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Abstract: High-resolution range profile (HRRP), characterized by its high availability and rich target
structural information, has been extensively studied. However, HRRP-based target recognition
methods using closed datasets exhibit limitations when it comes to identifying new classes of targets.
The scarcity of samples for new classes leads to overfitting during the deep learning process, and
the similarity in the scattering structures of different ships, combined with the significant structural
differences among samples of the same ship, contribute to a high level of confusion among targets. To
address these challenges, this paper proposed Task-Specific Mate-learning (TSML) for few-shot HRRP.
Firstly, a Task-Adaptive Mixed Transfer (TAMT) strategy is proposed, which combines basic learning
with meta-learning, to reduce the likelihood of overfitting and enhance adaptability for recognizing
new classes of ships. Secondly, a Prototype Network is introduced to enable the recognition of new
classes of targets with limited samples. Additionally, a Space-Adjusted Meta Embedding (SAME)
is proposed based on the Prototype Network. This embedding function, designed for HRRP data,
modifies the distances between samples in meta-tasks by increasing the distances between samples
from different ships and decreasing the distances between samples from the same ship. The proposed
method is evaluated based on an actual measured HRRP dataset and the experimental results prove
that the proposed method can more accurately recognize the unknown ship classes with a small
number of labels by learning the known classes of ships. In addition, the method has a degree of
robustness to the number of training samples and a certain generalization ability, which can produce
improved results when applied to other backbones.

Keywords: HRRP; target recognition; base learning; meta learning; GCN; Multi-head Attention

1. Introduction

Maritime control and situational awareness have garnered increasing significance,
especially in the context of classifying and identifying maritime targets. In this regard,
considerable attention has been devoted by researchers to radar automatic target recog-
nition (RATR), which has led to the development of various classification approaches.
Based on the type of radar data, target classification methods can be broadly categorized as
radar cross section (RCS)-based methods [1,2], synthetic aperture radar (SAR)-image-based
methods [3–8] and high-resolution range profiles (HRRP)-based methods [9–11]. HRRP,
which is the projection of the spatial scattering structure of the target in the direction of the
radar line of sight (LOS) [12], provides essential information such as target size, scattering
structure, and position. In comparison to SAR images, HRRP offers the benefits of simple
acquisition, easy storage, and straightforward processing. Consequently, HRRP-based
target recognition methods have gained popularity in the field of RATR.
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Traditional target recognition techniques have the advantage of requiring less
data. For instance, Ning et al. [13] proposed a non-equidistant margin plane (NM)
in high-dimensional feature space to enhance object recognition accuracy for HRRP data.
Wang et al. [14] incorporated a defined separability measure based on the distribution
of training samples into the construction of a decision tree, and proposed an improved
support vector machine (SVM) decision tree. Furthermore, Chai et al. [15] developed a
weighted k-nearest neighbors (KNN) classifier to mitigate the effects of outliers before
cooperative target identification. However, the majority of feature extraction methods
are unsupervised and lossy, as well as highly dependent on the knowledge and experi-
ence with HRRP data of researchers. This means that these methods do not focus well
on the maximum separability features, and it can be challenging to obtain the expected
results. Compared with the above methods, deep learning can produce better results
when applied to HRRP-based RATR [16–19]. It is essential to note, however, that these
methods are primarily trained and tested on specific datasets, and the classifiers used
during testing have been exposed to a substantial number of samples from known cate-
gories. This category-complete, azimuthally comprehensive scenario is referred to as
the closed dataset setting for HRRP target recognition. Networks trained under this
paradigm are limited to recognizing specific target types.

In reality, a more intricate situation arises in which radar target recognition systems
are required to identify novel classes of targets. However, typically, samples are scarce
for these novel classes, giving rise to a class of open-set recognition problems which we
refer to as the few-shot problem. When the number of labeled HRRP samples is limited,
existing research has predominantly employed two approaches to address overfitting
during deep learning. The first approach involves expanding existing data to generate
additional samples [20–22], while the second strategy combines semi-supervised learning
with transfer learning to facilitate knowledge-sharing [23,24]. Nevertheless, when data
are seriously lacking, the effectiveness of these techniques is limited. Sufficient training
data may not be generated through data expansion to cover diverse data distributions,
and transfer learning may only transfer general prior knowledge among related domains,
which may prove insufficient for efficient model learning when significant amounts of data
are missing. Therefore, these methods are insufficient to address the problem of insufficient
data and overfitting in deep learning.

Few-shot learning (FSL) [25] is a type of meta-learning that addresses the challenge
of target classification when only a limited number of labeled instances are available. FSL
involves two sets of visual concepts: seen classes that have sufficient labeled instances
and unseen classes that have few labeled instances. The objective of FSL is to develop a
visual classifier that can identify unseen classes using seen classes, making it task-agnostic.
This means that the trained model can be applied to the recognition task of novel classes.
However, FSL is still in the developmental stage in the field of optical images, and there
are fewer studies on HRRP-based few-shot target recognition [24,26]. Moreover, existing
FSL methods are not entirely applicable to HRRP due to two primary reasons. Firstly,
the scattering structures of different ship classes are still very similar, which leads to small
differences between HRRP samples of different ship classes. Secondly, high-resolution
radar, being a large integrated system, is inevitably affected by various environmental
factors when acquiring the HRRPs of a target. When the attitude of the target changes
relative to the LOS, the position of each scatter on the target changes relative to the position
of the radar. This change causes relatively substantial differences between HRRP samples
of the same target. Applying current FSL methods for optical images to the field of HRRP
is challenging due to the difficulty in accurately classifying ship samples that belong to the
same class but have relatively large differences. Therefore, it is essential to emphasize the
distinctions between classes and reduce the variation within each class when working with
HRRP data.

To address the challenge of recognizing new classes of HRRP targets with limited
samples and high target confusability, a method for HRRP target recognition is introduced
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in this paper. Firstly, base-learning and meta-learning methods are employed to mitigate
the issue of overfitting in few-shot HRRP recognition. Few-shot recognition of HRRP is
addressed during the meta-learning phase. And in the base-training phase, the feature
extractor, through modeling all HRRP samples, acquires robust feature extraction capabili-
ties, thereby providing a solid foundation for initializing the weights in the meta-learning
phase. During the weight transfer process, the training parameters are reduced by freezing
shallow-level blocks and retaining feature weights acquired during the base learning phase
to extract envelope features and local physical characteristics from HRRP samples. Several
fine-tuning strategies are applied to the deep-level block weights to adapt them to new
classification tasks. This transfer strategy alleviates issues related to feature loss and poor
adaptability to new tasks during the transfer process, reducing data redundancy and,
consequently, minimizing overfitting risk in meta-training. Furthermore, the proposed
method enhances discriminative embeddings through an additional embedding function
based on prototype networks during meta-training. Specifically, Graph Convolutional
Networks (GCNs) are utilized in the meta-training phase to embed support set samples.
GCNs capture sample relationships and similarities, aligning samples of the same class in
the embedding space, which results in prototypes, defined as the mean embedding vectors
for each class. Multi-head Attention is applied to prototype embeddings, assigning feature
weights to accentuate subtle feature distinctions among categories, thereby improving pro-
totype distinguishability in the embedding space. Samples in the query set, once embedded
by GCN, are classified based on their proximity to the nearest class prototypes. This part,
based on the prototype network, not only addresses the problem of recognizing novel
classes, but also, by embedding samples and prototypes differently, reduces classification
confusion, thereby enhancing recognition accuracy.

Our overall contribution is thus four-fold:

(1) To address the limitations of recognizing specific target types in the HRRP target
identification task on a closed dataset, the prototype network is introduced in this
paper. This enables the identification of novel class targets with limited samples.

(2) To mitigate the overfitting issues that can arise when dealing with a high number
of network parameters during meta-training, the Task-Adaptive Mixed Transfer
is proposed, which reduces the training parameters, avoiding the redundancy in
parameter fine-tuning and computational resource wastage, without introducing
information loss during the transfer process.

(3) To address the challenge of high target confusion during the identification process,
a Space-Adjusted Meta Embedding for HRRP based on the prototype network is
proposed, which generates discriminative embedding vectors and prototypes, thus
improving the accuracy of target classification in HRRP.

(4) The proposed method in this paper is evaluated based on the actual measured HRRP
data. Experiments, both in terms of quantitative results and visualizations, demon-
strate that the proposed method can more accurately identify unknown ship classes
with a small number of labels by learning the known classes of ships. Furthermore,
by varying the number of training samples, we find that the method exhibits a degree
of robustness to the number of training samples.

2. Background
2.1. HRRP

HRRP [12] is a technique used for projecting the spatial scattering structure of a target
in the direction of LOS, as shown in Figure 1. The scattering point model employed by this
technique partitions the target along the LOS into several distance units. Assuming the
absence of noise and interference, let the i distance unit contain Ni scattering points of the
target, i = 1, 2, 3, . . . , n, and n is the total number of distance units. The sum of all target
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scattering point echoes is superimposed in the i distance unit, and the expression can be
represented as follows:

x(i) =
Ni

∑
j=1

aije
j2π f τij (1)

where aij represents the intensity coefficient of the j scattering point; τij is the echo delay
caused by the j scattering point. x(i) contains the amplitude information and phase
information of the target, in which the amplitude information is generally used in radar
target identification. Thus, each ship sample can be expressed as:

x = [|x(1)|, |x(2)|, · · · , |x(n)|] (2)

Figure 1. Schematic of HRRP of radar target.

2.2. Few-Shot Learning

FSL is an application of meta-learning within the domain of supervised learning.
Meta-learning, also known as “learning to learn” [25], involves converting the training set
into a large number of few-shot tasks during the training phase, with the goal of learning
the generalization ability of the model in the presence of class changes. In the testing phase,
the model can perform classification tasks using existing learned knowledge, without the
need for further changes. Most of the few-shot classification studies are based on optical
images and can be broadly classified into the following categories:

(1) Meta-learning based on data expansion (Refs. [27–29]). This approach involves
generating additional positive or negative data based on the labeled data provided,
which can then be incorporated as auxiliary information to the meta-learner. The aim
of this technique is to provide deeper insights and enhance the information fed to the
deep neural network.

(2) Metric-based learning methods, also called comparison learning [30–33]. This ap-
proach centers on the construction of a suitable embedding space that facilitates the
generation of corresponding data feature representations. Subsequently, these repre-
sentations are classified by comparing their similarity with labeled instances and test
data features.

(3) Optimization-based meta-learning approaches, also referred to as learning optimiza-
tion [34,35], seek to develop a well-initialized optimizer that can rapidly adapt to
unseen classes over multiple training iterations.

(4) External memory-based meta-learning methods [36] replicate the processes of storage,
retrieval and knowledge application in the human brain by introducing a memory
module. The method stores acquired experiential information in the memory module
and retrieves stored knowledge as required to perform classification tasks.

This paper is centered on the construction of an appropriate embedding space.
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3. Proposed Method

Acquiring a large number of labeled samples of non-cooperative targets for HRRPs
is a challenging task. Additionally, the scattering structures of different classes of ships
are similar, and environmental factors significantly affect the HRRP samples of the same
class, resulting in a considerable challenge for few-shot HRRP target recognition. There-
fore, in this paper, a twofold objective is pursued by the proposed few-shot HRRP target
recognition method: firstly, to fully extract the available information from the HRRPs of
cooperative ship targets and employ appropriate transfer strategies for non-cooperative
target recognition; and secondly, to enhance recognition accuracy by highlighting com-
monalities among samples of the same class and differences among samples of different
classes to mitigate strong confusability during HRRP classification. To achieve this, transfer
learning and meta-learning are employed to construct a suitable embedding space Φ(·)
using cooperative target data with a large number of labeled samples.

As depicted in Figure 2, the method in this paper can be delineated into three primary
stages: the base-training, meta-training, and meta-testing phases. The first stage, termed
base-training, defines the task as HRRP target recognition on a closed dataset. In this stage,
the feature extractor fθ(·) and classifier Cbase(·) are trained using the complete dataset of
cooperative HRRP targets. Subsequently, the weights of the feature extractor with superior
classification performance are selected as the initial weights for the feature extractor in
the meta-training phase. The second stage is designed to tackle the open-set recognition
problem, specifically the challenge of dealing with few-shot HRRP target recognition.
In this phase, a substantial number of tasks are sampled from the cooperative HRRP dataset
to train and adapt the parameters θ, the embedding space function g(·), and ϕ(·). Each task
includes a support set Xk for network training and a query set Xq for evaluating network
performance. Firstly, the feature extractor fθ(·) and the embedding space function g(·)
transform the samples from the support set Xk into feature representations conducive
to classification, facilitating the closer proximity of samples from the same class in the
metric space. Secondly, the prototype network creates class prototypes by calculating the
mean embedding vectors for each class. Finally, ϕ(·) accentuates the inter-class differences,
enabling better differentiation of class prototypes in the embedding space. An in-depth
explanation of the transfer strategy for the parameter θ during the training phase and the
embedding space functions will be provided in Section 3.2. The third stage is the meta-
testing phase. Based on the well-trained feature extractor fθ(·), and the embedding space
functions g(·) and ϕ(·), a small number of samples is employed to establish prototype
representations in the metric space for new classes. The class of a given sample can then
be ascertained by calculating the distance between the embedding vector of the sample
and the prototype representation. It is noteworthy that our research is based on Resent12,
a widely used convolutional neural network.

In the standard formulation of FSL, a task is represented as an N-way K-shot classifica-
tion problem with N classes sampled from a set of visual concepts and K labeled examples
per class. The goal of FSL is to find a function that classifies unlabeled examples into one of
the N classes. However, in FSL, K is often small (e.g., K = 1 or K = 5), making it challenging
to construct complex functions. To this end, the learning algorithm is also supplied with
additional data consisting of ample labeled instances (SEEN classes). The original few-shot
task is referred to as the target task, which discerns N UNSEEN classes that do not overlap
with SEEN classes. To avoid confusion, the dataset from the SEEN classes used for train-
ing are denoted as Dtrain, comprising a total of Nt ship classes. In practical applications,
cooperative targets with ample labeled samples are considered as SEEN classes, while
non-cooperative targets with limited labeled samples are regarded as UNSEEN classes.
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Figure 2. Overall structure of Task-Specific Mate-learning (TSML) for few-shot HRRP.

3.1. Base-Training

The aim of this study is to extract as much information as possible from the cooperative
HRRP data available for non-cooperative target identification. To achieve this, a feature
extractor is trained utilizing all available cooperative target HRRP data. This phase is
base-learning, and is intended to model the HRRP data distribution for each class of ships
to accomplish the single task of classification referred to as the source task. Base-training
facilitates the complete learning of cooperative ship target features based on the entire
HRRP training data, leading to a well-initialized network for the meta-training phase.
Consequently, meta-learning can converge quickly with fewer tasks. It should be noted that
this phase solely relies on the SEEN class dataset Dtrain and does not consider adaptation
from other datasets.

In the initial learning phase, a classifier is trained for the Nt class, consisting of a linear
classifier Cbase(·), as shown in Figure 3, and a convolutional feature extractor fθ(·), both of
which are initialized randomly and updated via gradient descent:

[ fθ(·), Cbase(·)] =: [ fθ(·), Cbase(·)]− γ5 LDtrain([ fθ(·), Cbase(·)]) (3)

where LDtrain(·) is the cross-entropy loss function and γ is the learning rate.
The trained feature extractor and classifier effectively extract HRRP features to improve

the ship classification task performance, based on the complete dataset Dtrain. The feature
extractor acquires enhanced feature extraction capability by learning the separability fea-
tures of large-scale data, and its weights are utilized as the initialization weights of the
network in the meta-training phase. However, the classifier Cbase is not used during the
meta-learning phase due to modifications made to the classification task.

)( ixf

Xxi 

Linear

layer

Softmax

 iy~

cdRW ))((~
i

T xfWiy 

Classifier )(baseC

Figure 3. The linear classifier of base-training.
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3.2. Task-Specific Meta-Training

The problem of a limited number of labeled instances and high confusion in HRRP
ship classification can be addressed through meta-learning. In the initial stage, the learning
of each class of cooperative ship is completed by the feature extractor, and improved feature
extraction weights are obtained. However, the features extracted by the current feature
extractor may be insufficient or redundant for the new task. Therefore, the meta-training
phase involves not only learning how to classify N-way K-shot tasks across a large number of
similar tasks, but also accurately and efficiently transferring the trained feature weights to
the new task and adapting them to the new task.

There are a series of episodes in the meta-training set. Each episode in this study
is randomly sampled from dataset Dtrain, and comprises two subsets: a support set and
a query set. The support set is similar to a traditional training set in machine learn-
ing, and includes N classes, each with K training samples. The query set, on the other
hand, resembles a test set and comprises Q samples of the same classes as the support
set, but without any overlapping samples. Additionally, the meta-learning process is di-
vided into two phases: the meta-training and the meta-testing. For a task Ti within the
meta-training phase, its dataset can be represented as Dtraini = {(Xk, Yk), (Xq, Xq)}, where
(Xk, Yk) constitutes the support set, and (Xq, Xq) forms the query set. The number of classes
contained in Xk and Xq is denoted as N. Let Xn,k represent the subset of classes in Xk for
n = 1, 2, 3. . . N, with corresponding labels Yn,k .

(1) Task-Adaptive Mixed Transfer.
The training objectives diverge between the base-training phase and the meta-training

phase. Consequently, freezing all the weights θ of the feature extractor would render the
network unable to adapt to new tasks. Nonetheless, whether dealing with SEEN or UN-
SEEN classes, the structural differences among ships are marginal, and the discriminative
feature types necessary for ship HRRP data classification remain consistent. Completely
relearning all the initial weights θ could potentially introduce redundancy and squander
computational resources. To address these challenges, a Task-Adaptive Mixed Transfer
(TAMT) method is proposed, which fine-tunes the parameters in different ways based on
the distinct roles of various network blocks in feature extraction. Specifically, the shallow
blocks are frozen to preserve the memory of the pre-trained model in extracting ship data
envelope features and local physical structure features, while adjusting the deep blocks to
adapt to the new few-shot tasks.

The fine-tuning process involves two methods: Neuron-level Scaling and Shifting (SS),
and Parameter-level Fine-Tuning (FT). SS involves freezing neurons and then performing
scaling and shifting based on their original weights and biases, as shown in Figure 4b. Given
the trained fθ(·), for its l-th layer containing M neurons, there are M pairs of parameters,
respectively, as weight and bias, denoted as {(Wl,m,bl,m )}. Note that the neuron location
l, m will be omitted for readability. Based on the methods in this paper, we learn M pairs of
scalars. Assuming Xk is input, we apply S{1,2} to (W,b) as

SS(Xk; W, b; S{1,2}) = (W � S1)Xk + (b + S2) (4)

where � denotes the element-wise multiplication. Taking Figure 4b as an example of a
single 1 × 6 filter, after SS operations, this filter is scaled by S′1 then the feature maps after
convolutions are shifted by S′2 in addition to the original bias b.

SS(Xk; W, b; S{1,2}) = (W � S′1)Xk + (b + S′2) (5)

Figure 4b illustrates FT, which involves making small adjustments to all the neural
network weight parameters of the model to make it better suited to specific tasks or
data. It is evident that FT updates the entire values of W and b, encompassing a large
number of parameters, making it susceptible to overfitting when the sample size is limited.
Furthermore, performing FT on the entire network may result in the complete forgetting
of pre-training memory, known as “catastrophic forgetting”. By contrast, as seen in the
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examples in the Figure 4, SS reduces the number of training parameters, significantly
reducing the computational and memory overhead. However, when SS is applied to all
neurons, the adaptation of the network to few-shot tasks may be somewhat lacking.

(a) FT (b) SS

613: CW

613:  CW

1131: b

1131: b

update

C×

C×

update

613: CW

613: CW

1131: b

1131: b

113:1 Cs 1131:2 s

113:1  Cs 1131:2 s

C×

C×

C×

C×

Frozen
Before 

learning

After 

learning

Figure 4. Parameter-level Fine-Tuning (FT) and Scaling-Shifting (SS).

Assume that the feature extractor fθ(·), initialized with weights, acquires new network
weights denoted as θi}

Nb
i=1 after the base-training, and considering that the number of

network blocks Nb is 4 due to our use of ResNet12 for feature extraction. During the meta-
training phase, in addition to learning the parameters for the introduced meta embedding,
there is a need to fine-tune the existing feature extractor network weights θi}

Nb
i=1 to adapt to

the changing recognition task. Based on FT and SS, the transfer strategy designed in this
paper is depicted in Figure 5, which includes the mapping of network parameters before
and after meta-training.

The frozen blocks are referred to as shallow static blocks, while the ones that need
adjustment to adapt to the new task are referred to as deep dynamic blocks. Initially,
the neurons in shallow blocks, including block 1 and block 2, are frozen to preserve their
capability to extract HRRP sample envelope features and initial separability features. Thus,
the network parameters θi}

Nb=2
i=1 remain unchanged before and after training. Subsequently,

to adapt to new few-shot tasks and extract relevant features based on task characteristics,
block 3 and block 4 are fine-tuned using different fine-tuning methods. Block 3, serving
as the deep dynamic block that bridges the two training modes, adopts FT, meaning that
the neuron weights of the entire block can be learned. Its main task is to flexibly transform
feature vectors from the shallow static module, thoroughly sift, and further extract relevant
information to obtain useful features for the new task, initiating the initial adaptation
learning for the new task. Block 4 undergoes scaling and shifting based on the initialized
weights. Given that its channel count is eight times that of block 1, FT would significantly
increase the number of parameters to be learned. In this paper, SS is employed to fine-tune
Block 4, a method that substantially reduces the computational and memory overhead while
allowing for further adaptation to new classification tasks built on the foundation of Block 3.

This transfer strategy accomplishes several key objectives. Firstly, it preserves the
feature extraction capabilities of the feature extractor during the base-training phase for
effective HRRP sample extraction, thereby preventing the occurrence of “catastrophic
forgetting” that may arise when fine-tuning the entire network. Secondly, it ensures
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network flexibility and adaptability to new tasks. Finally, by freezing certain neurons and
applying SS to others, the number of training parameters in the meta-training phase is
reduced, thereby preventing overfitting when dealing with a limited number of labeled
ship HRRP samples.

Initial

Settings )(f

Base

Training )(f

Model

Transfer

Initial

Settings )(

Meta

Learning
Result bN

ii 1


Parameters transfer  bN

ii 1


Parameters 

New  bN

ii 1


New  


,
4,3ii
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Meta-training
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Meta-training

},{ 111 bw

},{ 111 bw

},{ 222 bw

},{ 222 bw

},{ 333 bw
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},,,{ 444 bw SSbw 
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block 1

Residual 

block 2

Residual 

block 3

Residual 

block 4
Maxpool

Frozen
Parameter-level 

Fine-Tuning (FT)

Neuron-level 

Scaling and Shifting (SS) 

Figure 5. Task-Adaptive Mixed Transfer (TAMT).

(2) Space-Adjusted Meta Embedding based on GCN and Multi-head Attention.
Achieving the goal of reducing the diversity within the same ships while increasing

the differences between different classes is a challenging task when using only a uniform
feature extraction network. To address the problem of high confusion about ship HRRP
targets in the classification process, this paper introduces a task adaptation step that
employs an embedding function focusing on instances and relationships between classes.
The embedding function, based on the GCN with a good clustering effect and Multi-head
Attention that can emphasize critical classification features, involves all instances entering a
new embedding space. This space comprises a sample-based public embedding space and
an independent embedding space based on prototypes, as illustrated in Figure 6, designed
to perform opposite and complementary functions. The “public” embedding space aims
to resolve the problem of significant sample differences within the same type of ships in
HRRP, while the “independent” embedding space addresses the issue of slight variations
between different ship classes.

Fully connected layers, such as classifier Cbase(·) during base-training, are less flexible,
since they cannot adapt to changes in the number of classifications. To enhance model
flexibility and avoid learning complex recognition models from a limited number of labeled
examples of HRRP ships, this study proposes using a prototype network to dynamically
construct prototypes and perform the nearest prototype classification. In TAMT, initial
adaptation to the new task from a feature extraction perspective is performed by adjusting
the weights of the deep blocks. In contrast, the proposed embedding function facilitates
further adaptation to the new task from the perspective of class classification and optimal
prototype acquisition. The support set samples Xk are processed through the feature extrac-
tor fθ(·) to obtain Fk, which represents the features of the input samples. Correspondingly,
within Fk, the subset for categories where n = 1, 2, 3 . . . N is denoted as Fn,k, with their
respective class labels Yn,k.

The GCN, initially utilized for irregular data structures, particularly graph structures,
focuses on the relationships between nodes and exhibits a good clustering effect on the
embedded data points. To address the relatively large differences between HRRP samples
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of the same ship target, GCN serves as a public embedding space g(·) based on samples to
decrease the distance between samples of the same ships.

Feature 

Extractor 

GCN

ProtoNet

Train Instance Test Instance

Instance

Prototype

GCN

Multi-head 

Attention

Classification

Scores

Instance 

embedding

Prototype 

embedding

the Euclidean 

distance

Figure 6. The structure of the Space-Adjusted Meta Embedding (SAME).

Each HRRP instance is considered a data point. For each data point, the GCN can
consider both the adjacent data points and the feature information contained in itself.
The input to the GCN is denoted as Fk, where feature representation vector of each sample
is considered as a separate data point. The similarity between each instance is represented
by an adjacency matrix A. Specifically, if two ship instances belong to the same class,
the corresponding element in A is set to 1, otherwise to 0. Fk and A are fed as inputs to the
GCN. The adjacency matrix A is symmetrized and normalized to obtain the matrix:

S = D−
1
2 (A + I)D−

1
2 (6)

where I is the identity matrix and D is the diagonal matrix whose elements are equal to
the sum of the elements in the corresponding rows of A + I. The relationship between
instances could be propagated based on S:

Ht+1 = ReLU
(
SHtW

)
, t = 1, 2, . . . , T − 1 (7)

where W is a projection matrix for feature transformation. Ht is the input feature matrix of
each layer, and H0 is the output of the feature extractor Fk. In GCN, the embedding in the
set is transformed based on Equation (7) multiple times, which eventually produces the
embedding result. The output result of GCN is denoted by Gk:

Gk = g(Fk) (8)

After the instances are embedded into the public embedding space using GCN,
the data points belonging to the same ship are more tightly aggregated, exhibiting less
variability. This reduces the probability of misclassifying instances that belong to the same
ship but with large differences to different classes.

Prototype cn(n = 1, 2, . . . , N) is obtained by calculating the average of all vectors
belonging to a class of ships in Gk:

cn =
1
|Xn,s| ∑

xi∈Xn,s

fθ(xi), n = 1, 2, 3, . . . , N (9)
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Therefore, the prototypes for the task Ti are recorded as Ci=cn}N
n=1.

As ships are the only classification objects considered in this paper, their target struc-
tures exhibit a significant degree of similarity. Furthermore, the HRRP reflects the projection
of the target scatterer in the direction of the LOS, causing the HRRP data returned by ships
with similar structures to be highly similar as well. As a result, treating the prototype as a
data point means that the distance between prototypes of different ships would be relatively
small. To overcome this issue, an independent embedding space ϕ(·) is required for the
prototype to accentuate the distinguishable differences between different ship classes.

The Multi-head Attention has the ability to focus on context, extracting important infor-
mation from an extensive amount of data and highlighting it, while disregarding the rest of
the information which is mostly irrelevant. By employing this mechanism in the embedding
of the prototype, the Multi-head Attention highlights the vital information from the prototype
set. For the classification task, this means enhancing the discernible information between
prototypes of different ship classes by assigning weights to them and reducing their common-
ality. This process increases the distance between different class prototypes and reduces the
probability of classifying different classes of ships into the same class. To accomplish this, we
first apply the self-attention mechanism to the matrix Ci=cn}N

n=1:

Q = Ci ·WQ (10)

K = Ci ·WK (11)

V = Ci ·WV (12)

O = Attention(Q, K, V) = so f tmax(
QKT
√

dk
)V (13)

where
√

dk represents the vector length.
Then, the output matrix of each self-attention operation is concatenated along the

feature dimension to form a new matrix, which is subsequently fed into a fully connected
layer to generate the final output:

C′i = MultiHead(Ci, Ci, Ci) = Concat(O1, O2, . . . , Omulti)WO (14)

where W is a projection matrix for feature transformation, and C′i=c′n}N
n=1 is the result of

prototype processed by the Multi-head Attention.
For all the embedding points x ∈ Xq, the Euclidean distance d to a certain class

prototype c′n can be represented as:

d(Φq(x), c′n) =
√
(Φq(x)− c′n)2 (15)

where Φq(·) = g( f (·)).
Normalizing the distances from embedded samples to all prototypes using the Softmax

can transform the distances into probabilities for the corresponding classes:

p(y = n|x) =
exp

(
−d
(
Φq(x), cn

′))
∑N

n=1 exp
(
−d
(
Φq(x), cn

′)) (16)

So, the loss function for this network on a single training sample is the negative natural
logarithm of the true class probability:

L = −logp(y = n|x ∈ Xn,q) (17)
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The presented process describes one task in the meta-training procedure. And the
overarching objective is to learn the meta-function Φ(·), which comprises the functions
f (·), g(·) and ϕ(·).

4. Results

In this section, the proposed method was evaluated based on the actual measured
HRRP data. To initiate the analysis, the measured data were introduced and pre-processed
in preparation for the experiment. Subsequently, the proposed method was compared
with the state-of-the-art few-shot learning methods, and the performance of both was
analyzed. Moreover, the effects of embedding function and transfer strategy change on the
experimental results were investigated. All experiments were conducted using PyTorch on
an NVIDIA GeForce RTX 2080 Ti graphics card.

4.1. Data and Preprocessing

Figure 7 displays the distribution of data samples and the normalized representation
of certain three types of ships, as utilized in this paper. All statistics were measured by a
shore-based radar with a bandwidth of 600 MHz, containing 137,702 measured HRRP samples
with 95 different ship targets. Each HRRP is a 4096-dimensional vector, encapsulating one-
dimensional structural information of various ships. As observed in Figure 7b–d, the position
of the ship relative to the radar at various instances contributes to the incorporation of diverse
information about the ship across a range of azimuth and pitch angles within the sample.

(a) (b)

(c) (d)

Figure 7. Dataset presentation. (a) Sample size for each class of ship. (b–d) All samples of three
classes of ships.

The goal of the few-shot meta-learning is to train a meta-learner with the ability to
train a learner to converge quickly and accurately for new tasks. Specifically, 60 classes
were randomly selected as the training set Dtrain among the classes with ample labeled
samples, to investigate the impact of the number of training samples on recognition accu-
racy. The remaining classes were divided into 15 and 20 for validation set Dval and testing
set Dtest, respectively. It is worth noting that the classes of the dataset do not intersect with
each other. As shown in Figure 8, according to the meta-learning formulation settings,
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Dtrain and Dtest contain different episodes, which are divided into a support set and a
query set. We defined the support set and query set of the meta-training set as Dtrain−s and
Dtrain−q; similarly, we defined the support set and query set of the meta-testing dataset
as Dtest−s and Dtest−q. Different classes of HRRP samples are treated as meta-training set
and meta-testing set as above described. The classification tasks of different azimuth angle
HRRP samples are divided into different tasks in the field of meta-learning formulation,
as indicated by the markers in Figure 8.

... ...

ship11 ship12 ship1M ship11 ship12 ship1M

Dtrain_s Dtrain_

q

Random M SEEN classes, Random K+Q SEEN samples per class

... ...

ship21 ship22 ship2M ship21 ship22 ship2M

Dtrain_s Dtrain_

q

... ...

shipp1 shipp2 shippM shipp1 shipp2 shippM

Dtrain_s Dtrain_

q

...

Dtrain

(a) Training set

... ...

ship11 ship12 ship1N ship11 ship12 ship1N

Dtest_s Dtest_q

Random N UNSEEN classes, Random K+Q UNSEEN samples per class

... ...

ship21 ship22 ship2N ship21 ship22 ship2N

Dtest_s Dtest_q

... ...

shipp’1 shipp’2 shipp’N shipp’1 shipp’

2

shipp’N

Dtest_s Dtest_q

...

Dtest

(b) Test set

Figure 8. The dataset setting of the proposed method.
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As a complex and integrated system, the intensity of the HRRP data obtained through
high-resolution radar can be influenced by several factors, including radar transmit power,
target distance, radar antenna gain, and radar receiver gain. The collected data will have an
inconsistent intensity problem. This problem is also called intensity sensitivity. Before using
HRRP for target recognition, the original HRRP echo is processed by normalization to
improve the intensity sensitivity problem.

If the raw HRRP sample can be expressed as x = [x1, x2, . . . , xm], where m is the total
number of range cells contained in the HRRP, the intensity normalized HRRP sample xnorm
can be expressed as

xnorm =
x− xmin

xmax − xmin
(18)

where the intensity is scaled to [0, 1]. Since the convolution, as well as pooling operations,
are robust to sample shifts, there is no need for additional processing of translation sensi-
tivity, making the recognition process more complete and reducing human manipulation.

4.2. Evaluation Metrics

This paper evaluates the classification accuracy of five-way one-shot and five-way
five-shot, using Q instances from the same categories as test data. The final classification
results are obtained by calculating the average accuracy of classification for 10,000 tasks
based on the test set, and the calculation is as follows:

acc = ET

[
Ec

[
∑x∈Xc,q

p(y == c)

CARD(Xc,q)

]]
(19)

where Xc,q is the set of samples in the query set with the class label c, CARD(·) represents
the number of elements in a set, p(·) represents the probability, y is the predicted class for
sample x, c is the true class, and T represents a test task. The formula first calculates the
average category recognition rate within a task and then computes the expected value of
the average category recognition rate across all tasks.

4.3. Results and Analysis
4.3.1. Compared with State-of-the-Art Methods

The comparison results of the proposed method with several state-of-the-art few-shot
methods are presented in Table 1 and Figure 9. The results indicate that although these
methods exhibit good performance in the field of optical images, their performance is
average in the field of HRRP-based RATA. The possible reason for this discrepancy is
that these methods have good performance in recognizing 2D optical images, but are
not suitable for 1D HRRP data. Notably, both MTL and FEAT classify ships based on
ResNet12. However, the recognition accuracy of MTL is 5.28% and 6.36% lower than
the method proposed in this paper, primarily because the linear classifier used in MTL
requires learning with a small number of samples, which can limit its effectiveness due to
insufficient learning or fewer parameters. In contrast, the proposed method achieves 1.34%
and 2.07% higher accuracy than FEAT, because the clustering effect of the GCN reduces the
differences between samples within the same class, thereby decreasing the probability of
misclassification. Furthermore, the Multi-head Attention embeds prototypes, increasing the
distance between prototypes of different classes, thereby enhancing their representativeness,
which is another contributing factor to the reduction of misclassifications. The visualization
results are shown in Figure 10.
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Table 1. Recognition accuracy of different methods.

Accuracy%Method One-Shot Five-Way Five-Shot Five-Way

Matchnet [33] 64.54 75.41
Protonet [30] 65.51 76.04

MTL [37] 70.52 80.10
FEAT [38] 73.89 84.39

Ours 75.23 86.46
The bolded parts are the methods with the best recognition results.

(a) The one-shot condition (b) The five-shot condition

Figure 9. The recognition accuracy curves of different methods in different few-shot conditions.

query before GCN query after GCN prototype after Attention

Sample points of different classes in the query set embedded in the metric space.

Prototypes of different classes before and after the Multi-head Attention.

Task1

Task2

Task3

Figure 10. Visual results of the TSML.
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4.3.2. Comparison with Different Transfer Strategies

When a network comprises multiple blocks, it is common to utilize shallow blocks
to extract envelope features and local physical structure features of the HRRP, while the
deep blocks are leveraged to adapt to a specific task. The base-trained feature extractor
is already equipped with good initialization weights and can effectively extract features.
However, it is not well-suited to the new task. Therefore, this study proposes a transfer
strategy, where the shallow blocks are frozen and the deep blocks are fine-tuned to adapt
to the new task. The effectiveness of this transfer strategy is demonstrated through two
experimental scenarios. The first scenario involves no common embedding space GCN,
while the second scenario employs a common embedding space GCN. The results of these
experiments are presented in Table 2, and the contrast chart is presented in Figure 11.

Table 2. Recognition accuracy of different transfer strategies.

Accuracy %
Embedding without GCN Embedding with GCNTransfer Strategy

One-Shot Five-Way Five-Shot Five-Way One-Shot Five-Way Five-Shot Five-Way

Fully FT 73.89 84.39 75.52 85.67
Fully SS 73.72 82.74 75.13 84.65
23Frozen 73.20 83.99 74.99 85.30
34Frozen 70.69 82.36 73.93 84.43

Ours 74.17 84.69 75.23 86.46

The bolded parts are the methods with the best recognition results.

Figure 11. The contrast chart of different transfer strategies in different few-shot conditions.

In the absence of GCN embedding, the current study finds that the proposed method
is comparable to the results obtained through full parameter fine-tuning. This suggests that
the proposed transfer strategy effectively extracts features and adapts to the task, despite
freezing some network blocks. Moreover, the proposed method is more computationally ef-
ficient and does not compromise accuracy. In contrast, the results indicate that freezing the
deep blocks and training only the shallow blocks yield the worst performance, with recog-
nition accuracies of 70.69% and 82.36%, respectively. These accuracies are 3.48% and 2.33%
lower than those obtained through the proposed method. This inferior performance can
be attributed to the attempt to extract new features, by training only the shallow blocks
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but keeping the initialized weights unchanged in the deep blocks. This approach not only
diminishes the feature extraction capability established during base-training, but also fails
to adapt to the new task. Furthermore, the full SS yields recognition accuracies of 73.72%
and 83.74%, respectively, which are lower than the proposed method with differences
of 0.45% and 1.95%. The results suggest that adapting to new tasks solely through SS is
still insufficient.

In the presence of GCN embedding, the gap between all methods decreases when
identifying tasks of one-shot, five-way, but differs from the approach proposed in this paper
by only +0.29%, −0.1%, −0.24%, and −1.3%. This is because the GCN is responsible for
adapting to the new task, masking inadequate task adaptation. However, freezing the deep
blocks and training only the shallow blocks still performs the worst in this case, with 1.3%
lower than the proposed method in this paper. When the number of labeled samples per
class is increased to 5, the proposed methods show better performance, with accuracies of
0.79%, 1.81%, 1.16%, and 2.02% higher than the other methods, respectively. This increased
gap between methods is due to the fact that, as the number of labeled samples increases,
the remaining methods are unable to take full advantage of the labeled samples to learn the
adjustable parameters, although they ensure that the base-training memory is fully utilized.
It is worth noting that the proposed method is also 0.79% higher than the full fine-tuning
of the parameters. This indicates that full fine-tuning of the parameters may suffer from
“forgetting the base-training information” as the number of labeled samples increases.

The number of parameters. Based on the presented table, it is evident that the Full
FT, 23Frozen, and 34Frozen transfer methods yield unsatisfactory recognition results when
compared to the transfer strategy proposed in this study. This outcome can be attributed to
incomplete adaptation to the new task or insufficient feature extraction. Furthermore, only
the full FT yields similar recognition results to the transfer strategy in this paper. However,
it requires 1.23 M training parameters for complete fine-tuning, which is more than twice
the number of training parameters required for the proposed method in this study, which is
495.57 K. Thus, the transfer strategy proposed in this paper achieved improved recognition
accuracy by fully extracting target features and adapting to the new task with a smaller
number of parameters.

4.3.3. Comparison with Different Embedding Functions

The present experiment investigates the effect of different embedding functions on
recognition accuracy in terms of independent embedding space only, public embedding
space only, and a combination of different embedding functions. As shown in Table 3 and
Figure 12, all three types of embedding methods improve recognition accuracy compared
to no embedding at all.

Table 3. Recognition accuracy of different embedding functions.

Accuracy%Embedding Function One-Shot Five-Way Five-Shot Five-Way

NONE-NONE 70.83 84.61
Attention 74.17 84.69

BiLstm 72.31 83.10Independent
Attention+BiLstm 72.99 84.40

GCN 72.27 84.64Public Deepset 72.00 84.41
GCN-BiLstm 72.30 85.16

Deepset-Attention 73.42 83.95
GCN-Deepset 71.98 85.02Dual-task

GCN-Attention 75.23 86.46
The bolded parts are the methods with the best recognition results.
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Figure 12. The contrast chart of different embedding functions in different few-shot conditions.

The first part of the experiment focuses on the independent embedding space only.
For the recognition of a one-shot, five-way task, the embedding space with Multi-head
Attention demonstrates significantly higher recognition accuracy compared to other em-
bedding functions. Specifically, the recognition accuracy of the attention mechanism is
1.4% higher than that of GCN, 1.86% higher than BiLSTM, and 1.5% higher than Deepset.
This result can be attributed to the embedding space’s purpose of embedding prototypes
of different classes, with the main task being to highlight differences between different
classes. While GCN primarily concerns the relationship between data points, it is effec-
tive in clustering similar samples. BiLSTM is concerned with sequence correlation, while
Deepset lacks the feature of highlighting the weak differences between class prototypes
of different classes of ships. The experimental results demonstrate that the recognition
accuracy improvement is not significant, even with the addition of other embedding func-
tions on top of the Multi-head Attention. For the five-shot, five-way task recognition,
the recognition accuracy of the embedding functions excluding attention decreases rather
than increases when compared to no embedding. This is due to the fact that the added
embedding functions not only fail to highlight differences between class prototypes but
also increase network complexity, making network training more difficult.

The second part of the experiment focuses on the public embedding space only.
Compared to Deepset, GCN improves recognition accuracy by 0.27% and 0.23% with fewer
parameters. In the third part, different combinations of embedding functions are examined,
demonstrating that the combination in this study does not rely on increasing network
complexity to improve recognition accuracy. As shown in Table 3, the recognition accuracy
of the embedding space combination with GCN as the public embedding function is higher
than that of the embedding space combination with Deepset as the public embedding
function for the five-shot, five-way task by 1.21%, 1.07%, and 2.51%. This result is due to
the excellent clustering function of GCN, which weakens the variability between similar
samples, making the samples more clustered, and reducing the chance of class prototypes.
The GCN-Attention embeddings have higher recognition accuracy than the combined effect
of other functions because GCN and attention play different and irreplaceable roles for
HRRP characteristics, respectively. GCN weakens the differences between HRRP samples
of the same class by clustering, while attention highlights the weak difference of the
prototypes between different classes by calculating the weights.
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The Number of parameters. Table 4 shows the parameter count for various embedding
functions. The results indicate that the GCN-Attention embedding function has the lowest
number of parameters in comparison to other dual-task embedding functions while also
achieving superior accuracy. This suggests that the GCN-Attention embedding function
has higher parameter efficiency.

Table 4. Number of parameters.

Embedding Function GCN-BiLstm Deepset-Attention GCN-Deepset GCN-Attention

params (M) 3.67 M 6.30 M 7.35 M 3.15 M
The bolded parts are the methods with the best recognition results.

4.3.4. Ablation Studies

This section examines the method proposed in this paper and its ablation variants.
As presented in Table 5, with full parameters of the feature extractor trained, the recognition
accuracy attained during the meta-training phase is 75.52% and 85.67%. Subsequently,
after applying the transfer strategy proposed in this study, the accuracy is 75.2% and
86.46%. Notably, there is no reduction in accuracy and a gain of 0.79% when the number of
labeled samples is only 5. These results indicate that our transfer strategy ensures no loss
of information when adapting to new tasks and prevents “information forgetting” to the
full fine-tuning method. Moreover, as presented in Figure 13, compared with the fully FT,
the convergence speed of the method in this paper is faster.

Table 5. Recognition accuracy of ablation variants.

Fully FT TATS GCN Attention
Accuracy%

One-Shot Five-Way Five-Shot Five-Way

1
√ √

73.89 84.39
2

√ √ √
75.52 85.67

3
√

70.83 84.61
4

√ √
72.27 84.64

5
√ √

74.17 84.69
6

√ √ √
75.23 86.46

The bolded parts are the methods with the best recognition results.

(a) The one-shot condition (b) The five-shot condition

Figure 13. The recognition accuracy curves of ablation variants in different few-shot conditions.

Compared to no embedding function, attention as independent embedding space
only and GCN as public embedding space only, respectively, enhance recognition accuracy,
with Attention improving by 3.34% and 0.08%, and GCN improving by 1.44% and 0.03%.
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These findings highlight the crucial roles of Attention and GCN in improving accuracy in
the classification process.

Moreover, the dual-task embedding function that utilizes Attention and GCN for
instance embedding and prototype embedding, respectively, boosts accuracy by 4.4% and
1.85% compared to without embedding. These results demonstrate that Attention and
GCN play different roles in the classification process and are critical to the success of the
proposed method.

4.3.5. Effect of Network Parameters

The effect of the network parameters on the recognition accuracy was discussed in
this subsection. Specifically, the variety of the recognition accuracy of the proposed method
in different learning rates was studied on one-shot five-way and five-shot five-way tasks,
as well as the effect of the number of heads of the Multi-head Attention of the five-shot,
five-way task.

a. Learning rate. The influence of learning rate on recognition accuracy was discussed
and the results were shown in Figure 14. As seen from Figure 14, a too large or too small
learning rate will make the recognition accuracy unsatisfactory. A large learning rate will
make the instability of the recognition accuracy and a small learning rate will lead to slow
learning. Table 6 shows the accuracy curves of different learning rates. It can be seen from
Table 6 that the performance for classification of one-shot, five-way of the proposed method
is best when the learning rate is set to 10−6. And the learning rate is set to 10−5 for the
five-shot, five-way tasks.

Table 6. Recognition accuracy of different learning rates.

Learning Rate Accuracy %
One-Shot Five-Way Five-Shot Five-Way

10−3 53.90 56.17
10−4 75.02 85.51
10−5 74.89 86.46
10−6 75.23 85.86
10−7 71.04 80.22

The bolded parts are the methods with the best recognition results.

(a) The one-shot condition (b) The five-shot condition

Figure 14. The recognition accuracy curves of different learning rates in different few-shot conditions.

b. Number of heads of the Multi-head Attention. Table 7 presents the impact of the
number of heads in Multi-head Attention on the recognition accuracy of five-shot five-way
tasks. The results indicate that there is no improvement in accuracy as the number of heads
increases. On the contrary, increasing the number of heads leads to a rise in the number of
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training parameters and can result in overfitting when the number of samples is limited.
As a consequence, the number of heads is set to 1 in this paper.

Table 7. Recognition accuracy of different numbers of heads.

Number of Head Accuracy %
Five-Shot Five-Way

1 86.46
2 85.99
3 86.61
4 86.10

The bolded parts are the methods with the best recognition results.

4.3.6. Effect of Number of Training Samples

In this experiment, the effect of the number of samples in the training set on the
recognition accuracy is investigated. To this end, the training curves for different numbers
of HRRP samples are obtained. Specifically, we perform meta-training based on initialized
weights obtained from base-training with different sample sizes by keeping the number of
samples in the test set constant but varying the number of HRRP samples in the training set.

Figure 15 shows the training curve with the different numbers of training samples.
As expected, the accuracy increases with the increase in the number of samples in the
training set. Table 8 presents the accuracy of the test set for different training sample
sizes. We observe that the recognition accuracy decreases by only 0.74% when the number
of samples is reduced from 600 to 200. This result indicates that our method is robust to
changes in the sample size. Notably, the proposed method outperforms MatchNet, Protonet,
and MTL even when the number of samples is only 100. Moreover, when the number of
training samples is 200, our method achieves higher recognition accuracy than FEAT.

In conclusion, our experiments demonstrate the effectiveness and robustness of our
proposed method in recognizing HRRP patterns. These findings are valuable for future
research in this area.

Figure 15. The recognition accuracy curves of different number of training samples in five-shot condi-
tions.
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Table 8. Recognition accuracy of different numbers of training samples.

Number of Samples Accuracy %
Five-Shot Five-Way

100 83.36
200 85.72
400 85.78
500 86.35
600 86.46

The bolded parts are the methods with the best recognition results.

4.3.7. Generalization Verification

This experiment employed the method of this paper in Conv4, Resnet12 (the network
of this paper), and Resnet18, respectively, as shown in Table 9. Due to the simple structure of
Conv4, no base-training and transfer operations were performed, and only the embedding
function was assessed using this network.

Table 9. Recognition accuracy of different backbones in five-shot conditions.

Accuracy %
Conv4 Resnet12 Resnet18

Ours 77.98 86.46 83.60
FEAT 75.12 84.39 80.96

Change the Embedding Function
GCN-Bilstm 77.67 85.16 82.61

Deepset-attention 78.14 83.95 83.04

Change Transfer Strategy
Fully FT - 85.67 83.53
Fully SS - 84.65 81.77
23Frozen - 85.30 81.87
34Frozen - 84.43 81.48

The bolded parts are the methods with the best recognition results.

It can be seen from the table that increasing the depth of the network does not nec-
essarily enhance the recognition accuracy, due to the limited number of samples. More-
over, the dual-task embedding function in this paper performs well in both Resnet12 and
Resnet18, surpassing the state-of-the-art few-shot method FEAT by 1.96% and 2.64%, re-
spectively. Additionally, compared with Deepset-attention, which has the highest number
of parameters, the accuracy achieved by the method in this paper is 2.4% and 0.56% higher
for Resnet12 and Resnet18, respectively. In Conv4, Deepset-attention yields a slightly
better accuracy of 0.16% than the method proposed in this paper, but with twice as many
parameters. Notably, in Resnet18, the transfer methods used during the meta-training
stage, namely fully SS, 23frozen, and 34frozen, show significantly lower accuracy than
the method proposed in this paper, by 1.83%, 1.73%, and 2.12%, respectively. This could
be attributed to inadequate transferring, memory loss, and insufficient adaptation to the
task. In conclusion, the method presented in this paper outperforms other methods across
different network skeletons.

5. Conclusions

In this study, a novel few-shot HRRP target recognition approach, denoted as Task-
Specific Mate-learning, is introduced to address the challenge posed by limited labeled
samples and high target variability. Initially, the base learning and meta-learning are
employed to mitigate the prevalent overfitting issues within the few-shot HRRP recog-
nition domain. Subsequently, the Task-Adaptive Mixed Transfer technique is proposed,
which achieves a classification accuracy no less than that of complete fine-tuning, even
when training with only half the number of parameters as compared to full fine-tuning.



Remote Sens. 2023, 15, 5301 23 of 25

This highlights the effectiveness of this strategy in preserving valuable information while
minimizing information loss during the transfer process, as supported by the recognition
accuracy curve. Furthermore, upon visualizing the classification results, it is evident that
Space-Adjusted Meta Embedding reduces intra-class sample variations, enhances the sep-
arability among distinct ship classes, and alleviates the challenges associated with high
target variability during the target recognition process. This adjustment enables instance
embeddings to better align with class prototypes in the HRRP target classification task.The
actual measured HRRP data are also employed in the proposed method. In comparison
to state-of-the-art few-shot learning methods, superior performance in the identification
of unknown ship classes with limited labels is achieved by our approach, attributed to its
ability to learn from known ship classes. Furthermore, our method demonstrates a degree
of generalization and robustness concerning variations in the number of training samples.
Specifically, the recognition accuracy of our approach experiences only a marginal decrease
of 0.74%, even when the training sample size is reduced from 600 to 200.

However, in reality, a more complex scenario exists where radar target recognition
systems must identify new class targets with zero samples, a challenge known as zero-shot
recognition. Our paper has not addressed this scenario, and as such, we will explore
zero-shot learning to enable the zero-shot recognition of new class HRRP targets our
future work.
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