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Abstract: The shadow statistical method (SSM) used for extracting the significant wave height
(SWH) from X-band marine radar images was further investigated because of its advantage of not
requiring an external reference for calibration. Currently, a fixed shadow segmentation threshold is
utilized to extract the SWH from a radar image based on the SSM. However, the retrieval accuracy
of the SWH is not ideal for low wind speeds since the echo intensity of sea waves rapidly decays
over distance. In order to solve this problem, an adaptive shadow threshold, which varies with echo
intensity over distance and can accurately divide the radar image into shadow and nonshadow areas,
is adopted to calculate the wave slope (WS) based on the texture feature of the edge image. Instead
of using the averaged WS, the wave slope feature vector (WSFV) is constructed for retrieving the
SWH since the illumination ratio and the calculated WS in the azimuth are different for shore-based
radar images. In this paper, the SWH is calculated based on the constructed WSFV and classical
support vector regression (SVR) technology. The collected 222 sets of X-band marine radar images
with an SWH range of 1.0∼3.5 m and an average wind speed range of 5∼10 m/s were utilized to
verify the performance of the proposed approach. The buoy record, which was deployed during the
experiment, was used as the ground truth. For the proposed approach, the mean bias (BIAS) and the
mean absolute error (MAE) were 0.03 m and 0.14 m when the ratio of the training set to the test set
was 1:1. Compared to the traditional SSM, the correlation coefficient (CC) of the proposed approach
increased by 0.27, and the root mean square error (RMSE) decreased by 0.28 m.

Keywords: adaptive shadow segmentation threshold; marine radar images; significant wave height
(SWH); wave slope feature vector (WSFV)

1. Introduction

To understand the evolution law of a sea wave, it is particularly important to extract the
significant wave height (SWH), since the SWH is a key technical indicator for characterizing
the wave energy [1–3]. Recently, noncoherent X-band marine radar images have been
utilized for retrieving sea wave parameters due to the low cost of marine radar and the
radar data containing abundant sea clutter information [4,5]. Currently, the research on
retrieving the SWH from X-band radar images is mainly conducted under high wind
speeds. Under low-wind-speed conditions, improving the SWH inversion accuracy can
more accurately evaluate the impact of waves on marine ecosystems and marine energy
development, ensuring the safety of ship navigation and capturing the evolution processes
of waves.
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The lower waves are blocked by the higher waves, and the shadow areas are generated
in the radar image because of the fluctuation in the sea surface [6,7]. Meanwhile, the echo
intensity of the sea wave decays along with increase in the distance to the radar antenna.
The shadowing is dominant for the achieved radar image when the electromagnetic wave
emitted grazes into the sea surface [8]. Nowadays, the spectral analysis approach based on
Fourier transform and the shadow statistical method (SSM) (using shadow statistics) are
the primary technologies for retrieving the SWH from X-band marine radar images [9]. In
addition, ensemble empirical mode decomposition [4] and support vector regression (SVR)
technology [10,11] are used to estimate the SWH since the shadowing of radar images
depends on the sea conditions and the building height of the radar antenna.

For the three-dimensional (3D) Fourier spectral analysis approach, the image spectrum
is achieved by using the 3D Fourier transform on the selected analysis area of a radar image
sequence [12]. The SWH is obtained by using the linear relation to the root mean square
(RMS) of the extracted signal-to-noise ratio (SNR) [13]. However, external measuring
instruments, such as wave buoys, and plenty of observation data, are required to adjust
the coefficients of the linear relation. In order to improve the retrieving accuracy of the
SWH, the dependency of the wave height on the azimuth and range is determined [14], and
analysis of the SNR [15] and the modified modulation transfer function [16] are carried out.

In order to overcome the nonstationary and inhomogeneous characteristics of sea
waves, the continuous wavelet transform [17,18] and the synchrosqueezed wavelet trans-
form [19] are used to extract the wave spectra and parameters from a single radar image.
Although the wavelet transform can enhance the retrieving accuracy of an SWH, it con-
sumes much computing time, and 180◦ direction ambiguity exists. For the traditional
spectrum analysis methods, accurate estimation of the sea surface current is required to
achieve an SNR signal based on the dispersion relation bandpass filter [20–22], and external
equipment is required to calibrate the wave number image spectrum extracted. Instead of
using the ideal linear relation, an SVR-based algorithm is used to retrieve the SWH based
on the extracted SNR [10,11]. Since the correlation between the SWH and the SNR is not
completely linear in practice, methods based on an artificial neural network are presented
for enhancing the retrieving accuracy of the SWH [23–26].

Compared to traditional spectrum analysis methods, the SSM has attracted more
attention since an external reference for calibration and an accurate surface current are not
required. The basic principle is that the physical modulation has prominent characteristics
in the radar echo intensity image. The electromagnetic scattering characteristics of the
marine radar and shadow theory at low grazing angles are illustrated in [27]. The theoretical
foundation for estimating the WS from radar images is based on the geometrical shadowing
of a random rough surface [28]. The mathematical expression for a WS is derived from
the shadowing ratio as a function of the grazing angle in terms of distance. Without prior
calibration, a wave retrieval algorithm with high accuracy is developed in [29]. However,
the tilt modulation is mainly considered due to the height of the mounted platform. Based
on geometrical optics theory, the SWH is determined by utilizing the illumination ratio of
the sea surface from the emitted electromagnetic wave [30]. Based on the edge detection of
the shadow area and the geometry theory of the sea surface, the SSM is proposed to extract
the SWH from the radar image [31]. However, the SWH is overestimated from marine
radar images for low wind speeds. Instead of using the shadow image in each azimuth
partition, a modified SSM, which takes the radar image quality control strategy and selects
the subareas of the upwind direction from the ship-based radar image, is proposed to
enhance the inversion accuracy of the SWH [32,33]. An improved segmentation block
method is proposed to improve the accuracy of the calculated shadow ratio under the
condition of high-sea conditions and long wavelengths [34]. Currently, the calculated SWH
based on the WS is mainly obtained under the assumption of infinitely deep water. Since
the SSM does not apply to the nearshore shallow water areas, a method to retrieve the SWH
under different water depths is proposed [35]. In order to remove calibration during the
retrieval of the wave height, the influence of shadowing is mitigated by using filtering and
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interpolating technology [36]. Without using external calibration equipment, the SWH is
estimated by optimizing the correlation between the simulated image and the filtered radar
image [37]. A Prewitt operator convoluted with a radar image is used to obtain the edge
image and enhance the retrieving accuracy of the SWH [38]. Instead of using the Smith
fitting function, an analytic solution of the sea surface slope is calculated based on the
obtained illumination ratio from radar images and the corresponding grazing angle [39].

Currently, the retrieving result of the SSM is overestimated under low wind speeds,
since the echo intensity of waves attenuates rapidly with distance for the analysis area
of interest, and the illumination ratio is underestimated. By investigating the existing
SSM in depth, it could be found that the shadow and nonshadow areas are inaccurately
separated based on the existing shadow segmentation threshold. An adaptive shadow
threshold segmentation algorithm that considers the influence of radar echo attenuation in
the distance and sea conditions is proposed in this paper. Since the echo intensity of ocean
waves in the azimuth is related to the wind direction, the obtained WS in each azimuth
partition is used to constitute a feature vector in order to eliminate the influence of the
WS differences in the azimuth and improve the practicality of the SSM in the coastal area.
Moreover, SVR-based technology, which exhibits good performance when used on a small
sample of data and has achieved good results for retrieving SWH based on extracted SNR
from radar images, is used to retrieve the SWH based on the constructed WSFV.

The outline of this paper is as follows: In Section 3, the adaptive shadow segmentation
threshold for the case of low wind speed is determined. In Section 4, the SWH calculation
is achieved by combining the constituted WSFV and SVR technology. In Section 5, the
performance of the proposed approach is investigated based on the X-band marine radar
data collected. Finally, the discussion and conclusions are summarized.

2. Calculating SWH by Using the SSM

The original SSM for retrieving the SWH from X-band radar images is presented
in Figure 1. The main steps for extracting the SWH are presented. Our contribution to
improving the retrieving accuracy under low wind speed is based on the original SSM. In
this paper, the processing steps in the boxes (blue color and orange color) are improved,
which is detailed in Sections 3 and 4. Instead of using the shadow segmentation threshold
in the blue box, an adaptive shadow threshold segmentation algorithm that considers
the influence of radar echo attenuation in the distance and sea conditions is proposed.
Instead of using the averaged RMS WS in the orange box, the constituted WSFV is used
to characterize the wave information. Machine learning technology is utilized to estimate
the SWH, where the model weight can be determined by dividing the feature vector into
training and test datasets.

Figure 1. Flowchart of estimating the SWH based on the SSM.

Based on the selected analysis area, a more detailed process for obtaining the shadow
threshold and the SWH is presented in [31]. In this paper, a brief description for obtaining
the edge image, the shadow segmentation threshold, and the shadow image is given below.

For the selected analysis area, the convolution operation is carried out based on
the difference operator Hi(r, θ) in eight adjacent directions to obtain the gradient images
IGi(r, θ) in each direction, which is given as

IGi(r, θ) = I(r, θ)⊗Hi(r, θ) (1)
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where ⊗ is the convolution symbol, I(r, θ) is the selected analysis area from a radar image,
and θ and r denote the azimuth and the distance, i ∈ {1, 2, · · · , 8}.

By using the upper N-percentile of the edge image, the i-th edge image is given by

IFi(r, θ) =

{
1, IGi(r, θ) > upperN-percentile

0, otherwise
. (2)

A complete edge image is derived, which is

IF(r, θ) =
8

∑
i=1

IFi(r, θ). (3)

A histogram function FH(η) is derived by using the corresponding relationship be-
tween the original radar image I(r, θ) and the edge image IF. By taking the mode from
the function FH(η), the shadow segmentation threshold is determined, which is given
as [31,34,35]

τS = mode(FH(η)), (4)

where mode(·) is the mode function.
Due to the undulating motion of the sea surface, lower waves will be blocked by

higher waves in front of them when the beam of the electromagnetic wave is at the grazing
incident on the sea surface. Since the alternating dark and light stripes in the radar image
do not represent the natural sea surface elevation, the shadow segmentation threshold is
needed to divide the image into nonshadow and shadow areas. The transition region of
the radar image corresponds to the edge between the nonshadow and shadow areas based
on image-processing technology. Thus, the edge image is required to accurately extract the
SWH for the SSM.

The shadow image is acquired after taking the shadow segmentation threshold. By
dividing the shadow image into blocks and estimating the shadow ratio in each segmented
block, the shadow ratio function in the distance for each partition is obtained. Based on
the relationship between the illumination probability and the shadow proportion function
in the geometric shadow of a random rough surface, the Smith fitting function is used to
estimate the RMS WS σk. Thus, the RMS WS of each partition is calculated by using the
obtained illumination ratio and the Smith fitting function.

For the shore-based X-band marine radar image, the averaged RMS sea surface slope,
σA, in the azimuth is used to calculate the SWH based on the current SSM. The averaged
RMS sea surface slope is expressed as

σA =

√√√√ 1
M

M

∑
k=1

σ2
k (5)

where M is the number of azimuth partitions. Since the distribution of the WS depends
on the azimuth, the WS σk in each azimuth partition is considered to retrieve the SWH.
Then, the SWH can be determined based on the relevance among the averaged RMS WS,
the wave period, and the wave height [31,34,35]. In practice, the SWH is given as

Hs =
σA · gT2

m02√
2π

(6)

where Tm02 is the mean zero-crossing wave period, and g is the gravity acceleration. Based
on the traditional spectral analysis method, the wave peak period can be extracted from the
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marine radar image sequence. Then, the mean zero up-crossing period is determined by
using the experimental relation to the wave peak period. However, the mean zero-crossing
period Tm02, which is determined from the deployed wave buoy, is still used in order to
reduce the influence of the inaccurate wave period in this paper.

3. Determining the Adaptive Shadow Segmentation Threshold

For retrieving the SWH from the marine radar image, it is required to estimate the
shadow segmentation threshold. Under low wind speed, the shadow ratio in the more
extended range is overestimated due to weak radar backscatter. The inaccurate shadow
threshold may lead to overestimating the SWH in the case of low wind speed.

In order to enhance the retrieving accuracy of the SWH in the case of low wind speed,
an approach is proposed to retrieve the SWH from radar images by utilizing the adaptive
shadow segmentation threshold. The adaptive shadow segmentation threshold, which can
vary dynamically with the distance to the radar platform in the case of low wind speed,
is calculated by using the obtained edge image. A flowchart of estimating the adaptive
shadow threshold from the radar image is shown in Figure 2.

Figure 2. Flowchart of estimating the shadow segmentation threshold from the radar image.

3.1. Determine the Optimal Number of Blocks in the Distance Direction

Based on the radar equation, the power received by radar is directly proportional to
1/R4, where R is the distance to the radar platform. Therefore, the influence of the radar
echo decaying along with the distance should be considered during the process of obtaining
the shadow segmentation threshold and retrieving the SWH. For the original SSM [31], the
obtained shadow segmentation threshold and the estimated SWH are unreasonable for a
low wind speed since the received echo signal decays in the distance. In order to solve this
problem, the edge image is blocked in the distance direction, and the shadow segmentation
threshold in each block is calculated. Then, the adaptive shadow threshold is obtained by
smoothing the shadow segmentation threshold in each block.

Under the condition of a high sea state and a long wave, the sea wavelength observed
by the marine radar is usually 80–200 m. Suppose the non-zero and zero in the edge image
IF represent the edge and the non-edge. The number of non-zeros in the k-th line of the
edge image is ck. Based on the definition of the shadow ratio, each block should contain
bright and dark areas. The number of blocks on the k-th line is given by
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nk = floor((ck − 1)/2) (7)

where the function floor(·) denotes rounding, which is towards minus infinity. It commonly
has bright and dark areas with two non-zero edges for a wavelength. Thus, it is divided by
2 in (7). Similarly, the number of blocks on each line can be obtained. The optimal number
of blocks of the radar image in terms of distance is determined by averaging the number of
blocks on each line, which can be expressed as

L =
1
P

P

∑
k=1

nk, (8)

where P is the total number of data lines, k ∈ {1, 2 . . . , P}. When using (7) and (8), the
optimal number of separated blocks in the distance direction is given as

L = round{ 1
2P

P

∑
k=1

(ck − 1)}, (9)

where the function round(·) represents rounding, which is towards the nearest integer.
Thus, the optimal number of blocks L is determined by combining the edge image and the
texture features of the sea wave.

3.2. Calculate the Adaptive Shadow Segmentation Threshold

The derived edge image IF is evenly partitioned in the distance direction based on the
determined block number L. For each block area, the histogram function of the edge pixel
intensity, FHj(η), is calculated by using the relationship between the radar image and the
edge image, where j ∈ {1, 2, · · · , L} denotes the j-th block. Then, by taking the mode from
function FHj(η), the shadow segmentation threshold, τSj , in the j-th block is obtained.

However, the calculated shadow threshold in each block fluctuates. Furthermore, ex-
ternal interference may easily affect each block’s shadow segmentation threshold accuracy.
In order to solve these problems, a strategy of polynomial fitting is used to fit the shadow
segmentation threshold of the edge pixels within each block to obtain the adaptive shadow
segmentation threshold τSj for the case of low wind speed. Thus, a quadratic function is
used as the approximate fitting curve, which is given as

τSj = a0 + a1xj + a2x2
j (10)

where xj denotes the distance of the j-th block to the radar antenna, the data point of
the shadow threshold in the j-th block is described as (xj, τSj), and a0, a1, and a2 are the
parameters of the polynomial function. The parameters of the quadratic polynomial can
be obtained by minimizing the error between the quadratic polynomial and the shadow
threshold in each block. The minimum mean square error is shown as

e(a0, a1, a2) =
L

∑
j=1

(a0 + a1xj + a2x2
j − τSj)

2 (11)

Then, the obtained shadow image, which is obtained based on the adaptive shadow
threshold, is divided evenly into M sections in the azimuth [31]. The RMS slope of the sea
wave in each section, σk, can be determined by using the derived shadow ratio with the
Smith fitting function.
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4. Extracting the SWH Based on the Constituted WSFV

Since the echo intensity of a sea wave depends on the wind direction for the HH
polarized marine radar, the obtained RMS WS in each azimuth partition is different. In
order to further improve the retrieving accuracy of the SWH, SVR-based technology is used
based on the constructed feature vector, which is constructed by considering the difference
in the estimated WS in each azimuth partition for the shore-based radar images.

4.1. Constructing a Feature Vector by Using RMS WS

An analysis area around the upwind direction is ideal and is commonly utilized to
achieve the SWH for ship-based radar images. However, the analysis area around the
upwind direction is only sometimes available for shore-based radar images in practice
due to the influence of the surrounding terrain. Currently, the RMS WS in all the azimuth
directions is averaged to eliminate the difference in the shadow for retrieving the SWH.

Since marine radar mainly observes the waves traveling along the look direction,
the backscattering echo of these waves is commonly used to extract the WS and estimate
the SWH [32,33]. However, the desired waves traveling along the look direction cannot
always be obtained from the effective observation area of the sea waves in coastal areas. In
order to solve this problem, instead of using the averaged RMS WS, the extracted WS in
each azimuth partition and the wave period are utilized to constitute a feature vector for
retrieving the SWH. The extracted feature vector is given as

x =
(

σ1 σ2 · · · σM Tm02
)T (12)

The backscatter echo of radar images is caused by the wind speed and wind direction.
Except for the process of a typhoon landing, the wind direction in the location of the data
collection is mainly a northeastern wind during the experiment because of the monsoon
characteristics of the relative wind direction. Therefore, the wind direction is not considered
in the feature vector.

Instead of using the averaged RMS WS, the idea of constituting a WSFV is introduced
to better utilize the extracted WS information in the azimuth partition. The constituted
feature vector cannot be directly used to extract the SWH based on the existing SSM. The
selected analysis area may not include the wind direction for the nearshore area in practice.
In this case, the machine learning method may be an excellent strategy to find the relation
between the SWH and the constituted WSFV. Based on the excellent performance of SVR-
based technology for retrieving the SWH based on the extracted SNR from radar images,
SVR-based technology is used to calculate the SWH based on the constructed WSFV in
this paper.

4.2. Retrieving the SWH Based on the Extracted Feature Vector

The SVR algorithm, which considers the error of the data and the generalization of
the model, has achieved good results in solving different regression problems. The basic
idea of the SVR algorithm is to find the best hyperplane according to the obtained sample
points to minimize the distance from the sample points to the hyperplane. In this paper,
the calculated WS in each azimuth partition and the wave period are used to constitute the
WSFV. The classical ε-SVR method algorithm based on the extracted WSFV is utilized to
retrieve the SWH, which is given as

ŷ = f (x) = ω ·Φ(x) + b, (13)

where ω is the weight coefficient vector, x is the extracted WSFV, which is mapped to a
high-dimensional space based on the mapping function Φ(x), and b is the bias parameter.

For the sample points (xi, yi) in the training set, where i = 1, 2, · · · , n, and n are
the number of sample points, since the ε-SVR algorithm creates an interval zone on both
sides of the linear function, the loss is not considered for the samples falling within the
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interval zone. The classic ε-SVR algorithm is implemented by minimizing the total loss
and maximizing the interval. The objective function of the ε-SVR model is given as

min(
1
2
‖ ω ‖2 +C

n

∑
i=1

(ξi + ξ∗i )) (14)

subject to 
yi − ŷi ≤ ε + ξi
ŷi − yi ≤ ε + ξ∗i

ξi, ξ∗i ≥ 0

where C is the regularization parameter, ε is the tolerance deviation, and ξi and ξ∗i are the
slack variables beyond the interval zone, which is given as

ξi =

{
yi − (ŷi + ε) yi > ŷi + ε

0 otherwise
(15)

and

ξ?i =

{
(ŷi − ε)− yi yi < ŷi − ε

0 otherwise
(16)

In order to minimize the objective function, a constructed Lagrangian function based
on the constraint conditions is used:

L =
1
2
‖ ω ‖2 +C

n

∑
i=1

(ξi + ξ∗i )−
n

∑
i=1

αi(ε + ξi − yi + ŷi)

−
n

∑
i=1

α∗i (ε + ξ∗i + yi − ŷi)−
n

∑
i=1

(ηiξi + η∗i ξ∗i ) (17)

where αi, α∗i , ηi, η∗i are the Lagrange multipliers, and αi, α∗i , ηi, η∗i ≥ 0.
By respectively taking the partial derivatives of ω, b, ξi, ξ∗i for the Lagrangian function

and setting the partial derivative to zero, the optimal solution of the weight coefficient
vector ω = ∑n

i=1(ai − a∗i )Φ(xi) for the regression model is obtained. The dual optimization
problem of the primal problem is expressed as

max
(
− 1

2

n

∑
i,j=1

(ai − a∗i )(aj − a∗j )Φ(xi) ·Φ(xj)

−ε
n

∑
i=1

(ai + a∗i ) +
n

∑
i=1

yi(ai − a∗i )
)

(18)

subject to {
∑n

i=1(ai − a∗i ) = 0
ai, a∗i ∈ [0, C]

In the process of retrieving the SWH based on the feature vector extracted from radar
images and the ε-SVR method, the Gaussian kernel function is generally used to represent
the inner product Φ(xi) ·Φ(xj) in the dual problem, which is given as

K(xi, xj) = Φ(xi) ·Φ(xj) = exp(−γ· ‖ xi − xj ‖2), (19)

where γ is the shape parameter. By using the sequential minimal optimization algorithm
and the Karush–Kuhn–Tucker condition, the optimal solution of the bias parameter b for the
regression model can be obtained. Based on the extracted WSFV x and (13), the regression
function for retrieving the SWH is rewritten as
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Hs = f (x) =
n

∑
i=1

(ai − a∗i )Φ(xi) ·Φ(x) + b

=
n

∑
i=1

(ai − a∗i ) · K(xi, x) + b (20)

5. Experimental Results and Analysis

By using the adaptive shadow segmentation threshold, an improved approach with
the obtained WSFV and SVR algorithm was proposed for extracting the SWH from the X-
band marine radar images. When compared to the traditional shadow statistical approach
and the reference value, the performance of the proposed approach for extracting the SWH,
based on the constituted WSFV from the collected shore-based radar image, was verified
and analyzed.

5.1. Field Data

The shore-based X-band marine radar data, which contain a great deal of sea clutter
information, were used in our experiment. The detailed configuration parameters are
illuminated in [35]. The marine radar images acquired from 10 to 20 January 2015 and from
8 to 19 November 2014 on Haitan island of Fujian Province, which are respectively called
Dataset 1 and Dataset 2 for convenience, were employed to verify the effectiveness and to
examine the performance of the proposed approach. During the experiment, the average
wind speeds of Dataset 1 and Dataset 2 were 5∼10 m/s and 10∼17 m/s, respectively. The
wind direction at the location of the data collection was mainly northeasterly during the
experiment. The average water depth of the observation region was about 20 m. During the
experiment, the SBF3 buoy deployed in the field of view of the marine radar was utilized
as the reference equipment.

5.2. Experimental Results

Figure 3 is an original radar image that was collected; the bright and dark streaks on
the vertical part of the image are the field of the sea observation areas. The heading is about
6◦. The down and up parts of the radar image represent the sea wave and the ground echo,
respectively. The measurement radius of the collected radar image is roughly 4500 m. From
Figure 3, it can be observed that the echo intensity of the ground is higher than that of
the sea wave, and the texture of the sea clutter in the collected radar image is almost at
saturation near the antenna. The same radar data from 8 to 19 November 2014 and from 10
to 20 January 2015 in [35] were utilized to certify the effectiveness of the improved SSM.
The wave texture characteristic of the sea waves in the radar images looks similar when the
sea condition changes a little.

For the SWH inversion formula in [35], the traditional SSM is improved by using a
shallow water condition correction strategy due to the influence of the water depth. Thus,
the proposed method in [35] is suitable for both the deep water area and the nearshore
shallow water area. However, the retrieving accuracy is not always ideal for X-band
marine radar images since the geometrical optics theory may work under low wind speeds
based on the confidence predictor for using geometrical optics. Therefore, in this paper, the
research focuses on improving the accuracy of the SWH for the SSM under low wind speeds.
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Figure 3. The collected marine radar images.

The analysis area selected I(r, θ) from Figure 3 is shown in Figure 4. The horizontal
co-ordinate is the azimuth, and the vertical co-ordinate is the range. The selected analysis
area is at least 400 m away from the radar system due to the echo signal saturation near the
radar antenna. Considering that the echo intensity decays nonlinearly with increase in the
distance to the radar platform, the far boundary of the selected analysis area is 2400 m.

Figure 4. The selected analysis area from the radar image.

In order to obtain the gradient images IGi(r, θ), eight different operators Hi(r, θ) are
used to convolve with the selected area of the radar image. The edge image IF is obtained
after filtering out the noise in the gradient images and superimposing the eight gradient
images, which is shown in Figure 5.
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Figure 5. The edge image is achieved by using the difference operators.

The fixed shadow threshold denotes taking the mode on the histogram for the entire
shadow image. Based on the achieved edge image IF, the non-zero in each distance line of
the edge image could be determined. Thus, the optimal number of separated blocks L in the
distance direction is obtained based on the Formula (9). After obtaining the i-th block of the
shadow image and the corresponding histogram, the shadow segmentation threshold of
each block could be determined by taking the mode on each histogram. Thus, the adaptive
shadow segmentation threshold was obtained by smoothing each shadow segmentation
threshold in the distance direction. Based on the characteristic of the edge image and the
distance resolution of the radar data, the optimal number of blocks L = 9 is determined
by using (7) and (9). Then, the corresponding segmentation position can be determined.
Figure 6 presents the adaptive shadow segmentation threshold obtained by utilizing the
proposed strategy. The horizontal and vertical axes represent the distance to the radar
platform and the threshold value, respectively. The blue solid line is the estimated shadow
segmentation threshold of 1250 based on the original SSM. The pink circle represents the
shadow segmentation threshold estimated in each block by the proposed method. By fitting
the threshold estimated in each block with the quadratic polynomial (10), the red solid
curve represents the adaptive shadow segmentation threshold, which changes with the
span of the radar platform.
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Figure 6. The obtained shadow segmentation threshold.

At a distance of approximately 1100 m from the radar platform, the shadow threshold
of the proposed strategy is larger compared to the original SSM. In the near range to
the radar platform, the grazing angle is greater than 1◦. The adaptive shadow threshold
increases from 400 m to 1100 m since the electromagnetic wave can illuminate most of the
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sea surface. However, the adaptive shadow threshold decreases from 1100 m to 2400 m
since the echo intensity of the wave signal decreases with distance.

By using the calculated shadow segmentation threshold, the shadow image of the
selected analysis area is shown in Figure 7. Figure 7a is the achieved shadow image based
on the traditional SSM. Figure 7b is the achieved shadow image obtained by utilizing
the proposed adaptive shadow segmentation threshold. The black areas of the shadow
image indicate nonshadow areas that can be observed by radar, whereas the white areas
indicate shadow areas blocked by front-high waves. In comparison, it can be observed
that the shadow areas in Figure 7b are less than those in Figure 7a, especially in the far
area of the analysis area selected for the radar platform. The shadow areas near the radar
are almost the same since the grazing angle is relatively large, and the sea surface can
almost be illuminated by the emitted electromagnetic wave. For the proposed strategy, the
attenuation of the echo intensity with distance is appropriately considered. The shadow
areas of the analysis areas can be more accurately distinguished. By using the adaptive
shadow segmentation threshold, this avoids the bright stripe with a weak echo in the far
area being misinterpreted as the shadow area due to the attenuation of the radar echo in
the distance.

(a)

(b)

Figure 7. The shadow image obtained by using the shadow segmentation threshold. (a) The tradi-
tional SSM; (b) the proposed SSM.

For the 180◦ in the azimuth of the radar image, the look direction of the radar is
perpendicular to the wave direction. Based on the long peak wave hypothesis, most sea
waves can be observed, and the shadow area almost does not exist. From Figure 7b, it can
be observed that the area near the 180◦ in the azimuth is almost the nonshadow area. For
the 270◦ in the azimuth, which is parallel to the wave direction, the estimated shadow areas
are similar to those of the traditional SSM.

Once the captured shadow image has been segmented into blocks, the shadow ratio
function and the illumination ratios in each partition can be obtained. Using the Smith
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fitting function, the WS for each partition can be calculated with the derived illumination
probability. For a partition, the calculated illumination probability and the obtained Smith
fitting function as a function of the grazing angle are presented in Figure 8. The horizontal
and vertical axes are the grazing angle and the calculated illumination probability. The
red cross and the blue circle are the calculated illumination ratio from the shadow images
using the traditional and proposed statistical approaches, respectively. The red dashed line
and the blue line are fitted with the Smith function, co-ordinated with the probability of
illumination. When the adaptive shadow segmentation threshold is used, the illumination
probability increases for the low grazing angle compared to that of the traditional shadow
threshold. For grazing angles greater than 3◦, the obtained illumination probabilities based
on the traditional and the adaptive shadow threshold are similar.

0 1 2 3 4 5 6 7

Grazing angle ( °)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Ill
um

in
at

io
n 

pr
ob

ab
ili

ty

original method
proposed method
fitted SFF
fitted SFF

Figure 8. The fitted Smith function with the calculated illumination as a function of the grazing angle.

When using the traditional SSM with a fixed threshold, the shadow ratio will increase
in the distance direction due to the weak backscatter in the distance. Then, the sea surface
slope and the SWH will be overestimated [31,32]. However, the estimated sea surface slope
decreases when the adaptive shadow threshold is utilized.

The calculated sea surface slope based on the fixed shadow threshold and the adaptive
shadow segmentation threshold in the azimuth is presented in Figure 9. The vertical and
horizontal axes represent the obtained RMS sea surface slope and the azimuth, respectively.
The red dashed line with the cross indicates the calculated WS based on the traditional
hard shadow segmentation method. The blue solid line with the circle is the calculated WS
based on the proposed adaptive shadow segmentation threshold. By averaging the WS in
each partition, the averaged RMS WS based on the traditional and the proposed SSM can
be obtained. It can be observed that the achieved sea surface slope in the azimuth and the
averaged RMS based on the adaptive shadow threshold proposed are less than that of the
original SSM.
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Figure 9. The estimated sea surface slope in the azimuth.
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From Figure 9, it can be seen that the WSFV can be constituted by utilizing the
obtained sea surface slope in the azimuth. Then, the extracted feature vectors from the
dataset are randomly divided into training and test sets, which are utilized to train the
model and to verify the retrieving accuracy. Thus, the SWH is calculated by inputting the
extracted WSFV of the test set into the SVR model. In order to certify the suitability of the
proposed approach, the performance of the adaptive shadow segmentation threshold, the
SVR technology, and the constituted feature vector are analyzed below.

Since the wave buoy works for 20 min per hour and outputs one record per hour, the
retrieved SWH from the radar data for 20 min is averaged to minimize the error between
the buoy records and the SWH extracted from the radar image. The 222 feature vectors are
randomly divided into training and test datasets. The training set containing 111 feature
vectors is used to achieve the weight and bias parameters. The test set is used to verify the
performance of the proposed method. The extracted SNR from the training set is used to
obtain the coefficient of the linear relation. Figure 10 is the retrieved SWH based on the
radar images and the buoy record. The vertical axis and the horizontal axis represent the
SWH and the number of the experimental set, respectively. Since the performance of the
different retrieving SWH methods are compared, Figure 10a,b are used to better illuminate
the differences in the retrieved SWH based on the test set.
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Figure 10. The retrieved SWH based on the radar images and the buoy record. (a) The retrieved SWH
based on the original SSM and the SNR-based method; (b) the retrieved SWH based on the WSFV
and the SVR-based technology.

M1 denotes the estimated SWH based on the extracted SNR and the ideal linear
relationship to the SNR; M2 is the original SSM, and M3 is the shadow statistical approach
using the proposed adaptive shadow segmentation threshold. For M2 and M3, the SWH is
estimated based on the relationship of the theoretical derivation to the zero-crossing period
and the averaged RMS WS. Instead of using the derivative relationship, the SVR machine



Remote Sens. 2023, 15, 5355 15 of 25

learning technology is introduced to calculate the SWH. M4 is the retrieving method based
on the SNR and SVR. For M5, the SVR is utilized to achieve the SWH based on the obtained
RMS WS compared to M2. For M6, the adaptive shadow segmentation threshold and
the SVR are used. Compared to M5 and M6, the constituted feature vector based on the
obtained WS in the azimuth is considered in M7 and M8, respectively.

Figures 11 and 12 are the corresponding wind speed and wave direction, respectively.
From Figure 12, it can be observed that the domain wave direction is rarely contained in
the selected analysis area.
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Figure 11. The corresponding wind speed.
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Figure 12. The corresponding wind speed.

From Figure 10a, it can be observed that the SNR-based method, M1, has the most
significant errors compared to the others. Commonly, the SWH increases with increase
in the wind speed. Based on the buoy record, it could be observed that the SWH mainly
concentrates on the range of 1–2 m. The parameters of the linear relation are determined
based on the radar data under low sea conditions. Thus, the M1 algorithm does quite well,
except when the wave height is large, such as for samples 15–30 and 75–90. During the
period covered by samples 30–40, the retrieving accuracy of the SWH deteriorates, since
the wind speed rapidly decays and the wave direction significantly changes. Although
the SSM method M2 should have better retrieving accuracy than the spectrum analysis
method M1, the performance of the M2 method may be better during the period covered by
samples 96–105 since the wind speed decays. By combining the extracted SNR with SVR
technology, the retrieving accuracy is greatly improved. When the adaptive segmentation
threshold is adopted, the retrieved SWH fluctuates slightly compared to the original SSM.
However, the difference is not significant in terms of whether to use the adaptive threshold.
From Figure 10b, the retrieving SWH from the radar images fluctuated closely with the
buoy record, especially when using the constituted WSFV. The SWH calculated by the
proposed method is closest to the wave buoy record. The deviation between the reference
and the extracted SWH by using the proposed method is slight.
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When the ratio of the training set to the test set is 1:1, the scatterplot between the
estimated SWH and the wave buoy record is investigated in detail based on radar Dataset 1,
which contains 222 radar image sequences.

Figure 13 is the estimated SWH based on the 3D fast Fourier transform (FFT) spectral
analysis method. The horizontal axis and vertical axis indicate the reference value and
the retrieved SWH from the radar images, respectively. It can be observed from the point
density that the calculated SWH with the 3D FFT approach is mainly concentrated in the
range of 0.5∼2.5 m and is lower than the buoy record. The mean bias (BIAS), mean absolute
error (MAE), correlation coefficient (CC), and root mean square error (RMSE) are −0.57 m,
0.35 m, 0.57, and 0.73 m, respectively.
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Figure 13. Scatterplot of the estimated SWH based on the traditional 3D FFT approach.

The retrieved SWH with the SSM is illuminated in Figure 14. Figure 14a is a scatterplot
of the SWH using the original SSM. The BIAS, MAE, CC, and RMSE are −0.34 m, 0.26 m,
0.59, and 0.56 m, respectively. Although the performance is more promising than that
of the 3D FFT method, the retrieving accuracy of SWH is not ideal. The point density
using the presented adaptive shadow segmentation threshold for the SSM is illustrated
in Figure 14b. The BIAS, MAE, CC, and RMSE are −0.38 m, 0.25 m, 0.63, and 0.57 m,
respectively. Although the MAE and RMSE are close to that of the original statistical
approach, the CC increases by 0.04.

In practice, it is not always possible to retrieve the wave parameters from the shore-
based radar images in the sub-area around the upwind direction, which typically has the
strongest echo intensity. In this paper, the scatter echo intensity of the shore-based radar
images in the downwind direction has to be used to retrieve the SWH due to the influence
of the surrounding terrain. Thus, the extracted SWH contains considerable errors based on
the 3D FFT and the shadow statistical approaches.

In order to verify the effectiveness of the SVR technology, the performance of the
retrieved SWH is presented in Figure 15. Instead of using the linear relationship between
the SWH and the SNR, the retrieved SWH based on the SNR and SVR is illuminated
in Figure 15a. The BIAS, MAE, CC, and RMSE are −0.09 m,0.17 m, 0.76, and 0.37 m,
respectively. Compared to the traditional 3D FFT approach in Figure 13, the MAE and
RMSE decrease by 0.18 m and 0.36 m, respectively. The CC increases by 0.19. The SVR
technology can enhance the retrieving precision of the SWH for the SNR feature. A
scatterplot of the extracted SWH using the averaged WS and SVR technology is given
in Figure 15b. The BIAS, MAE, CC, and RMSE are −0.06 m, 0.22 m, 0.61, and 0.44 m,
respectively. Although SVR is adopted, it can be observed that the retrieving accuracy of
the SWH is lower than that based on the SNR feature compared to Figure 15a. A scatterplot
of the extracted SWH, obtained by utilizing the adaptive shadow segmentation threshold
from the SSM and SVR technology, is given in Figure 15c. The BIAS, MAE, CC, and RMSE
are −0.11 m, 0.18 m, 0.78, and 0.38 m, respectively. The performance of the extracted
SWH is close to that based on the SNR feature. The SVR technology can enhance the
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extraction accuracy. Compared to Figure 15b, the MAE and RMSE decrease by 0.04 m and
0.06 m, respectively, and the CC increases by 0.17 when the adaptive threshold is used.
It is observed that the adaptive shadow segmentation threshold can greatly improve the
retrieving accuracy of the SWH when the machine learning technology SVR is used.
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Figure 14. Scatterplot of the estimated SWH based on the shadow statistical methods. (a) The original
SSM. (b) The SSM based on the adaptive shadow segmentation threshold.
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Figure 15. Scatterplot of the estimated SWH based on the SVR technology. (a) The estimated SWH
based on SNR and SVR. (b) The estimated SWH based on the original shadow threshold and SVR.
(c) The estimated SWH based on the adaptive segmentation threshold and SVR.

Since the echo intensity of the radar image depends on the wind direction, the echo
intensity in the downwind and upwind directions approaches the minimum and maximum
for the X-band HH polarization radar. Thus, the calculated WS and SWH in the azimuth
are different when using the chosen analysis area from the radar images. In order to solve
this problem, the WSFV in the azimuth is constituted in this paper. The point density
based on the constituted WSFV in the azimuth and the SVR is presented in Figure 16.
Figure 16a is the estimated SWH based on the original shadow threshold, the constituted
WSFV, and the SVR technology. The BIAS, MAE, CC, and RMSE are −0.04 m, 0.16 m, 0.80,
and 0.33 m, respectively. A point density scatterplot of the proposed method utilizing the
adaptive shadow segmentation threshold, the constituted WSFV, and SVR is presented
in Figure 16b. The BIAS, MAE, CC, and RMSE are −0.03 m, 0.14 m, 0.86, and 0.28 m,
respectively. Compared to Figure 16a, it can be observed that the MAE and RMSE are
reduced by 0.02 m and 0.05 m, and the CC increases by 0.06. From Figure 16b, the proposed
approach in this paper has the best retrieving accuracy from the shore-based radar images
compared to the other methods.
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Figure 16. Scatterplot of the estimated SWH based on the constituted feature vector. (a) The consti-
tuted feature vector based on the original shadow threshold. (b) The constituted feature vector based
on the adaptive shadow segmentation threshold.

Table 1 shows the experimental performance of the retrieved SWH when using radar
Dataset 1, collected in January 2015.

Table 1. Comparison of the retrieval results based on radar images from Dataset 1.

Ratio Index M1 M2 M3 M4 M5 M6 M7 M8

1:2

BIAS (m) −0.57 −0.34 −0.36 −0.07 −0.06 −0.07 −0.07 −0.06

MAE (m) 0.35 0.27 0.26 0.17 0.22 0.18 0.18 0.16

RMSE (m) 0.72 0.54 0.51 0.35 0.44 0.35 0.34 0.32

CC 0.53 0.51 0.58 0.75 0.55 0.73 0.74 0.80

1:1

BIAS (m) −0.57 −0.34 −0.38 −0.09 −0.06 −0.11 −0.04 −0.03

MAE (m) 0.35 0.26 0.25 0.17 0.22 0.18 0.16 0.14

RMSE (m) 0.73 0.56 0.57 0.37 0.44 0.38 0.33 0.28

CC 0.57 0.59 0.63 0.76 0.61 0.78 0.80 0.86

2:1

BIAS (m) −0.52 −0.35 −0.36 0.01 0.01 −0.07 −0.04 0.02

MAE (m) 0.32 0.29 0.28 0.17 0.22 0.17 0.16 0.14

RMSE (m) 0.68 0.56 0.58 0.34 0.40 0.36 0.28 0.26

CC 0.62 0.64 0.66 0.80 0.73 0.79 0.85 0.89



Remote Sens. 2023, 15, 5355 20 of 25

Firstly, the performance of the adaptive shadow segmentation threshold is described
in detail when the ratio of the training set to the test set is 1:1. When comparing M3 to M2,
the CC increases by 0.04. However, the MAE and the RMSE are close. When comparing M6
to M5, it can be observed that the MAE and the RMSE are reduced by 0.04 m and 0.06 m,
and the CC increases by 0.17 when the adaptive shadow segmentation threshold is used.
When comparing M8 to M7, it can be observed that the MAE and RMSE are reduced by
0.02 m and 0.05 m, and the CC increases by 0.06. Thus, the MAE and RMSE are reduced,
and the CC is greatly increased when the adaptive shadow segmentation threshold is used.
The adaptive threshold approach can enhance the retrieving accuracy of the SWH for the
average wind speed of 5∼10 m/s.

Secondly, the performance of the SVR technology is considered for the shadow sta-
tistical approach when the ratio of the training set to the test set is 1:1. When comparing
M5 to M2, it can be observed that the MAE and RMSE are reduced by 0.04 m and 0.12 m,
and the CC increases by 0.02 when the SVR technology is used. When comparing M6
to M3, it can be observed that the MAE and RMSE are reduced by 0.07 m and 0.19 m,
and the CC increases by 0.15 when the SVR technology is used. It is observed that the
retrieving accuracy of the SWH is greatly improved when the SVR technology is adopted.
The SVR method, which solves different regression problems, considers data errors and
model generalization. Therefore, when compared with the original inversion method M2
of the SWH, the SVR-based approach can significantly enhance the inversion accuracy.
When compared with M2, M3, and M5, M6 has good performance since both the adaptive
shadow segmentation threshold and the SVR technology are introduced into the shadow
statistical method.

Finally, the effectiveness of the constituted feature vector based on the obtained WS
in the azimuth is certified. When comparing M7 to M5, it can be observed that the MAE
and RMSE are reduced by 0.06 m and 0.11 m, and the CC increases by 0.19 when the
constituted feature vector is used. When comparing M8 to M6, it can be observed that the
MAE and RMSE are reduced by 0.04 m and 0.10 m, and the CC increases by 0.08 when the
constituted feature vector is used. During the process of retrieving the SWH, instead of
using the averaged RMS WS extracted from the selected analysis area, M7 and M8 have
high performance compared to M5 and M6, respectively. Both the MAE and RMSE are
reduced, and the CC is increased. The constituted feature vector could solve the problem
that the analysis area of the upwind direction could not always be obtained from the radar
images for the shore-based marine radar. The experimental results reveal that the inversion
accuracy of the SWH is higher, and the error is smaller when the constituted WSFV is used.

In addition, it can be seen from Table 1 that the retrieving accuracy of the SWH
increases with increase in the training set. The proposed approach, M8, which uses the
adaptive threshold method, constituting the WSFV and SVR technologies, has the highest
retrieving accuracy based on the collected shore-based radar data when the proportions of
the radar data in the training set to the test set are 1:2 and 1:1. However, the CC and RMSE
of M8 is close that of the M7 when the ratio of the training set to the test set is 2:1. With
increase in the training set, the effect of the adaptive threshold method is relatively weak
since more radar data with a high wind speed are selected as the training set. More radar
data under low wind speeds should be utilized to further verify the effectiveness of the
adaptive shadow segmentation threshold.

Table 2 shows the experimental performance of the retrieved SWH when using 258 sets
of radar data collected in November 2014. From Table 2, it can be seen that the shadow
statistical methods with the combined feature vector and the SVR technology have a
relatively high retrieval accuracy. However, the performance of these methods with the
adaptive shadow segmentation threshold is a little lower than for the methods without
utilizing the adaptive shadow segmentation threshold.

Based on the comparison between M3 and M2 in Table 2, it can be observed that
when using the adaptive shadow segmentation threshold, the SWH accuracy is close
to that when using the traditional shadow threshold. The traditional shadow method
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was developed based on geometric optics theory and is suitable for Dataset 2 with high
wind speeds. However, under low wind speed conditions, the performance of using an
adaptive shadow segmentation threshold strategy is superior to that of using the traditional
shadow threshold.

When the ratio of the training set to the test set is 1:1, the retrieved SWH based on
the traditional SNR method, M1, has high errors for high wind speeds. However, the
performance of M4 significantly improved compared to M1 when the SVR technology was
introduced. The BIAS, MAE, and RMSE reduced by 0.71 m, 0.2 m, and 0.46 m, respectively.
The CC increased by 0.15.

From Table 2, it can also be seen that the constructed feature vectors can further
improve the inversion accuracy of the shadow method under high wind speeds. Compared
to M7 and M5, the MAE and RMSE decreased by 0.03 m and 0.05 m, respectively, and the
CC increased by 0.06. Meanwhile, the MAE and RMSE decreased by 0.03 m and 0.04 m,
respectively, and the CC increased by 0.05 compared to M8 and M6. Thus, this indicates
that using the feature vector method can further improve the accuracy of the SWH.

Based on the above analysis, we infer that the effect of the constituted WSFV on
improving the retrieval accuracy is dominant. It can be seen that the proposed method
with the combined WSFV and SVR technology always improves the CC and decreases the
RMSE for both Dataset 1 and Dataset 2.

Table 2. Comparison of retrieval results based on radar images from Dataset 2.

Ratio Index M1 M2 M3 M4 M5 M6 M7 M8

1:2

BIAS (m) −0.72 −0.34 −0.38 −0.05 0.05 −0.04 −0.05 −0.07

MAE (m) 0.42 0.22 0.23 0.18 0.15 0.18 0.15 0.17

RMSE (m) 0.83 0.46 0.50 0.36 0.30 0.31 0.29 0.35

CC 0.58 0.80 0.79 0.69 0.80 0.77 0.85 0.81

1:1

BIAS (m) −0.74 −0.34 −0.39 −0.03 0.04 −0.06 0.04 0.05

MAE (m) 0.40 0.23 0.23 0.20 0.17 0.19 0.14 0.16

RMSE (m) 0.83 0.47 0.51 0.37 0.30 0.33 0.25 0.29

CC 0.56 0.81 0.78 0.71 0.82 0.78 0.88 0.83

2:1

BIAS (m) −0.77 −0.38 −0.42 −0.06 −0.02 −0.05 −0.05 −0.07

MAE (m) 0.43 0.22 0.23 0.19 0.16 0.17 0.14 0.15

RMSE (m) 0.90 0.51 0.55 0.41 0.31 0.34 0.27 0.31

CC 0.61 0.82 0.81 0.71 0.82 0.80 0.87 0.83

6. Discussion

Since the scanning period of the radar in this paper is approximately 2.3 s, the retrieved
results from the radar images are averaged within 20 min to minimize the measurement
error between the marine radar and the wave buoy. Based on the estimated adaptive
shadow threshold, the CC of the retrieving SWH from the X-band radar images was
improved compared with the original SSM, since the attenuation of the echo intensity
of the sea wave in the distance direction was considered for the condition of low wind
speeds. Under the condition of low wind speeds, the proposed approach improves the
retrieving accuracy of the SWH by using the constructed WSFV with the adaptive shadow
segmentation threshold.

The derived SWH from the marine radar images is less than that of the wave buoy
under the condition of a high sea. The geometrical optics can provide a good approximation
of the typical X-band marine radar, especially when the wind speed increases. Under the
condition of a low wind speed, the diffraction is dominant. For the X-band marine radar,



Remote Sens. 2023, 15, 5355 22 of 25

the geometrical optics theory is dominant and does not work when the wind speed is
greater than 12 m/s and less than 4 m/s, respectively. Geometrical optics and diffraction
exist for a wind speed between 4 and 12 m/s. The retrieval accuracy based on Dataset 2
is higher than that based on Dataset 1 since the geometrical optics theory is relatively
more applicable.

In this paper, the effect of the wind speed on extracting the SWH is considered. The
original SSM can accurately estimate the SWH when the radar data are collected under a
wind speed of greater than 15 m/s. However, the SWH is overestimated from the marine
radar images when the average wind speed is less than 4 m/s. By investigating in-depth
the confidence predictor when using geometrical optics, the geometrical optics theory of
shadowing is completely valid when the average wind speed is greater than 12 m/s for the
X-band marine radar. However, the geometrical optics theory may work when the average
wind speed is 4 ∼12 m/s.

The average wind speed of Dataset 1 is less than that of Dataset 2. The confidence of
the geometrical optics increases with increase in the wind speed. For Dataset 2, for a high
wind speed, the performance of the adaptive shadow segmentation threshold is close to
that of the traditional shadow threshold. However, the performance of using the strategy
with the adaptive shadow segmentation threshold under a low wind speed is better than
that of using the traditional shadow threshold.

The retrieved SWH based on the proposed SSM is higher than the reference value for
the low sea state when the wave height is less than 1 m. Since the echo intensity of the
sea clutter is proportional to the sea surface wind, the wind speed and the wind direction
should be considered for improving the retrieval performance in the future.

For the SSM, the WS in the azimuth is different because the echo intensity of the
sea wave is related to the wave and wind direction. Currently, the influence of the wave
direction on retrieving the SWH is rarely considered. During the experiment, it could be
observed that the shadow area in Figure 7 and the calculated WS in Figure 9 were related
to the wave direction. When the look direction of the radar is parallel to the wave crest,
most sea waves can be observed, and the shadow area almost does not exist. In this case,
the calculated WS and SWH are underestimated in practice. Therefore, the influence of
the wave direction should be considered for further improving the retrieval accuracy of
the SWH.

The sea wave is non-uniformly characteristic in the spatial domain for the nearshore
area, especially in nearshore areas where the marine environment is influenced by the
seabed topography and coastline. Due to the impact of the coastline, the sub-area selected
around the upwind direction is not available for retrieving the wave parameters. In these
cases, the feature vector is constituted by using the calculated WS in each azimuth partition.
The proposed method, which combines the constituted feature vector and the SVR-based
technology, exhibits good performance for retrieving the SWH.

Commonly, in practice, vessels may enter the analysis area of interest for the shore-
based marine radar. The shadow area is generated by the vessel in the radar look direction
since the vessel blocks the propagation direction of the electromagnetic waves. Both the
echo intensity of the vessel and the generated shadow area by the vessel are different
to that of the sea wave. The influence of vessels increases when more vessels enter the
analysis area of interest. Although the proposed method in our manuscript can improve
the retrieval accuracy of the SWH under a low wind speed, the influence of the vessel
has not been considered. In our experiment, the radar images are manually inspected to
eliminate the influence of vessels on retrieving the SWH. When the selected analysis area
contains vessels or other objects, the retrieving accuracy of the SWH is reduced for the SSM.
Therefore, the influence of vessels should be considered to increase the applicability of the
SSM in the future.
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7. Conclusions

In order to improve the retrieval accuracy of the SWH from the X-band marine radar
images, the SSM, which has the advantage of not requiring external calibration, e.g., from
a buoy, is analyzed. Since the echo intensity of sea waves changes dynamically with the
distance to the radar platform, an adaptive shadow segmentation threshold that considers
the attenuation of the radar echo is proposed to obtain the shadow image. Then, the shadow
and nonshadow areas in the original radar image are more reasonably divided. Based on
the achieved WSFV with the adaptive shadow segmentation threshold, an approach for
extracting the SWH from an X-band marine radar image is presented in this paper. The
performance of the retrieved wave height illustrates that the proposed method can enhance
the inversion accuracy of the SWH.

Due to the influence of the surrounding terrain and the monsoon characteristics, it is
usually impossible to select the analysis area around the upwind direction for retrieving
the SWH in the nearshore area. In this paper, the echo intensity difference for the sea clutter
in the azimuth is considered. The obtained WS in the azimuth is utilized to constitute the
feature vector, which is beneficial for enhancing the retrieving accuracy of the SWH. The
sea wave in the nearshore area is commonly nonstationary and nonuniform due to the
impact of the complex seabed topography and coastlines. Thus, the classic SVR method is
used to calculate the SWH based on the extracted WSFV. The CC between the proposed
method and the reference increased by 0.27, and the MAE and RMSE decreased by 0.12 m
and 0.28 m, respectively, compared with that of the traditional SSM. The proposed method
of retrieving the SWH from marine radar images by using the constituted WSFV and SVR
technology can meet the accuracy requirements of engineering.

The wave number and the wave period of the sea wave could be extracted from
the radar image sequence based on the traditional spectral analysis method. However,
the wave buoy record is used as the ground truth for providing accurate measurement
results to reduce the influence of the inaccurate wave period during the retrieval process.
Thus, the performance of the SSM is currently evaluated based on the achieved mean zero
up-crossing period from the wave buoy. The performance of retrieving the SWH based on
the WS and the wave period extracted from radar images should be certified in the future
in practice.
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