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Abstract: The Global Navigation Satellite System Interferometric Reflectometry (GNSS-IR) technique
provides a new remote sensing method that shows great potential for soil moisture detection and
vegetation growth, as well as for climate research, water cycle management, and ecological environ-
ment monitoring. Considering that the land surface is always covered by vegetation, it is essential
to take into account the impacts of vegetation growth when detecting soil moisture (SM). In this
paper, based on the GNSS-IR technique, the SM was retrieved from multi-GNSS and multi-frequency
data using a machine learning model, accounting for the impact of the vegetation moisture content
(VMC). Both the signal-to-noise ratio (SNR) data that was used to retrieve SM and the multipath data
that was used to eliminate the vegetation influence were collected from a standard geodetic GNSS
station located in Nanjing, China. The normalized microwave reflectance index (NMRI) calculated by
multipath data was mapped to a normalized difference vegetation index (NDVI), which was derived
from Sentinel-2 data on the Google Earth Engine platform to estimate and eliminate the influence of
VMC. Based on the characteristic parameters of amplitude and phase extracted from detrended SNR
signals and NDVI derived from multipath data, three machine learning methods, including random
forest (RF), multiple linear regression (MLR), and multivariate adaptive regression spline (MARS),
were employed for data fusion. The results show that the vegetation effect can be well eliminated
using the NMRI method. Comparing MLR and MARS, RF is more suitable for GNSS-IR SM inversion.
Furthermore, the SM reversed from amplitude and phase fusion is better than only those from either
amplitude fusion or phase fusion. The results prove the feasibility of the proposed method based on a
multipath approach to characterize the vegetation effect, as well as the RF model to fuse multi-GNSS
and multi-frequency data to retrieve SM with vegetation error-correcting.

Keywords: GNSS-IR; signal-to-noise ratio; soil moisture; vegetation moisture content; normalized
microwave reflectance index; random forest

1. Introduction

As an indicator of the degree of surface dryness and wetness, soil moisture (SM) is one
of the key parameters in the global water cycle. It plays a critical role in agricultural pro-
duction, meteorological research, and disaster warning [1]. For the long-term monitoring
of SM, the traditional method not only has high equipment cost but also has the problems
of complicated operation, waste of manpower and material resources, low efficiency, and
limited scope of application [2]. Therefore, it is of great scientific and practical value to
study how to obtain SM with high efficiency, high precision, and over a long period. With
the development of satellite remote sensing science and technology, the Global Navigation
Satellite System Interferometric Reflectometry (GNSS-IR) technique, which is based on a
multipath effect, has the advantages of low cost, no damage to the observation object, rich
signal source, high resolution, and long-term continuous observation. It can be used for the
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inversion of near-surface environmental parameters (including SM, snow depth, vegetation
parameters, tide, water level, etc.) [3–7], and has gradually become a new method for
SM retrieval.

In recent years, researchers have made significant progress in retrieving SM using
GNSS-IR, as well as breakthroughs in the fields of establishing empirical models and select-
ing the optimum characteristic components [8–11]. Larson et al. proposed a normalized
microwave reflection index (NMRI) and found that there was a good correlation between
the NMRI and the vegetation water content [3,12,13]. In addition, many subsequent studies
have carried out relevant experiments to verify it [14,15]. Chew et al. established a database
based on a large number of simulation experiments to correct the phase of reflection signals
based on different vegetation disturbance reflection patterns, further improving the accu-
racy of SM inversion [16,17]. Small et al. validated the effects of three different algorithms
on the reduction of vegetation moisture content (VMC) in bare soil, single vegetation, and
multi-vegetation, respectively [18,19]. Li et al. used machine learning algorithms to merge
GNSS-IR, AMSR-E, and AMSR2 observations so as to study the spatiotemporal changes of
VMC [20]. Ren et al. used machine learning methods to retrieve vegetation water content
based on GNSS-IR and MODIS data fusion [21]. Zhang et al. comprehensively evaluated
the ability of the BeiDou Navigation Satellite System (BDS) to retrieve SM and VMC in
the farmland environment, verified the correlation between the normalized difference
vegetation index (NDVI) and VMC, and found that NDVI can represent the vegetation
effect in the absence of VMC data [22]. To eliminate the influence of vegetation moisture
content (VMC) on SM retrieval, Liang et al. investigated the performance of machine
learning models, such as multiple linear regression (MLR) and back propagation neural
network (BPNN) [23], in reducing the influence of VMC.

Most of the above SM inversion algorithms were applied after eliminating the influence
of VMC. In other words, the process of eliminating VMC still uses empirical models and
single satellite data. However, there are inevitable systematic deviations for different
satellites with different frequency bands. Affected by VMC, empirical models are also
different and have hardly any universality and reproducibility.

At the same time, most of these algorithms achieving high retrieval accuracy depend
on specific GNSS reference stations with specific satellites and signals. That is to say, these
models are not widely used, and even need to manually select satellites and signals for
high-quality data. In general, the current GNSS-IR SM retrieval methods are mostly limited
to the technical route retrieved from single satellite data [8,24,25]. The existing empirical or
semi-empirical models have relatively large errors and uncertainties, and most methods are
only applicable to a single experimental scenario (such as bare soil) [26]. Therefore, there is
an urgent need to develop an SM retrieval model that can automatically select high-quality
data and integrate multi-GNSS and multi-frequency characteristic parameter data with
NDVI data representing VMC to eliminate vegetation effects.

This study proposed a new GNSS-IR SM retrieval algorithm that corrected vegetation
effects while integrating multi-GNSS and multi-frequency characteristic parameter data. In
the absence of VMC observations, the NMRI is calculated using multipath signals from
GNSS observations to retrieve NDVI for correcting the influence of vegetation growth on
reflected signals, which solves the problems of low generalization and low-level automation
of existing multi-GNSS SM inversion algorithms. The method is implemented as follows:
Modeling the correlation between NDVI and NMRI, which is calculated from the GNSS
L1 carrier based on multipath data allows for retrieval of the NDVI data that represents
the vegetation effects. Then, the signal-to-noise ratio (SNR) data from different frequency
bands and different satellites are obtained by processing the satellite observation data of
GPS and BDS at the same time. The detrended SNR signal containing the surface physical
parameters is obtained by wavelet analysis method, and the amplitude and phase character-
istic parameters are extracted by Lomb–Scargle periodogram (LSP) spectrum analysis and
the least square fitting method. Finally, a machine learning model based on random forest
(RF) is established to eliminate vegetation effects. In addition, SNR characteristic parameter
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data from multi-GNSS and multi-frequency are integrated to retrieve SM and compared
with two traditional machine learning models, MLR and multivariate adaptive regression
spline (MARS), to evaluate the feasibility and accuracy of the proposed model [27].

2. Materials and Methods
2.1. GNSS-IR SM Inversion Principle

The microwave signal emitted by a GNSS satellite will inevitably produce a multipath
effect in the process of propagation. The composite signal formed by the direct satellite
signal (Sd) and the reflected satellite signal (Sr) that is reflected by the soil under the
interference effect is received by the receiver. After processing, the composite signal
data, namely SNR data, is generated. The basic principle of signal reflection is shown
in Figure 1 [14]. RHCP is a right-handed circularly polarized antenna that can receive
arbitrary polarized incoming waves, and its radiation wave can also be received by any
polarized antenna. When the polarized wave is incident on a symmetrical target (such as a
plane, sphere, etc.), the rotation direction is reversed, and the electromagnetic waves with
different rotation directions have a large value of polarization isolation.
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SNR is mainly composed of the following two parts [28]:

SNR = SNRd + dSNR (1)

where SNR is the composite signal that is formed after interference; SNRd is the SNR
trend signal, namely the direct SNR signal; and dSNR is the residual sequence of SNR
after removing the trend term, that is, the reflected SNR signal. From the point of view of
signal oscillation, the SNR sequence can also be represented by the amplitude and phase
difference of the oscillation [29]:

SNR2 = Ad
2 + Ar

2 + 2Ad Ar cos ψ (2)

where the Ad is the oscillation amplitude of the direct signal component, Ar is the oscillation
amplitude of the multipath reflection signal component, and ψ is the phase difference
between the two. During the motion of a satellite, the phase difference between the
direct signal and the reflected signal changes with the variation of the satellite’s altitude
angle θ, reflected in the enhancement and weakening of the SNR value affected by signal
interference. Due to multipathing and antenna gain, the oscillation of SNR values is more
pronounced at low altitude angles.

Due to the effective suppression of multipath signals reflected from the surface by the
measurement type GNSS receiver antenna, the amplitude of the direct signal is much greater
than that of the reflected signal, i.e., Ad >> Ar. This article decomposes and removes trend
terms through wavelet analysis to eliminate Ad + Ar (oscillation amplitude of direct signal
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component and a small amount of multipath reflection signal component) in Formula (2).
The remaining part can be approximated as a cosine model [30]:

dSNR = A cos(
4πh

λ
sin θ + ϕ) (3)

where the dSNR is the residual sequence at low altitude angles containing reflection in-
formation, A is the amplitude, h is the antenna height, e is the satellite altitude angle, and
ϕ is the relative delay phase of the reflected signal. Assuming t = sin θ, f = 2h

λ , then
Equation (3) can be simplified as a standard cosine function expression [17]:

dSNR = A cos(2π f t + ϕ) (4)

Perform LSP spectral analysis on the SNR residual sequence to obtain the oscillation
frequency f , and then use the least squares fitting method to obtain the amplitude A and
relative delay phase ϕ. Research has shown that there is a strong correlation between the
characteristic parameters (frequency, amplitude, and phase) of satellite reflection signals
and SM, which can be used for regression and inversion prediction of SM [14].

2.2. Wavelet Analysis Theory

In Formula (1), SNR contains the direct signal component and the reflected signal
component. The trend term needs to be eliminated from the SNR sequence to obtain
the dSNR residual sequence, and then the equivalent antenna height is obtained using
LSP spectrum analysis. The commonly used method to eliminate the trend term is the
second-order polynomial method. However, a large number of studies have shown that
the wavelet analysis method is superior to the second-order polynomial method [29,31–34].
Therefore, the method of wavelet analysis [29] is adopted in this paper. The principle is
as follows.

Let SNR observation G(t) be:

G(t) = [x1
0, x2

0, · · · , xt
0],

t = 1, 2, · · · , I
(5)

where t is the epoch. The algorithm of wavelet analysis is:

Aj[G(t)] = ∑
k

H(2t − k)Aj−1[G(t)] (6)

Dj[G(t)] = ∑
k

G(2t − k)Aj−1[G(t)] (7)

where Aj is the wavelet coefficient of low-frequency signal, j is the decomposition level, Dj is the
wavelet coefficient of high-frequency signal, G(t) is the original signal, and t is the epoch. Using
db4 as the wavelet basis (the wavelet basis function and the number of decomposition layers
in this paper are determined by the integration of the literature [29,31–34] and the comparison
of several commonly used wavelet basis functions. In view of its complexity, the repeated test
process is not described in this paper), the original SNR sequence is decomposed into four
layers. The original SNR signal is subtracted from the fourth layer of the low-frequency signal
to eliminate the trend term and obtain the reflected signal.

2.3. Inversion of NDVI Based on Multi-Path Effects to Characterize Vegetation Effects

The microwave signal reflected by surface vegetation contains a large amount of
VMC information [35], which significantly affects the SM inversion accuracy of GNSS-IR.
Therefore, it is necessary to consider and remove the vegetation effect when using GNSS-IR
to retrieve SM. Based on GPS pseudorange, carrier phase, frequency, and wavelength,
Larson and Small (2014) proposed the normalized microwave reflectance index (NMRI)
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and mapped it to NDVI [9,19]. The multipath error of L1 carrier (MP1) can be expressed
as [14]:

MP1 = P1 −
f1

2 + f2
2

f1
2 − f22 λ1 ϕ1 +

2 f2
2

f1
2 − f22 λ2 ϕ2 (8)

where MP1 is the multipath error of L1 carrier; P1 is the pseudorange observed by the L1
carrier; f 1 and f 2 are the frequencies of the L1 and L2 carriers, respectively; λ1 and λ2 are
the wavelengths of the L1 and L2 carriers, respectively; and ϕ1 and ϕ2 are the phases of the
observed L1 and L2 carriers, respectively [14].

Based on the epoch-varying MP1, the root mean square (RMS) of the MP1 of a single
satellite per day is calculated. Subsequently, the RMS of MP1 per day is calculated using a
weighted summation of the values observed by each satellite per day [36]. NMRI can be
expressed as [14]:

NMRI =
max(RMSMP1)− RMSMP1

max(RMS)
(9)

where max(RMSMP1) is the average value of the largest 5% of the RMSMP1 values in the
annual time series and RMSMP1 is the RMS of the MP1 of a single day. For the same period
as that of the NDVI values, the NMRI values are obtained by down sampling the calculated
values of the NMRI. In addition, the mapping model is employed to calculate the NDVI of
the experimental period [14].

NDVI is a parameter reflecting vegetation growth conditions and vegetation coverage.
The vegetation around the station is the main factor leading to the amplitude and phase offset
of the reflected signal. The offset is the vegetation error of the GNSS-IR inversion SM, which
needs to be eliminated before the inversion. In the absence of measured VMC data, NDVI is
the main factor reflecting the amplitude and phase offset of the reflected signal [14].

2.4. Random Forest Model

The RF algorithm has advantages in data analysis and inversion and has been widely
used in many fields, such as soil moisture and ecological environments. In the 1980s,
Breiman et al. developed the classification tree method into an RF algorithm, which has
a small amount of calculation and high accuracy. Through the integration idea, multiple
decision trees are combined to solve the single inversion problem of the model. The basic
idea is to randomize the initial data to generate a certain number of unrelated decision
trees, and then calculate the final result using a weighted average of multiple decision
trees according to different input variables. The advantages of this algorithm are as
follows: (1) for a variety of input data, a high-accuracy analyzer can be generated that can
process and analyze a large number of input variables; (2) it can automatically evaluate
the importance of variables and generate corresponding weights. The advantages of RF
can be summarized as the following: high parallelism of data, strong generalization ability
of the constructed model, small variance, and insensitivity to the lack of data features.
Considering that it is necessary to use NDVI data to eliminate the amplitude and phase
offset caused by the vegetation effect from the amplitude and phase data obtained by
GNSS-IR, the RF algorithm was employed to eliminate vegetation error for SM inversion
by multi-GNSS and multi-frequency data. To verify the efficiency of the RF algorithm,
two strategies, namely RF-After (RF-AF) and RF-Synchronous (RF-SY), were adopted and
compared. For the RF-AF strategy, the NDVI data were first used to remove the influence
of vegetation on the characteristic parameters of single-satellite and single-frequency GNSS
signal, and then the RF algorithm was employed to fuse the filtered data. For the RF-SY
strategy, the RF algorithm was used to process the characteristic parameters of multi-GNSS
and multi-frequency signals by setting thresholds and optimizing parameters, and then the
NDVI data were used to eliminate the influence of vegetation while fusing the characteristic
parameters synchronously using the RF model to perform SM inversion and obtain a better
signal combination for inversion.
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3. Data Sources
3.1. GNSS Observations

The experimental data were collected from the self-built Baima (NJBM) GNSS station
(31.610647◦N, 119.161229◦W) seen in Figure 2. The station is located in Baima Town, Lishui
District, Nanjing City, China. The height of the GNSS receiver is 4 m from the surface, with
about a 150 m radius of the first Fresnel reflection zone [3]. This means observations of the
NJBM station can be used to retrieve SM for an area within a 150 m radius. The receiver
model of NJBM is shown in Table 1. The four seasons of the station are clear, hot, humid,
and rainy in the summer and cold and dry in the winter. The average annual temperature is
16.1 ◦C, the average annual relative humidity is 76%, and the average annual precipitation
is 1204.3 mm. The terrain of the area is gentle, and the north and east of the NJBM site
consist of bared soil, with the south and west vegetated mainly by Canada Goldenrod.
The warm and rainy climatic conditions and the surface conditions around the station are
helpful in verifying the feasibility of ground-based GNSS-IR technology in SM inversion
accounting for vegetation effects. GNSS observation data of NJBM Station for 171 days
from 9 July to 31 December 2022, i.e., day of year (DOY) 190–365, 2022, were collected. The
precise ephemeris SP3 data corresponding to DOY were downloaded, and Python was
used to extract the epoch, elevation angle, azimuth angle, and SNR data of each frequency
band of GPS and BDS satellites required for the experiment.

Table 1. The receiver of NJBM station and its related parameters.

Project Parameter

Type of receiver M300_PLUS
Sampling interval 15 s
Type of antenna AT360
Antenna height 4.0 m
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represents the reflection zone of 5◦, 10◦, 15◦, and 30◦, respectively.

3.2. NDVI

The NDVI data were obtained by analyzing and calculating the Sentinel-2 satellite
images during the studying period through the Google Earth Engine platform. The spatial
resolution of the data was 10 m and the temporal resolution was 7 days. Since the time
resolution of GNSS-IR was 1 day, to match the data, it was necessary to use the strong
correlation between NMRI and NDVI calculated by a GNSS multipath to retrieve the NDVI
data with a time resolution of 1 day.

3.3. Auxiliary Data

The NJBM station also monitored the precipitation with a co-located rainfall sensor,
as well as in situ SM values with a co-located SM sensor on a time scale of 0.5 h, and the
average value was taken as daily values after a data quality test.

Figure 3 shows the SM and precipitation data series observed by DOY 195–365 in 2022,
represented by line charts and histograms, respectively. As shown in Figure 3, there were
nine significant precipitation events during the experiment, with a maximum precipitation
of 21.4 mm. During precipitation events, SM increased significantly, especially in DOY
207–210, 238–242, 256–258, 278–281, 310–325, and 332–338. Continuous precipitation led
to a significant nonlinear increase in SM. With the decrease or cessation of precipitation,
the content of SM also decreased. Obviously, precipitation is the main factor leading to the
sudden change of SM. It is indicated that the environment and the meteorological condition
of the NJBM site are suitable for SM inversion.
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4. Experiment and Results
4.1. SM Retrieval Strategy

It can be seen from Figure 2 that the northern part of the NJBM station is a bare soil area
without vegetation coverage, and the azimuth range is −90◦–90◦. The receiver can directly
receive the GNSS signal reflected by the surface soil, so the traditional GNSS-IR method can
be used to retrieve the soil moisture, including the following three steps: Firstly, the GNSS
observation files, precise ephemeris, and soil moisture measured data of the study period
are downloaded, and the GNSS elevation angle, azimuth angle, epoch, and SNR data are
obtained through data preprocessing. Secondly, the SNR signal data with an elevation
angle of 0–30◦ and an azimuth angle of −90–90◦ are screened. The direct signal in the SNR
is decomposed and eliminated by wavelet analysis, and the reflected signal representing
the physical parameters of the surface soil is retained. The frequency, amplitude, and
phase characteristic parameters of the SNR-reflected signal are obtained with LSP spectrum
analysis and the least square method. Finally, the random forest algorithm is used to
retrieve the SM derived from the amplitude and phase, respectively, and compared with
the in situ SM observations. Due to the fact that the limitation of space and the bare
soil part are not the main research area of this paper, the specific steps can be referred
to the reference [29], and the SM inversion results are shown in Figure 4a. At the same
time, the southeastern part of the survey area is a light vegetation coverage area, and the
southwestern part is a vegetation coverage area. In order to better analyze and study the
impact of vegetation on GNSS-IR SM inversion, the southwestern part of the station is
selected as the study area, and the azimuth angle is 180–270◦. The soil moisture inversion
results of the region using the above steps are shown in Figure 4b.

From Figure 4, it can be seen that the SM retrievals derived from amplitude or phase
through traditional methods are consistent with the in situ SM observations in the bare soil
region. However, the SM inversion effected in the vegetation-covered area under the same
steps is not ideal. This is because the moisture in the vegetation-covered area also reflects
satellite signals to the receiver, which not only receives direct GNSS signals and reflected
GNSS signals from the soil through the vegetation, but also receives GNSS reflection signals
from the vegetation. This makes the extracted SNR signal feature parameters inaccurate
due to the influence of vegetation, resulting in poor inversion results. Therefore, for soil
moisture inversion in vegetation-covered areas, the error caused by vegetation impact
should be eliminated after extracting feature parameters. At the same time, in the absence



Remote Sens. 2023, 15, 5381 9 of 23

of measured VMC, NDVI values in vegetation-covered areas can be used to characterize
vegetation impact.
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Based on the above comparative analysis experiments, Figure 5 shows the flow chart of
the SM inversion strategy proposed in this study. Firstly, the characteristic parameters with
the amplitude and phase of the reflected signals from the SNR data extracted from GNSS
observations were calculated. At the same time, NMRI was calculated using multipath
data from GNSS observations, and it verified the correlations between NMRI and NDVI
on a 7-day scale. On this basis, an NMRI–NDVI empirical model was established, and the
NDVI with a 1-day scale that can characterize the impact of vegetation was performed
using NMRI with a 1-day scale. Finally, SM was retrieved using the RF model to fuse the
multi-GNSS and multi-frequency data with the influence of correcting vegetation effects,
and it was compared to the traditional machine learning models of MLR and MARS.

The machine learning algorithm is used in the current SM inversion model to improve
the accuracy of the inversion process. However, due to the characteristics of the black box
of machine learning algorithms, the parameters of the model are difficult to adjust. The
proposed RF SM inversion model adaptively integrates multi-frequency and multi-GNSS
data to improve vegetation error and selects the best satellite combination for SM inversion
by changing parameters, resulting in high-precision inversion results. The GNSS-IR SM
inversion model can be expressed by Formula (10):

SM = Gi(X), i = 1, 2
X = (phi1, . . . , phin1, A1, . . . , An2, NDVI)

(10)

where SM is the inversion result of SM, Gi is the machine learning model for regression
inversion, and represents the input feature matrix after data normalization and character-
istic parameter screening. phi, A, and f , represent the phase, amplitude, and frequency
characteristic parameter sequences, respectively, and n1 and n2 are the corresponding
characteristic parameter sequence entries.
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4.2. Reflected Signal Feature Parameter Extraction

GNSS-IR SM inversion needs to use the GPS and BDS satellite elevation angle, satellite
azimuth angle, and SNR data. For NMRI calculating, the observations of the carrier phase,
pseudorange, frequency, and wavelength of GPS L1 are required, which are derived from
GNSS observation files and navigation messages. The SNR data of G26 S1C (DOY 350) are
taken as an example. To extract the reflected signal data from the GNSS SNR observations,
the direct signal is separated from the SNR sequence using the wavelet analysis method,
fitting the SNR residual sequence of the experimental area data using the cosine model (as
seen in Figure 6).
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Figure 6a shows the results of the five-layer wavelet decomposition of the above SNR
sequence using db4 as the wavelet basis. Among them, the black line is the original SNR
sequence, and the dark blue line is a five-layer high-frequency signal decomposed by
wavelet, that is, the detail signal, reflecting the detailed information of the original SNR
sequence. The light blue line and the red line are the five-layer low-frequency signals
under wavelet decomposition, also known as approximation signals, which are the slowly
changing parts of the original SNR sequence. The red line is the trend term, that is, the
direct signal. The relationship between the extracted direct signal and the original SNR
signal is shown in Figure 6b. The SNR series is displayed in black, and the direct signal
is displayed in red. At low satellite elevation angles, the SNR shows serious multipath
effects and exhibits periodic oscillations. With the gradual increase of the satellite elevation
angle, the antenna gain is considerable, and the SNR is stable. Therefore, the elevation
angle range of this experiment is set to 5~30◦. The vegetation coverage area is selected with
an azimuth range of 180~270◦ according to Figure 2b. By subtracting the trend term from
the original SNR sequence, the SNR residual sequence can be retained. The frequency f can
be obtained by LSP spectrum analysis, and the amplitude A and phase ϕ can be obtained
by fitting the SNR residual sequence with the cosine model of the least square method. The
results are shown in Figure 6c.

4.3. Inversion of NDVI Representing Vegetation Effect

When using GNSS-IR to retrieve SM, the change of vegetation will correspond to the
increasing or decreasing of the amplitude and phase shift of the reflected signals. Therefore,
it is necessary to correct the influence of vegetation. Figure 6 shows the power of the
reflected signals through LSP spectrum analysis on DOY 200, 245, and 335. It can be seen
that there are obvious variations of the power on different days that are mainly due to the
different conditions of the vegetation. In the absence of measured VMC, NDVI data can
be used to characterize the impact of vegetation [14]. Since the temporal resolution of the
NDVI data is 7 days, it cannot be used to eliminate the daily vegetation effect to retrieve the
SM. Meanwhile, through Formulas (8) and (9), the GNSS observation data can be used to
calculate the NMRI with a 1-day temporal scale, and the strong correlation between NMRI
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and NDVI can be used to establish a linear regression model to retrieve the NDVI [14]. To
solve the reflected signal changes caused by different vegetation conditions, the established
NMRI–NDVI correlation model was used to retrieve the NDVI data that can characterize
the vegetation effect.

The vegetation in the experimental area is mainly Canada Goldenrod, with some
evergreen trees and a few experimental shrubs sporadically distributed. As in Section 3.1,
the unique growth characteristics of Canada Goldenrod and two mowing actions (DOY
1~25 and DOY 245~260) affect the NDVI series. At this time, It can be seen in Figure 7 that
when the vegetation around the site is in a vigorous stage (DOY 200), the amplitude of the
reflected signal is the smallest, while the amplitude begins to increase in the mowing action
(DOY 245), leading to the maximum after Canada Goldenrod removal (DOY 335). Affected
by the vegetation growth cycle, the dominant frequency of each DOY has a corresponding
increase or decrease. Figure 8 shows the distribution of 1-day NMRI values and 7-day
NDVI values during 2022. From the figure, it can be seen that the NMRI calculated by
GNSS multipath data also changes with the different growth conditions of vegetation in the
time series, and its fluctuation trend tends to be consistent with NDVI in the time domain.
In addition, the trends and directions of NMRI are also well-matched with NDVI. The
7-day NMRI values were extracted corresponding to the DOY of NDVI. Then, a simple
linear regression model between the NMRI and the NDVI was established:

y = 3.8244x + 0.1088 (11)

where y is the inversion NDVI, and x is the NMRI with a time scale of 1 day. This finding
indicates that NDVI can characterize vegetation growth, and that there is a strong linear
relationship between NMRI and NDVI with R of 0.9141, and NDVI data can be retrieved in
a time scale of 1 day.
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4.4. SM Retrieval Experiment and Results

The RF-AF strategy is established to correct the characteristic parameter offset for
the GNSS signal data of different frequency bands, as well as of different satellites, and
then input the filtered available data into machine learning models, such as RF for fusion
inversion [14]. Although the RF-AF strategy can eliminate the influence of vegetation on
the inversion of SM, due to the different systematic errors between different frequency
bands and the different trajectories between different satellites, the vegetation effects were
different. Therefore, it is necessary to establish correction models for the A and P of each
satellite based on the RF-AF strategy. Considering that the models were different, it would
lead to poor universality, gross errors, and low efficiency. The experiment in Figure 4 shows
that the amplitude and phase of satellite SNR signals are strongly correlated with SM, and
NDVI can characterize the vegetation effect [22]. Therefore, they are the main data for
inverting SM in vegetation coverage areas. The RF-SY strategy proposed in this paper
uses amplitude and phase data, as well as the NDVI as the input data. The algorithm and
modeling process are as follows:

Train and establish the model by inputting data from the first 100 days into the RF
model, and set the initial parameters and initial thresholds of the algorithm (R > 0). Because
the influence of vegetation on GNSS-IR technology is mainly reflected in the amplitude and
phase offset, it will not excessively affect their overall trends [14,15]. After the verification of
the bare soil area, the SM inversion value of GNSS-IR has a strong positive correlation with
the in situ SM value [12]. Therefore, the initial threshold can be set to R > 0, and satellites
with correlation coefficients less than 0 can be considered unavailable and removed. During
the operation of the RF model, the inversion accuracy requirement is set to a correlation
coefficient of ≥0.8. If the inversion accuracy does not meet the accuracy requirements, the
parameters and thresholds will be automatically adjusted (considering the utilization of
satellite data, the maximum threshold is R > 0.5, and the threshold adjustment scale is
0.1) and rebuilt. If the inversion accuracy meets the accuracy requirements, visualize and
record the model parameters, inversion results, and inversion accuracy. Continue adjusting
the parameters while keeping the threshold constant. If the inversion accuracy meets the
accuracy requirements ten consecutive times, the model with the highest inversion accuracy
recorded in the loop output will be skipped. During the parameter adjustment process,
the number of decision tree models included in the random forest model, the maximum
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number of features selected to construct the decision tree, and the maximum number of
selected features will randomly increase or decrease in a ratio of less than or equal to 5.
The maximum depth of the decision tree model and the minimum number of samples for
leaf nodes remain unchanged, while the minimum number of samples allowed to split at
the current node remains unchanged until better satellite combination inversion results
are obtained. This achieves the effect of eliminating vegetation impact while achieving
data fusion, as shown in Tables 2 and 3. The final selected model parameters are shown in
Table 4 (taking RF-SY amplitude inversion as an example). Finally, input the amplitude,
phase, and NDVI data of DOY 190−365—the optimal satellite combination output during
the modeling process, into the established model for SM inversion—and compare it with
the in situ SM.

Table 2. The signal frequency band and the corresponding satellite number used to process the best
combination of amplitude data.

Signal Frequency Band Satellite Number

S1C G01, G02, G03, G05, G06, G09, G16, G17, G18, G29, G31, G32
S2P G02, G03, G14, G17, G19, G25
S2X G03, G12, G14, G17, G18, G25, G32
S5I G09, G32
S2I C12
S6I C06, C08
S7I C06

Table 3. The signal frequency band and the corresponding satellite number used to process the best
combination of phase data.

Signal Frequency Band Satellite Number

S1C G01, G05, G05, G09
S2P G04, G10, G14, G16, G25
S2X G06, G29
S5I G04
S2I C06, C08
S6I C06, C11, C12

Table 4. Final selected model parameters.

Model Parameter Parameter Meaning Numerical Value

n_estimators number of decision tree models in RF 78
max_depth maximum depth of decision tree model 10

max_features maximum number of features 32
min_samples_leaf minimum number of samples for leaf nodes 19
in_samples_split minimum number of samples 10

To test the feasibility and effectiveness of the RF model, and considering that the ma-
chine learning algorithm has a self-learning and adaptive ability to solve high-dimensional
nonlinear problems, three schemes were developed for comparative analysis. Specifically,
Schemes 1 and 2 are the comparison of the proposed RF-SY strategy and RF-AF strategy,
respectively. Schemes 1, 2, and 3 involve the RF inversion model based on multi-satellite fu-
sion, the MARS inversion model based on multi-satellite fusion [14], and the MLR inversion
model based on multi-satellite fusion [14].

Figure 9 shows the validation of the SM retrievals and the measured in situ SM of the
three models, as well as the accuracy comparison with the RF-AF (the blue line and the
green line represent the retrieved SM value and the measured SM value, respectively).
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Comparing Figure 9a,b, it can be seen that both the RF-SY strategy and the RF-AF
strategy can retrieve relatively highly accurate SM. However, the SM time series curve
retrieved by the RF-SY strategy is smoother than the RF-AF strategy with less fluctuation.
By comparing Figure 9a,c,d, it can be found that although the SM retrieved by the traditional
MLR and MARS models is consistent with the measured in situ SM change trend to a certain
extent, there is still a large fluctuation. It can only retrieve the overall change trend of
SM, and the reliability of its specific value is poor. The RF model can more satisfactorily
retrieve the trend of the SM, the estimation error is more stable, the fluctuation is smaller,
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and the reliability of the inversion value is higher. This model effectively improves the
problem of the low SM inversion accuracy of MLR and MARS models. In addition, in
the absence of vegetation correction, each retrieved SM using the four models showed
some fluctuations. Meanwhile, without vegetation correction, the average correlation
coefficient of single satellite data inversion in the better satellite combination is only 0.374,
while the inversion correlation coefficients of the two RF models (RF-AF and RF-SY) and
two traditional models (MARS and MLR) are all greater than 0.65. This shows that the
amplitude or phase shift inversion using machine learning models to correct the influence
of vegetation in the characteristic parameter data is much more accurate than the inversion
using the original characteristic parameter data. This finding further proves the feasibility
of correcting the vegetation effect when using GNSS-IR to retrieve SM.

Meanwhile, from Figure 9a, it can be found that the RF-SY amplitude fusion correction
model can better respond to the SM change caused by precipitation, and the RF-SY phase
fusion correction model has higher local accuracy than amplitude fusion in some DOY with
R of 0.9695 and 0.9305, respectively. Therefore, the RF model is suitable to be used to fuse
the amplitude and phase data, and the results are shown in Figure 10.
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Figure 10. Inversion results of amplitude and phase fusion correction model based on RF-SY algorithm.

From Figure 10, it can be seen that compared to the fusion correction of single feature
parameters, the inversion results of simultaneous amplitude and phase fusion correction are
better. The SM inversion sequence has a highly similar trend to the measured SM sequence
in the overall part, and some inversion errors are eliminated in the details, resulting in a
significant improvement in the entire inversion result.

5. Discussion
SM Inversion Correlation Analysis

Considering Figures 7 and 8, the calculated NMRI of the NJBM station is well related
to NDVI. Figure 9 verifies the accuracy and reliability of the vegetation correction methods
mentioned above. The correlation diagrams of the results obtained by the four models
verify the feasibility and accuracy of the proposed RF model. The results show that the
correlation of the four models is increased by at least 52.4% by correcting the vegetation
effect. This result shows that the NMRI derived from GNSS multipath signals can be
used to effectively correct the amplitude and phase errors caused by vegetation effects.
Figure 11 shows the scatter plots of the inversion SM and the measured SM corresponding
to each method in Figure 9, from which the inversion effect can be more intuitively and
finely observed.



Remote Sens. 2023, 15, 5381 18 of 23
Remote Sens. 2023, 14, x FOR PEER REVIEW 18 of 24 
 

 

 

 
 

(a) (b) 

 

 
 

(c) (d) 

Figure 11. (a) Linear regression analysis of RF-SY inversion SM with corrected amplitude and
corrected phase and measured SM. (b) Linear regression analysis of RF-AF inversion SM with
corrected amplitude and corrected phase and measured SM. (c) Linear regression analysis of corrected
amplitude and corrected phase MARS inversion SM and measured SM. (d) Linear regression analysis
of corrected amplitude and corrected phase MLR inversion SM and measured SM.



Remote Sens. 2023, 15, 5381 19 of 23

To further comprehensively evaluate the performance of each scheme and verify the
reliability and generalizability of the RF model proposed in this paper, the correlation
coefficient R, root mean square error (RMSE), and mean absolute error (MAE) were used
for accuracy evaluation. Figure 9 shows the R-value between the inversion SM and in situ
SM based on four methods. Table 5 shows the accuracy indexes of the four methods.

Table 5. Statistics of SM inversion accuracy of each model.

Amplitude Fusion Phase Fusion

RF-SY RF-AF MARS MLR RF-SY RF-AF MARS MLR

R 0.9695 0.9452 0.7375 0.7489 0.9305 0.9142 0.6555 0.6918
RMSE

(cm3·cm−3) 0.0132 0.0170 0.0286 0.0278 0.0202 0.0211 0.0319 0.0302

MAE
(cm3·cm−3) 0.0091 0.0113 0.0189 0.0212 0.0141 0.0148 0.0228 0.0229

From the statistical results of Table 5, it can be seen that the proposed RF-SY strategy
has a significant improvement in inversion accuracy relative to the proposed RF-AF strategy,
whether for amplitude fusion or phase fusion. The R of amplitude fusion is increased by
2.6%, with RMSE reduced by 22.4% and MAE by 19.5%. Meanwhile, the R of phase fusion
is increased by 1.8%, with RMSE reduced by 4.3% and MAE by 4.7%, which also directly
proves that the proposed RF-SY strategy is better than the RF-AF strategy. While having
better inversion accuracy, it reduces the time spent on multiple vegetation corrections
and greatly improves the inversion efficiency. For amplitude fusion, The R values of
the RF, MARS, and MLR models are 0.9695, 0.7375, and 0.7375, respectively. The RMSE
values are 0.0132 cm3·cm−3, 0.0286 cm3·cm−3, and 0.0278 cm3·cm−3, respectively. The
MAE values are 0.0091 cm3·cm−3, 0.0113 cm3·cm−3, and 0.0189 cm3·cm−3, respectively.
For phase fusion, the R values of the RF, MARS, and MLR models are 0.9305, 0.6555,
and 0.6918, respectively. The RMSE values are 0.0202 cm3·cm−3, 0.0319 cm3·cm−3, and
0.0302 cm3·cm−3, respectively. The MAE values are 0.0141 cm3·cm−3, 0.0228 cm3·cm−3, and
0.0229 cm3·cm−3, respectively. From Table 1, Table 2, Table 3, Figures 8 and 9, it is suggested
that for the fusion data selection, the SM retrieved from the amplitude data of reflected
signals is better than that from the phase data, which means that the inversion accuracy
of amplitude fusion is better than that of phase fusion, and the amount of amplitude data
is larger and the data utilization rate is higher. For the selection of fusion models, all
three machine learning models can effectively improve the unreliability and instability of
single-satellite inversion and improve the accuracy of GNSS-IR SM inversion. Among them,
the inversion accuracies of the MARS and MLR models are comparable, while the inversion
accuracy of the RF model is much higher than those of traditional MARS and MLR models.
Therefore, the RF fusion correction model based on integrated multi-frequency and multi-
GNSS data ensures the local error stability in the inversion process, eliminates the satellite
data that do not meet the quality requirements through the threshold and parameter cycle
process, and obtains the optimal satellite combination for SM inversion. Compared to the
conventional method, the RF model can suppress the gross error caused by single satellite
data more effectively.

Aiming at the amplitude fusion analysis of SM inversion error, the absolute inversion
error of SM (the difference between the inversion SM and the in situ SM, as shown in
Figure 12) is calculated, and the interval distribution pattern is analyzed. Figure 12 is the
statistical histogram of the absolute error ratio of SM inversion obtained by four methods. It
can be seen that compared to in situ SM values, there is a large proportion of small absolute
error in retrieved SM by all four models. The absolute error distribution of the RF model is
in the range of 0.03~0.04, which is narrower than the error distribution of the other three
methods, and generally conforms to the normal distribution. The results further illustrate
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the advantages of the RF-SY strategy for high-precision SM inversion, and the inversion
result is better than the RF-AF strategy.
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of MLR.

Since the RF fusion correction model is based on the integrated multi-frequency
and multi-GNSS data, it can well adapt to the changes in vegetation growth from multi-
reflected signals. Under the same conditions, the RF model shows better performance than
the traditional MLR and MARS models, and the proposed RF-SY strategy is superior to the
proposed RF-AF strategy.

On the basis of the fusion correction results of single feature parameters, further
discussion and evaluation are conducted on the inversion results of simultaneous amplitude
and phase fusion correction, as shown in Figure 13 and Table 6. From the statistical results
of Table 4, the amplitude and phase feature parameter fusion correction model based on RF
can slightly improve the inversion accuracy of SM, the R is increased by 0.2%, the RMSE is
reduced by 4.5%, and the MAE is reduced by 3.3%, which directly verifies the feasibility
of the proposed method and provides a new idea for GNSS-IR multi-feature parameter
fusion inversion.
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Table 6. Inversion result accuracy index statistics table.

Index of Precision All Data Fusion Amplitude Fusion Phase Fusion

R 0.9718 0.9695 0.9305
RMSE (cm3·cm−3) 0.0126 0.0132 0.0202
MAE (cm3·cm−3) 0.0088 0.0091 0.0141

Although it is feasible and effective to retrieve SM from multi-GNSS and multi-
frequency data using the RF model with vegetation effects eliminated through NMRI,
the GNSS-IR SM inversion process is also affected by terrain conditions, e.g., surface rough-
ness and vegetation types, and the physical mechanism of the interaction between the
reflected signal and the vegetation is still unclear. Moreover, the SM inversion model
established for the NJBM station experiment cannot be guaranteed to be applicable to other
environments or other stations. All these deserve further investigation.

6. Conclusions

As an important indicator to measure the global water cycle, the long-term accurate
monitoring of SM is of great significance and has important application prospects. Based
on the limitations of GNSS-IR SM research in the fields of data utilization and application
scenarios, an RF SM inversion model based on multi-GNSS and multi-frequency data fusion
is proposed with the influence of vegetation effects considered. This study combines vegeta-
tion error correction and multi-GNSS and multi-frequency data integration using GNSS-IR
multipath data and SNR data. The experimental analysis draws the following conclusions:

(1) The NMRI calculated from MP1 has a strong linear correlation with NDVI, which
can fully correct the amplitude and phase offset of the reflected signal caused by the
vegetation effects. Therefore, the NMRI calculated by GNSS multipath observations
can be used to correct the vegetation error without measuring the VMC.

(2) The RF algorithm gives full play to the advantages of multi-GNSS and multi-frequency
data integration in SM inversion and effectively solves the problem that single-satellite
data cannot fully reflect the actual situation of the surface. In addition, the addition
of threshold and parameter adjustment in the RF model operation process helps
to eliminate satellite data that seriously interfere with SM inversion and can deter-
mine the satellite combination with a good SM inversion accuracy while ensuring
data utilization.
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(3) Compared to the traditional MLR and MARS models, the RF model can obtain higher
accuracy in the inversion of SM, which can obtain better satellite combinations by
adjusting the threshold and parameters. Compared to the proposed RF-AF method,
the proposed RF-SY strategy not only has higher accuracy but also reduces the steps of
the RF-AF strategy to establish empirical models for each satellite to correct vegetation
errors, thereby reducing gross errors and calculation time and increasing the accuracy
and efficiency of GNSS-IR SM inversion.

(4) Compared to the single feature parameter (amplitude or phase) fusion correction
inversion method, the multi-feature parameter fusion correction inversion method
that combines feature parameters extracted from GNSS signals with RF can improve
the accuracy and reliability of SM inversion, which provides a new idea for GNSS-IR
SM inversion.

In the future, we will continue to observe the NJBM site for a long time to obtain
more information about other related vegetation, such as shrubs and trees, to confirm the
potential and universality of the technology. At the same time, future research will focus
on the physical mechanism of the interaction between vegetation and reflected signals
and study the effects of environmental factors, such as soil roughness and soil texture,
on SM inversion. Finally, the established SM inversion model will be verified by PBO
observation data.
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