−1,i and ∆φi,i+1, at any pixel. [35]
simplified the two interferometric phases with APS (αi−1, αi and αi+1) and linear trend
deformation rate in two parts. Therefore, a subtraction of ∆φi−1,i and ∆φi,i+1 can directly
remove the deformation contribution and APS component αi of date i and can be calculated
by Equation (1) (below):

αi =
∆φi−1,i−∆φi,i+1

2 + (αi−1+αi+1)
2 + ε (1)

where αi (i > 1) is the atmospheric delay phase of the shared date, ∆φ is interferometric
phase, and ε represents noise.
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Figure 1. Interferogram network used in the CSS APS estimation. Blue dots represent the date of
SAR acquisition, green pentagrams represent the common collection date, red dots represent the
collection time interval, and the blue lines represent the interferogram pairs that are involved in CSS
estimation, while the yellow ones are not.

By stacking all N interferogram pairs, the APS αi at date i is enhanced by 2 N times,
while the other APS components are further weakened. When N is large enough in the
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limit, it can preliminarily obtain the atmospheric phase αi without needing to perform
inversion as shown in Equation (2) [35]:

αi = lim
N→∞

1
2N ∑N

j=1 ∆φi(i−j) − ∆φ(i+j)i = lim
N→∞

1
2N ∑N−1

j=0 (N − j)
[
∆φ(i−j)(i−j−1) − ∆φ(i+j+1)(i+j)

]
(2)

The core step of the CSS method is to calculate the APS of individual SAR acquisitions
in order based on the Atmospheric Noise Coefficient (ANC) (Equation (3)) during the
iterative process, which means that the APS component with maximum APS effects should
be calculated first and removed as well before estimating the APS for next acquisition.

ANCi = (10.0)(Rmax)
−1

√√√√ 1
M

M

∑
m=1

(αi(xm)− αi)
2 (3)

where Rmax represents the RMS value of the APS with the maximum amount of noise.
Once the calculation is completed, the estimated atmospheric phases are subtracted

from the interferogram, and then nearly “APS free” interferograms can be ready for
deformation history with a simple SVD decomposition. Inherently, the edge SAR acqui-
sition in the interferogram network cannot find two interferograms to form Equation (1),
so in the early iteration, zero APS for the edge acquisitions is usually assumed [35].
Note that in later analysis, we perform traditional CSS APS separation with sbas_parallel
released in GMTSAR [37].

2.2. Improved Time Series Analysis Method for nonlinear Deformation History

Time series InSAR techniques mostly focus on the deformation characteristics in the
InSAR network to estimate deformation series, and they usually reduce noise sources in
advance with temporal and/or spatial filtering. Among these algorithms, SBAS-InSAR is
one of the most classic InSAR time series methods based on simple primary images, which
only uses interferometric pairs with a short temporal baseline. The method organizes the
small baseline differential interferograms as a linear model [31–33]:

Aφ = δφ (4)

In practice, the inversion of the InSAR phase for deformation (Equation (4)) is always
an underdetermined issue in the presence of multiple interferogram subsets. This is
why a deformation model (e.g., a linear or high-order deformation model) is required,
as proposed by Berardino et al. [31]. In addition, a smoothing operator is sometimes
suggested to be added to A to reduce the rank deficiency [32]. To mitigate atmospheric
effects in Equation (4), spatial and temporal filtering have been commonly used in time
series applications [33].

Compared to the approaches above, CSS can help estimate APS for each SAR ac-
quisition independently. The limited precision of APS at the edge of SAR acquisitions
should also be considered amid the conditions where the signal of interest appears at the
start or end of the time series (e.g., postseismic deformation). Here, we further extend
coefficient matrix A by involving APS components [42], in which a sudden deformation
can also be considered. Then, in a case with N acquisitions and M interferograms, the
signal contributions of the interferograms can be re-expressed as follows:

G m = d (5)

where G is the extended A, an (M + N − 2) × (N + 2) coefficient matrix, d is an (M + N − 2)
× 1 matrix with M InSAR observations and N − 2 approximate APS solutions, and m are
the components to be solved. Equation (5) can then be expanded in detail as follows:
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where in G, ∆ti is the time interval (in units of days) of the interferogram ∆φi and 1 and
−1 appear at the index of the primary and secondary dates [31], respectively, directly
depending on the set of interference phases ∆φi. The last column in G is related to the date
of an earthquake. v is the rate of linear deformation; Cdis means coseismic displacement;
α′APSi is approximate solution of ith APS component estimated by the CSS method; and
αAPSi is the re-estimated ith APS value. Obviously, the APS of edge SAR images can be
further refined.

From Equation (6), we can further estimate potential co- and/or postseismic contribu-
tions. Their joint contributions can be modeled with the equation below [43]:

φ(t) = H(t− t0)

[
C + Kln

(
1 +

t
τ

)]
+ Vt + b (7)

where φ(t) is the surface deformation at time t; H(*) is a Heaviside step function, t0 is
the date of a seismic event; C is the coseismic displacement; K is a constant; and τ is the
decay coefficient (in units of days), representing how fast the postseismic transient decays
with time. These two parameters are related to the deformation trend of the logarithmic
function in postseismic; V is interseismic linear deformation rate, and b is a constant shift
in observations. These five parameters of any station can be obtained with the nonlinear
least squares method, for example, with the curve_fit function provided in scipy module
of Python.

We first use the traditional CSS method to obtain an initial estimate of APS products.
We then refine the APS contributions in an integrated solver (Equation (6)) using an iterative
strategy. Then, the final APS is removed from the original InSAR network to obtain the
updated InSAR dataset, that is expected to be nearly “APS free”. Finally, we obtain the
final LOS direction deformation sequence results through a simple SVD inversion.

Figure 2 illustrates the procedure of InSAR deformation history inversion with an
iterative method, in which a refinement of APS components at edge SAR images has
been considered. We name the procedure iCSS in the later section to be different from
the traditional CSS method. As GACOS or ERA5 APS correction is SAR data based, it is
confirmed that the even inaccurate APS components applied to the entire InSAR network
would not destroy phase closures. If APS obtained through step 1 (Figure 2) is good enough
by luck, the second term in Equation (1) should then be smaller in later analysis, implying
that GACOS and ERA5 can increase the chance of successful application.
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Figure 2. The flowchart of the InSAR time series analysis proposed in this study.

2.3. Numerical Experiments
2.3.1. Forward Modeling for the Earthquake Cycle

To examine the performance and validation of the proposed time series in this study,
we construct a theoretical deformation time series that can consider the whole deformation
cycle during an earthquake cycle. This includes a linear interseismic slip rate, a sudden
change induced by the earthquake, and a logarithmic postseismic process (Figure 3).
Their relative source depths have also been considered in the implementation of coding.
A simple elastic half space dislocation, the Okada model [44], is adapted for all three
deformation phases.

To speed up the analysis, we have developed a Python script that allows a few
parameters to automatically create three-dimensional (3D) deformation for a region and
form 1D LOS InSAR data based on the given time and SAR geometries. In simulation,
spatially correlated atmospheric contributions are considered [45,46], and different noise
levels can be applied. Then iCSS (Figure 2) is performed to separate the deformation history
and APS components of the simulated dataset, respectively. Note that we also apply iCSS
to the 2020 Mw5.7 southern Tibet earthquake. So, all the synthetic data in the following
session are consistent with the true SAR data used for the 2020 earthquake in both time
and space.
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2.3.2. Performance Evaluation of the Inversion Results

In the simulation, we export the deformation and APS (random noise) components,
respectively, as truth values for comparison. We estimate APS and deformation starting
from InSAR synthetic datasets. We use the root mean square error (RMSE) of residual APS
as an indicator to evaluate the performance of iCSS for APS. We also adopt the recovery
rate of deformation and APS components, respectively, as indicators of correction efficiency,
which is defined as follows:

recovery rate =

(
1−

∣∣Valinput −Valoutput
∣∣∣∣Valinput

∣∣
)
× 100% (8)

where Valinput indicates the theoretical value of the input, and Valoutput is obtained from
the inversion based on iCSS.

In addition, we analyze the relationship between atmospheric noise level and recovery
rate, as well as the relationship between the signal-to-noise ratio (SNR) of input data and
recovery rate at different levels of atmospheric random noise. SNR is defined in dB as
follows [47]:

SNR = 10× log10

(Psignal

Pnoise

)
(9)

where Psignal indicates power of the deformed signal, and Pnoise indicates the power of APS
noise. Here, power is calculated by averaging the sum of the squares of the signal.

2.3.3. D-InSAR Processing

In this study, we perform D-InSAR processing of Sentinel-1 TOPS-SAR data using an
InSAR automated processing environment, pSAR [48,49], in which the kernel is the open-
source InSAR processing system, the Generic Mapping Tools (GMTSAR6.2) [50]. We use
the Precise Orbital (PREORB) data and external 30-m resolution Shuttle Radar Topography
Mission (SRTM) DEM data [51] in the InSAR processing for coregistration and topography
correction. In the processing, the date we have chosen for the master image is 28 March 2020.
We set a temporal baseline threshold of 120 days to conduct interferometric pairs to ensure
an adequate number of interferograms while maintaining good coherence, and those pairs
with SAR acquisitions in similar seasons, but in different years have also been processed. All
interferograms are multilooked with look numbers 8 and 2 in range and azimuth directions,
respectively, and filtered using the internal smoothing strategy of GMTSAR, including
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Gaussian and Goldstein smoothing methods [52], to reduce noise level. Then we unwrap
the phases based on the statistical-cost, network-flow algorithm (SNAPHU) [53] with a
coherence threshold of 0.15, taking into account the excellent interferometric coherence in
our study area. Finally, the interferograms are all geocoded to the WGS84 projection with
longitude and latitude coordinates for later analysis.

3. Results
3.1. Validation with a Synthetic Dataset

We first simulate InSAR surface time series, including deformation and random APS
noise, with various deformation mechanisms (Supplementary Materials Figures S1, S2,
and Figure 4). To examine the performance of CSS, we generate multiple APS datasets
with increasing noise levels for each deformation case. Figure 4 is based on a complex
deformation model. In the input data period from 2016 to 2022, including 203 SAR ac-
quisitions and 4270 interferograms, an earthquake is supposed to occur on 20 March of
2020, which has four clear coseismic deformation lobes with a maximum deformation of
~2 cm. A logarithmic postseismic deformation is followed immediately. For comparison, a
traditional SBAS is also performed (referred to as SBAS2003) [32], in which the deformation
results of iCSS are further applied to obtain APS components from the original dataset.
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Figure 4. (a) An accumulated simulated interferogram of 9 February 2020–6 March 2022 with 20 mm
of random noise added that includes co- and 2-year-long postseismic deformation, where the dots
(white) are reference stations for time series analysis. (b) Deformation sequences obtained from
inversion at the three stations, respectively.

Three stations (Figure 4) are selected for time series analysis. The results of No-1 and
No-2 reveal clear and distinct cos- and postseismic trends, demonstrating that the CSS
method is also valid for nonlinear deformation, including co- and postseismic deformation.
At station No-3, it indicates that both conventional CSS and SBAS2003 can effectively
suppress APS random noise, but the effectiveness of these correction methods is limited.
In particular, the results of the deformation series at the far field point demonstrate the
weak edge constraint of the CSS method. By using iCSS, the deformation sequences are
better smoothed.

Through numerical tests with different noise levels, we find that the RMSE of APS
estimated by iCSS remains low for all testing datasets with different deformation mecha-
nisms (Table 1), which shows the effectiveness and availability of our algorithm. However,
it is also clear that the deformation recovery rates decrease with increasing noise levels
(Table 1), in which coseismic components can only be recovered (39.6%) at a noise level
of 50 mm. The linear deformation inversion shows similar patterns, implying that iCSS is
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good for APS estimation, particularly for the trends of time series. Once the deformation
signal is weak (low SNR), the retrieved APS may still have high coherence with the input
APS, but the deformation recovery rate can be very low.

Table 1. Performance of the iCSS method in different deformation experiments with variable
APS magnitudes.

Station Index Noise Level
(mm)

Deformation
Model #

APS RMSE
(mm)

Recovery Rate
(Cos.) (%)

1 10 mm
Linear 0.91 /
Cos. 0.44 95.8

Cos. + Post. 4.20 50.4

2 20 mm
Linear 0.38 /
Cos. 1.39 95.1

Cos. + Post. 2.82 74.4

3 50 mm
Linear 4.07 /
Cos. 1.36 39.6

Cos. + Post. 5.23 0
Note: #: Three deformation mechanisms are considered in the simulation, in which “Linear” represents the
interseismic process, “Cos.” means a sudden deformation due to an earthquake, and “Post.” means a logarithmic
postseismic deformation process.

Figure 5 shows the relationship between random noise and recovery rate, SNR, and
recovery rate, respectively. When random noise is at a low level (<4 cm), the recovery rate
of deformation is up to more than 90%. Even in the case of low SNR, the recovery rate of
our method can reach more than 70%.

Remote Sens. 2023, 15, x FOR PEER REVIEW 9 of 20 
 

 

signal is weak (low SNR), the retrieved APS may still have high coherence with the input 
APS, but the deformation recovery rate can be very low. 

Table 1. Performance of the iCSS method in different deformation experiments with variable APS 
magnitudes. 

Station 
Index 

Noise Level 
(mm) 

Deformation 
Model # APS RMSE (mm) Recovery Rate (Cos.) (%) 

1 10 mm 
Linear 0.91 / 
Cos. 0.44 95.8 

Cos. + Post. 4.20 50.4 

2 20 mm 
Linear 0.38 / 
Cos. 1.39 95.1 

Cos. + Post. 2.82 74.4 

3 50 mm 
Linear 4.07 / 
Cos. 1.36 39.6 

Cos.+Post. 5.23 0 
Note: #: Three deformation mechanisms are considered in the simulation, in which “Linear” repre-
sents the interseismic process, “Cos.” means a sudden deformation due to an earthquake, and 
“Post.” means a logarithmic postseismic deformation process. 

Figure 5 shows the relationship between random noise and recovery rate, SNR, and 
recovery rate, respectively. When random noise is at a low level (<4cm), the recovery rate 
of deformation is up to more than 90%. Even in the case of low SNR, the recovery rate of 
our method can reach more than 70%. 

 
Figure 5. (a) Relationship between APS errors and recovery rate. The blue line represents the recov-
ery rate of deformation velocity; the yellow line represents the APS recovery rate. (b) Relationship 
between SNR and recovery rate of deformation velocity. 

To further test the feasibility of our proposed method, we simulate a shallow creep-
slip process on the fault using synthetic data, which has the addition of 20 mm of random 
noise. The results along profile AA’ retrieved using iCSS (Figure 6a) show that an average 
RMSE of residual average deformation rate at all reference points is 1.77 mm/yr and the 
absolute difference between iCSS and input deformation rates can be seen to be far smaller 
than the error bars given in the simulation, demonstrating the high correction efficiency 
of iCSS. 

Figure 5. (a) Relationship between APS errors and recovery rate. The blue line represents the recovery
rate of deformation velocity; the yellow line represents the APS recovery rate. (b) Relationship
between SNR and recovery rate of deformation velocity.

To further test the feasibility of our proposed method, we simulate a shallow creep-slip
process on the fault using synthetic data, which has the addition of 20 mm of random noise.
The results along profile AA’ retrieved using iCSS (Figure 6a) show that an average RMSE
of residual average deformation rate at all reference points is 1.77 mm/yr and the absolute
difference between iCSS and input deformation rates can be seen to be far smaller than the
error bars given in the simulation, demonstrating the high correction efficiency of iCSS.
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3.2. A Case Study on the 2020 Mw 5.7 Dingjie Earthquake

To map surface deformation history following the 20 March 2020 Mw 5.7 earth-
quake [54], we use the D-InSAR processing flow described in Section 2.3.3 to process
Sentinel-1 TOPS SAR data in descending Track 121, including 186 acquisitions from
13 March 2016 to 25 November 2022. One swath of T121 fully covers the earthquake
area, which is analyzed in the study (Figure 7). Finally, a total of 3578 interferograms are
obtained, of which 1029 postseismic interferograms are included (Figure 8).

We apply iCSS for estimating surface deformation history. As iCSS is designed based
on individual pixels and the green functions of every pixel need to be calculated separately,
this makes the package time consuming. To reduce the processing time, we perform
quadtree down-sampling [55] of the deformation field to extract limited points for time
series estimation. Through the down-sampling processes, we reduce millions of points to
~2400 pixels. In some cases, the strong atmospheric signals may also lead to additional
sampling in practice. So a model resolution based (Rb) sampling [46] with a fault geometry
can also be considered instead to guarantee all sampled points are concentrated around the
fault trace.

Before down-sampling, we use ERA5 model-based APS prediction to reduce APS
effects in the original InSAR datasets [27,39]. For residual long-wavelength signals (mainly
orbital errors) in the interferograms, we apply a three-parameter linear best-fitting plane
for reducing those parts after removing the epicentral area. As we mainly care about co-
and postseismic deformation, which are thought to be concentrated in the vicinity of the
earthquake fault, there is no harm in removing the long-wavelet signals ahead.
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Figure 7. (a) Tectonic background of the study area. The blue rectangle is the area covered by
Sentinel-1A descending track T121. (b) A coseismic interferogram of 3 March 2018–27 February 2021.
White stations are selected for deformation time series analysis in later sections, in which No-1, No-2,
and No-3 are located in the areas with significant deformation from the earthquake, while No-4
and No-5 are far from the epicentral area thought to be stable in time. The black box near No-5 is
the reference area we selected for the system shift. The red box represents the subregions selected
for full-resolution inversion. (c) A postseismic interferogram with clear near-fault deformation. All
interferograms are rewrapped in a range from −3 to 3 cm, and the obvious atmospheric effects can
be seen in both interferograms.
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Figure 8. Temporal-spatial baseline plot of the processed interferometric pairs based on T121 Sentinel-
1 datasets. Green dot: SAR acquisition date corresponding to the SAR data involved in interferometric
processing; the red line indicates the interferograms consisting of SAR data acquired before the
earthquake; the blue line indicates the interferograms consisting of SAR data acquired after the event;
the grey line indicates the interferograms containing the coseismic deformation.
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As shown in Figure 7, the topography in the study area is rough, and the mean
elevation is ~4500 m. Three deformation centers can be identified directly in the coseismic
interferogram (Figure 7b), while the accumulated postseismic deformation can also be
spotted, corresponding to the maximum coseismic deformation, which is clearly less than
the regional APS level of ~2 cm.

The inversion results of Stations 2 and 3, located both in the hanging wall, with
one right above the slip center and the other a bit far to the east, respectively, reveal
clear deformation history (Figure 9). No-2 has a clear sudden subsidence of ~125 mm
and continues moving downward logarithmically with an accumulated displacement of
~30 mm in the postseismic period, while No-3 has a clear uplift trend of ~20 mm across the
mainshock, but immediately moves inversely with an accumulated subsidence of 7 mm in
the postseismic period. By contrast, No-4 is far from the epicentral area, with negligible
deformation. Relative to the original time series, the correct deformation history shows
a significant noise reduction from 20 mm to 2 mm level. This implies that the proposed
strategy in this study has the potential to retrieve complex deformation histories.
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Figure 9. Deformation history estimated with iCSS. The green lines represent deformation sequences
obtained by decomposition of raw data; the red lines represent deformation series results after CSS
correction; and the blue lines are deformation sequences using iCSS.

The results indicate that iCSS can obtain a complete deformation sequence for an
earthquake cycle. Meanwhile, the far field remains relatively stable, indicating that noise
has been effectively removed. Our proposed method surpasses traditional InSAR time
series analysis in producing such pristine deformation series; few existing InSAR time
series methods can obtain such clean deformation results.

Meanwhile, a postseismic deformation time series has also been estimated, which can
then be applied to compute a decay time τ with an internal nonlinear regression method in
Python, e.g., curve_fit. τ is thought to be related to the friction coefficient of a fault [56,57].
Supplementary Materials Figure S3b shows that the τ in the epicentral area tends to be
nearly constant, implying homogeneous fault physical properties in space. Note that the τ
estimation may have large uncertainties, particularly for low deformation areas, which is
due to non-uniqueness of nonlinear inversion.
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To further demonstrate the superiority and effectiveness of our proposed method,
we apply ERA5, GACOS, CSS, and iCSS to full-resolution interferograms for atmospheric
correction. In order to better evaluate the correction results and to speed up the inversion,
we selected only 1418 interferograms composed of 104 dates before the earthquake for a
small area far from the epicenter (the red box in Figure 7b).

Figure 10 shows the APS components estimated from the different methods for the
interferogram of 13 March 2016–27 March 2018, in which 13 March 2016 is an edge acquisi-
tion in the SAR dataset. Topographic-correlated APS can be found across the interferogram
(Figure 10a,b). The APS obtained from both ERA5 and GACOS are almost identical
(Figure 10c1–d1), while the APS components from CSS present conspicuous anomalies
(Figure 10e1). Obviously, the APS retrieved by iCSS (Figure 10f2) shows the best APS
correlation rate, with a SD of 0.221 cm for the residuals.
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Figure 10. Comparison of the results of different methods for estimating atmospheric components.
(a) Original interferogram of 13 March 2016-27 March 2018. Here, ‘Inf.’ is denoted as interferograms.
(b) DEM map of the study area with an elevation difference of more than 2000 m. (c1) Atmospheric
components are estimated based on ERA5. (d1–f1) as (c1) but for GACOS, CSS, and iCSS, respectively.
(c2–f2) are (c1–f1) corresponding corrected interferograms.
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Figure 11 shows similar trends in APS correction rates for 18 interferograms, which all
involve 13 March 2016 as the primary SAR. It is clear that iCSS can nicely handle edge issues
for all interferograms (all red bars in Figure 11). The performance of GACOS and ERA5 is
not stable. This is likely due to the low resolution of the local atmospheric products. Note
that the most right three pairs are made with seasonal data that have similar atmospheric
conditions. Their original APS components were initially low.
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4. Discussion

Edge SAR data in the SAR network are clear weakness in CSS APS estimation. However,
if the edge SAR data in the network inherently have limited APS effects, the potential issue
with the edge SAR APS issues should be gone. As shown in Figure 12, we extract the APS
component values from the ERA5 simulations at the five stations (black lines) and compare
them with the APS obtained from the CSS inversion based on the different InSAR subsets.

As shown in Figure 12, the gray lines at stations 3, 4, and 5 show generally identical
trends with ERA-5 predicted APS components, with a SD of 2.811, 2.279, and 2.603 between
them (Table 2), which is lower than any of the other tests (red and blue lines). This also
indicates that ERA5 APS models are fine for simulating APS components for use in the
2020 earthquake area in the selected period. However, variable correlations between ERA5
and CSS APSs for the 5 stations can be found, which is reasonable as the ERA5 datasets
usually show different uncertainties in space [25].

APS seasonal trends can be identified at the 5 stations (yellow lines). It is clear that the
APS components are smaller in winter (November–March) and larger in summer (June–
September), up to more than 10 mm, which is consistent with the conclusions of previous
studies [27]. Since there are weak constraints on the edge SAR APS components from the
CSS method, we can intentionally choose the SAR with a small APS component as edge
SAR data to improve the accuracy of APS estimation (e.g., SDs calculated for blue lines at
Stations 3 and 5 are smaller than red lines). Therefore, for the selection of interferogram
pairs, we need to consider the seasonal characteristics of the APS and select winter SAR
data as the edge. Especially in the case of only linear deformation, image pairs with little
atmospheric influence can be selected for interferometry.
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Table 2. Quantitative analysis of atmospheric seasonal characteristics.

Station
Index

Elevation
(m) Data Period Difference *

Month of APS
Component
Maximum

Month of APS
Component
Minimum

1 4795
March 2016–November 2022 3.026 07 03

June 2018–August 2021 2.856 09 03
January 2018–February 2021 2.876 09 03

2 5299
March 2016–November 2022 3.936 07 04

June 2018–August 2021 3.953 12 05
January 2018–February 2021 3.881 07 03

3 4730
March 2016–November 2022 2.811 07 04

June 2018–August 2021 2.996 07 03
January 2018–February 2021 2.968 07 03

4 4850
March 2016–November 2022 2.279 06 01

June 2018–August 2021 2.563 04 02
January 2018–February 2021 2.637 04 03

5 4307
March 2016–November 2022 2.603 07 04

June 2018–August 2021 2.961 07 05
January 2018–February 2021 2.642 07 05

Here, ‘*’ indicates the standard deviation of the differences between ERA- and CSS-based APS components.
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In addition, the seasonal performance of different stations is inconsistent, which may
be related to the geomorphology and elevation. The elevation of Station 2 is nearly 5300
m, which is usually related to terrain, so its seasonal characteristics are greatly affected
by temperature. While the elevations of stations 3 and 5 are low (~4700 m and ~4300
m, respectively) and have little correlation with terrain, their seasonal characteristics are
similar to the trend estimated by ERA5.

Meanwhile, as seen in the theoretical test (Figure 4) and real application (Figure 9),
a slight overestimate of coseismic deformation for the far field points can be found. This
seems inevitable in the proposed method in this study. As shown in Equation (6), the APS
and coseismic deformation will be estimated through an entire linear form at the same time,
implying that they will have a trade-off between each other. In the future, a sophisticated
weighting operation can be considered to allow those non-deformation pairs to be fitted
with top priority.

5. Conclusions

Correcting interferograms for APS components of the troposphere is an important
step in a successful InSAR application, particularly for the study of small deformation. The
traditional CSS algorithm, which assumes linear deformation and equal time baselines, has
been widely used for separating atmospheric phases based on the data itself. However,
this method suffers from weak edge constraint issues, and its applicability for non-linear
or sudden deformation problems in practical applications is uncertain. In our study, we
proposed an algorithm that can directly extract co- and postseismic deformations from
complex deformation processes. We tested the feasibility and effectiveness of the algorithm
with synthetic data and applied it to the 2020 Mw 5.7 Dingjie earthquake. Our findings
suggest that:

1. The CSS method does perform excellently for APS retrieval with abundant interfero-
grams, which has been validated with the ERA5 APS simulation for application in
southern Tibet.

2. With the iterative way proposed in this study, iCSS can also be applicable for the
estimation of cos- and/or postseismic deformation in time series analysis.

3. Our proposed method (iCSS) has effectively addressed the weak APS constraint issue
for edge SAR acquisitions in an iterative strategy in practical applications.

4. For regions showing seasonal APS distributions, we suggest intentionally choosing
SAR data with low APS effects as edge SAR data in the InSAR network.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/rs15225399/s1. Figure S1: An accumulated simulated interferogram
of 9 February 2020–6 March 2022 with 20 mm of random noise added that includes linear deformation.
Figure S2: An accumulated simulated interferogram of 9 February 2020–6 March 2022 with 20
mm of random noise added that includes coseismic deformation. Figure S3: The τ value result
from inversion.
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