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Abstract: Precipitation datasets derived from reanalysis products play a crucial role in weather fore-
casting and hydrological applications. This paper aims to evaluate the performance of two distinct
reanalysis precipitation products, i.e., the first-generation Chinese global land-surface reanalysis
precipitation product (CRA40) and the fifth-generation European reanalysis precipitation product
(ERA5), over mainland China. The evaluation is based on continuous and categorical statistical
indicators with daily-scale gridded-point rain gauge data obtained from Chinese surface meteoro-
logical stations. The findings of this study can be summarized as follows: (1) CRA40 demonstrates
a clear superiority over ERA5 in terms of the 13-year daily mean precipitation and seasonal daily
precipitation. CRA40 exhibits better correlation coefficients (0.97), relative biases (5.25%), root mean
square errors (0.34 mm), and fractional standard errors (0.05). (2) Both reanalyzed precipitation
products generally exhibit an overestimation of precipitation in mainland China. The degree of
overestimation is particularly pronounced in dry climatic regions (e.g., QZ, XJ), while wet regions
(e.g., CJ, HN) demonstrate relatively less overestimation. (3) ERA5 shows better performance in the
detection of daily precipitation. Neither CRA40 nor ERA5 can capture heavy precipitation events
well. These findings are expected to advance our understanding of the strengths and limitations of
the reanalysis precipitation products, CRA40 and ERA5, over China.

Keywords: CRA40; ERA5; Chinese mainland; test evaluation; applicability

1. Introduction

Precipitation is an important component of the Earth’s water cycle, and as a major
input for hydrological, meteorological, and climatic modeling, it holds great significance for
hydrological, meteorological, and climatological studies [1,2]. Since precipitation exhibits
significant variability in both space and time [3], the collection of timely and reliable
precipitation data is essential and challenging.

Currently, the main methods of measuring surface precipitation include rain gauges,
weather radar, and remote sensing satellites [4,5]. Rain gauges provide a direct physical
record of precipitation at specific locations, and the amount of precipitation measured by
rain gauges is typically considered as the true value. Weather radar provides continuous
coverage of precipitation observations with a high spatial and temporal resolution over an
area of hundreds of kilometers. Satellites provide a much larger coverage of precipitation
observations than weather radar but have a lower spatial and temporal resolution than
weather radar. Satellite-based quantitative precipitation estimation (QPE) products are not
limited by topographic factors, while avoiding the high maintenance costs associated with
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weather radar systems. Although the aforementioned three methods have been able to meet
the requirements for monitoring regional surface precipitation, they still possess certain
limitations. Rain gauges suffer from uneven distribution across the ground and small
sampling areas, thereby hindering their applicability to large regions and global scales.
Weather radar, despite its advantage in precipitation inversion, is susceptible to various
sources of error and extreme weather conditions. Furthermore, it faces challenges related
to limited spatial coverage in remote areas. Additionally, the high costs associated with the
utilization and maintenance of weather radar restrict its application, particularly in devel-
oping countries [6]. The precipitation products obtained through the inversion of satellite
observations also encounter numerous errors, with common sources of error including
disparities in satellite revisit periods, subtle distinctions between remotely sensed signals
and precipitation rates, and atmospheric effects [7]. With the development of technology,
reanalysis products based on a variety of observations and assimilation techniques have
become an alternative method for obtaining estimates of global continuous precipitation.

In the late 1980s, scientists began utilizing data assimilation technology to perform
quality control and integration of observational data, such as ground observations, remote
sensing satellites, and weather radars, with numerical forecasting products [8,9]. This
approach resulted in the generation of gridded datasets with extensive temporal coverage,
a broad spatial extent, dynamic and physical significance, and a high spatial and temporal
resolution. These datasets are commonly referred to as “reanalysis data”. One of the
significant advantages of reanalysis products is their ability to provide vertical atmospheric
information, encompassing various atmospheric variables aside from precipitation, such as
temperature, humidity, and moisture content, at different vertical levels [10,11]. Since the
1990s, global reanalysis products have been released by institutions in the United States, Eu-
rope, and Japan. The National Centers for Environmental Prediction (NCEP) and the Center
for Atmospheric Research (NCAR) in the United States have developed the NCEP/NCAR
reanalysis product [12]. The European Centre for Medium-Range Numerical Forecasts
(ECMWF) has produced the reanalysis products ERA40 [13] and ERA-Interim [14]. The
Japan Meteorological Agency (JMA) and the Central Research Institute of the Electronics
and Energy Industry (CRIEPI) have developed the reanalysis product JRA25 [15] and the
upgraded JRA55 [16]. The continuous enhancement and advancement of assimilation
technology and weather models have contributed to the improvement and upgrading of re-
analysis products. One of the latest and most advanced reanalysis products available today
is the European Reanalysis Product (ERA5) [17], which was completely released by the Eu-
ropean Centre for Medium-Range Weather Forecasts (ECMWF) in 2019. ERA5 outperforms
its previous four generations in terms of its assimilation system sophistication, parameter
optimization scheme, spatiotemporal resolution, and the number of output parameters.
These advancements have significantly enhanced the evaluation capabilities of ERA5.

Compared to other countries, China’s development of atmospheric reanalysis products
started relatively late. In November 2013, the China Meteorological Administration (CMA)
initiated the China Global Atmospheric Reanalysis Program (CGARP). In May 2021, the
CMA officially released China’s first-generation atmospheric reanalysis product (CRA),
aiming to enhance the accuracy of historical weather analyses and facilitate in-depth
investigations of various weather and climate systems. This product provides a global
representation of three-dimensional atmospheric conditions from 1979 to 2018, spanning
from the surface to an altitude of 55 km. It offers a temporal resolution of 6 h and a
horizontal resolution of 34 km. The availability of this product fills the gap in China’s
global atmospheric reanalysis field. In addition, the atmospheric reanalysis product (CRA)
consists of two types of products: the global atmospheric reanalysis product (CRA-40)
and the global land surface reanalysis product (CRA-40/Land). Distinguishing itself from
other reanalysis products, the CRA incorporates a wide range of high-quality data sources.
These include bias-corrected sounding instruments [18], ground-based observations on
the Tibetan Plateau, integrated aircraft datasets [19], recently released AMW reprocessed
observations, and GPS ocean observations [20]. The data quality assessment of CRA-40
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products indicates that they are generally on par with the international third-generation
global reanalysis products [21].

Precipitation datasets derived from reanalysis products are highly valuable for weather
forecasting and hydrological applications [22]. However, it is important to recognize that
reanalysis products do not represent actual observations. Instead, they are a combination of
numerical forecasts and observational data. Consequently, uncertainties arise from various
sources, including numerical models, assimilation schemes, homogenization processes,
and errors resulting from changes in the observation system [23]. Therefore, it becomes
crucial to evaluate the quality and suitability of reanalysis precipitation products. To date,
both domestic and international researchers have conducted extensive assessments on
the applicability of monthly-scale and hourly-scale reanalysis precipitation products in
the Chinese region. Wu et al. [24] conducted a comparative analysis of spatial variations
in extreme precipitation and temperature indices using ERA-Interim and NCEP/DOE
reanalysis data, based on station observations in the Jianghuai Basin from 1979 to 2011.
Xin et al. [25] conducted an evaluation of the applicability of two reanalysis precipitation
products, ERA5-Land and ERA5-HRES, in the Guangdong–Hong Kong–Macao Greater
Bay Area of China. This study revealed that the ERA5 products predominantly captured
moderate-intensity precipitation, demonstrating their strongest performance during the
rainy season in the southern coastal areas of the Greater Bay Area. Moreover, the ERA
products exhibited notable accuracy in the northern mountainous areas and vegetation
zones during the dry season. Based on the data from 807 meteorological stations in
mainland China during the period of 2001–2017, Jiang et al. [26] evaluated the performances
of ERA5, the Integrated Multi-Satellite Retrieval of Global Precipitation Measurements
(IMERG), Tropical Precipitation Measurement Mission Multi-Satellite Precipitation Analysis
(TMPA), and the Climate Prediction Center (CPC) precipitation products, and found that
ERA5 exhibits large statistical errors. In a study by Qu et al. [27], the suitability of four
reanalysis monthly precipitation products, namely CRA-40/Land, ERA5, JRA55, and
MERRA2, was assessed in Inner Mongolia using measured precipitation data from stations
spanning the period of 1981 to 2020. This study revealed that CRA-40/Land and MERRA2
exhibited higher data quality compared to ERA5, with ERA5 being ranked third in terms of
data quality. Wang et al. [9] assessed the applicability of CRA-40/Land, ERA5, and the U.S.
reanalysis product CFSR monthly precipitation products in the Chinese mainland region
with observed precipitation data from 2231 stations in the Chinese mainland region as a
reference. This study found that CRA-40/Land had the smallest error for monthly average
precipitation, and demonstrated the highest applicability in China. Li et al. [28] evaluated
the precipitation performance of China’s Global Atmospheric Reanalysis precipitation
data (CRAI) and ECMWF Intermediate Reanalysis (ERAI), Japan’s 55-Year Reanalysis
(JRA55), and the NCEP Climate Prediction System Reanalysis (CFSR), and compared the
results with the observational data. The CRAI, ERAI, and JRA55 tend to overestimate light
and moderate precipitation, but underestimate heavy and extreme precipitation. Huang
et al. [29] evaluated the applicability of ERA5-Land precipitation data in southwest China
based on the observation data of 441 surface rain gauges of the China Meteorological
Administration from 2018 to 2020. The results showed that ERA5-Land precipitation
was most obviously intensive in Tibet, and the error was relatively large in mountainous
areas with complex terrain. Furthermore, Jiang et al. [30] evaluated the accuracy of ERA5-
day precipitation data in mainland China from 2003 to 2015. The results indicated that
ERA5 exhibited high root-mean-square errors in subtropical climatic zones and humid
tropical climates. Additionally, it overestimated light rainfall events and underestimated
medium–heavy precipitation events. However, the assessment of the applicability of the
CRA-40/Land daily precipitation product over large-scale mainland China has not been
widely conducted thus far.

The object of this study is to evaluate the applicability of CRA-40/Land daily precipi-
tation products over mainland China. Observations from 2301 surface rain gauge stations
in the mainland China region were used as a reference to compare ERA5 daily precipitation
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products with CRA40. The paper is organized as follows: Section 2 introduces the study
area and data used in this study. Section 3 describes the evaluation results and discussions
with an analysis of the spatio-temporal error characteristics. Section 4 gives the summary
and conclusions.

2. Materials and Methods
2.1. Study Area

Mainland China, with its diverse natural and climatic geomorphic units, provides
an ideal case study area for evaluating the accuracy of reanalysis precipitation products.
In this study, mainland China is utilized as the research domain, which encompasses a
latitudinal and longitudinal range of 73◦40′–135◦02′E and 18◦10′–53◦33′N, respectively. The
distribution of the topography is depicted in Figure 1. Referring to Chen’s study [31], eight
subregions are defined based on the distribution of mean annual precipitation, elevation,
and mountain range orientation, including (I) Xinjiang region (XJ) in far-west China,
(II) the high-elevation Qinghai–Tibetan Plateau region (QZ), (III) the northwestern region (XB),
(IV) the region north of the Yanshan Mountains in northeastern China (DB), (V) the northern
part of China, north of the Huaihe River and north of the Qinling Mountains (HB), (VI) the
southwestern Yunnan–Guizhou Plateau region (YG), (VII) the Yangtze River Plain region
(CJ), and (VIII) the southeastern region of China (HN).
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Mainland China is geographically situated in the eastern part of Eurasia and on the
west coast of the Pacific Ocean, covering a large extent of longitude and latitude. The spatial
distribution of precipitation in mainland China displays significant variability, owing to
the external geographic characteristics and the complex and varied internal terrain and
topography. The average annual precipitation demonstrates a decreasing trend from the
southeastern coast to the northwestern interior. Furthermore, the seasonal variation in
precipitation in mainland China is pronounced due to the influence of monsoon activities,
characterized by more precipitation during summer and less during winter.

2.2. Ground Reference Data

The surface reference precipitation data utilized in this study were obtained from
the daily rain gauge observations (including rainfall and snowfall) collected from 2003
to 2015 by the China Meteorological Information Center (https://data.cma.cn/, accessed
on 10 December 2021). Figure 2 exhibits the distribution of 2301 stations across the study
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area. The collected surface rain gauge observations were subjected to rigorous quality
control procedures and subsequently interpolated into a regular gridded analysis (hereafter
referred to as “GGKRIG”) at a resolution of 0.25◦ using the Kriging interpolation algorithm.
The Kriging interpolation method is a geostatistical-based interpolation technique that
integrates the relevant sample data and considers the spatial structure characteristics within
a specific range of unsampled points by assigning individual weight coefficients to each
sample value. This results in an unbiased, linear, and optimal estimation value as well as
the corresponding estimation variance [32]. However, it should be noted that the use of the
algorithm over a relatively large study area with an uneven distribution of ground stations
may introduce some uncertainty in the precipitation estimates and may not adequately rep-
resent precipitation over the entire region [33,34]. Moreover, in many previous evaluation
studies, there have been precedents using the longitude and latitude coordinates of rain
gauge stations to extract grid precipitation products for comparative evaluation [35,36].To
minimize the impact of the interpolation on the accuracy and error assessment of the
reanalysis products, station observations data has been selectively employed for compara-
tive analysis in this paper. The GGKRIG was only used in the comparison of the spatial
distribution of the 13-year daily mean precipitation and seasonal daily mean precipitation
to capture the overall trend of the spatial distribution of precipitation.
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2.3. CRA40

The CMA has developed the first generation of global reanalysis products known
as the CRA (CMA’s global atmospheric reanalysis). This reanalysis incorporates various
conventional ground-based observations, including China Fundamental Data, Climate
Forecasting System Reanalysis (CFSR), and the Integrated Surface Database (ISD). The
CRA consists of two components: global atmospheric reanalysis products (CRA-40) and
global land surface reanalysis products (CRA-40/Land). These products provide 3-hourly,
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daily, and monthly data with a spatial resolution of approximately 34 km. The land surface
reanalysis products encompass near-surface atmospheric drive analysis and land surface
model simulation. The land surface model simulation products are generated by driving
the Noah 3.3 land surface model with near-surface atmospheric forcing analysis products.
Specifically, this study focuses on the day-by-day precipitation products (including precipi-
tation and snow) simulated using the CRA40-40/Land land-surface model (referred to as
CRA40) over a 13-year period from January 2003 to December 2015. The spatial resolution
of the CRA40 precipitation product is 0.315◦ × 0.315◦ (1152 × 576, Gaussian grid). To
facilitate subsequent calculations and comparisons, the spatial resolution of CRA40 was
resampled to 0.25◦ × 0.25◦ using bilinear interpolation.

It is important to note that the CRA40 precipitation product lacks sea surface pre-
cipitation information, resulting in data gaps in coastal areas. Moreover, there are also
missing data for some grids within China, the number of missing grids increases further
after bilinear interpolation, and the missing grid areas are indicated by the red letters
A and B in Figure 2d. In order to mitigate the impact of missing CRA40 values on the
assessment results, 1950 station observations (referred to as the gauges) containing valid
CRA40 values were selected from 2301 rain gauge station observations as the reference
data for subsequent calculations and analyses.

2.4. ERA5

ERA5 is the latest publicly available atmospheric reanalysis product from the ECMWF,
providing a powerful global climate detection dataset. It utilizes the 4D-Var data assimila-
tion system and combines it with observations from around the world, resulting in higher
spatial and temporal resolution compared to the previous ERA-Interim product. The atmo-
spheric data can be used at different altitudes, and the precipitation data consists of two 2D
surface-level parameters, rainfall and snow. ERA5 generates large-scale precipitation using
a cloud scenario that is inverted by a convective scenario to convective precipitation.

In this study, the ERA5 precipitation dataset spans from January 2003 to Decem-
ber 2015, with a spatial resolution of 0.25◦ × 0.25◦ and a temporal resolution of hours
through the C3S Climate Data Store application programming interface (API) (https://
cds.climate.copernicus.eu/#!/home, accessed on 7 October 2022). To facilitate subsequent
processing and analysis, hourly precipitation was accumulated to daily precipitation to
match CRA40 for subsequent processing and analysis.

2.5. Evaluation Methods and Metrics

In this paper, eight metrics were chosen to provide a comprehensive assessment of
accuracy and error for reanalysis precipitation products. These eight metrics can be cate-
gorized into two groups [37]. The first group consists of continuous statistical indicators,
including root-mean-squared error (RMSE), bias, relative bias (RB), correlation coefficient
(CC), and fractional standard error (FSE), which quantify the accuracy of precipitation
data. The RMSE provides an overall measure of accuracy and error level for precipitation
products. RB indicates the deviation of precipitation products from ground observation
data, with negative and positive values denoting underestimation and overestimation,
respectively. The CC reflects the linear correlation between precipitation products and
ground observation data. FSE captures the difference between the mean values of precipita-
tion products and ground observation data, with smaller values indicating higher accuracy.
The second category comprises categorical statistics, namely the probability of detection
(POD), the false alarm ratio (FAR), and the critical success index (CSI). The POD describes
the proportion of precipitation events detected with the reanalysis precipitation products
relative to the proportion of ground-observed precipitation events. The FAR represents
the proportion of precipitation events with false alarms from the precipitation products
among the total number of detected precipitation events. The CSI is a comprehensive
measure that considers both the POD and the FAR, representing the ability of precipita-
tion products to detect real precipitation events. These indicators have been computed

https://cds.climate.copernicus.eu/#!/home
https://cds.climate.copernicus.eu/#!/home


Remote Sens. 2023, 15, 5300 7 of 21

on a pixel-by-pixel basis over China, and the specific formulas and explanations can be
found in Table 1. Through comparative analysis, a more comprehensive understanding of
the detection ability of the CRA40 and ERA5 products on mainland China precipitation
can be achieved.

Table 1. Calculation formula for assessment indicators.

Evaluation
Indicators Formula Range of

Values
Optimal

Value Unit

Bias Ei − Gi (−∞, ∞) 0 mm/day

RMSE
√

1
n ∑n

i=1(Ei − Gi)
2 (−∞, ∞) 0 mm/day

RB
∑n

i=1(Ei−Gi)
∑n

i=1 Gi
× 100% [0, ∞) 0 %

CC
∑n

i=1(Ei−E)(Gi−G)√
∑n

i=1(Ei−E)
2
√

∑n
i=1(Gi−G)

2
[−1, 1] 1 /

FSE

√
1
n ∑n

i=1(Ei−Gi)
2

Avg(Gi)
[0, ∞) 0 /

POD
Hits

Hits+Miss [0, 1] 1 /

FAR
False Alarm

Hits+False Alarm [0, 1] 0 /

CSI
Hits

Hits+Miss+False Alarm [0, 1] 1 /

Note: n is the total number of grid points; Ei and Gi denote the reanalysis precipitation products and the inter-
polated precipitation with the rainfall gauge observations, respectively; E is the mean value of the reanalysis
precipitation products; G is the average precipitation value interpolated with the ground rainfall gauge observa-
tions; Avg(G i) is the average of the values interpolated to the grid points based on the rainfall gauge observations.
Hits is the number of precipitation events detected by both reanalysis precipitation products and gauge-observed
precipitation; Miss is the number of events that reanalysis precipitation products show no precipitation but gauge
observations show precipitation; False Alarm is the number of events that reanalysis precipitation products show
precipitation but gauge observations show no precipitation.

For further quantitative comparison, precipitation can be divided into six categories ac-
cording to the Chinese national standard “Classification of Precipitation Levels”
(GB/T 28592-2012) [38], as shown in Table 2.

Table 2. Daily precipitation test classification standard.

Class Intensity (mm/day) Rank

1 1~10 Light Rain
2 10~25 Medium Rain
3 25~50 Heavy Rain
4 50~100 Rainstorm
5 100~250 Large Rainstorm
6 ≥250 Extreme Rainstorm

Note: the minimum amount of light rain is adjusted to 1 mm/day to avoid the effects of sporadic precipitation [39].

3. Results
3.1. 13-Year Daily Mean Precipitation

Figure 2 illustrates the spatial distribution of the 13-year mean daily precipitation
for the gauges, GGKRIG, and ERA5 and CRA40 in mainland China from 2003 to 2015.
As depicted in Figure 2a, the rain gauge stations are densely located in southeastern
China while being sparser in the northwestern region. Spatially, both ERA5 and CRA40
(Figure 2b–d) generally capture the spatial variation trend in China, which align with the
gauge-based analysis, GGKRIG. This trend manifests as a decrease in precipitation from
the southeastern coastal areas to the northwestern inland areas of mainland China. The
precipitation-rich regions indicated with CRA40 and ERA5 primarily occur in southeastern
China and the southern Himalayan Mountains, with reduced rainfall in the northern and
northwestern inland areas exhibiting lower precipitation levels. Nonetheless, noticeable
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discrepancies exist between the two products in certain regions. Across China, ERA5 tends
to overestimate precipitation in the semi-arid zone near the Tien Shan mountain range in
XJ, the southeastern part of QZ, the northwestern part of HN, and the southern part of
YG, as well as the central region and the surroundings of the Sichuan Basin. On the other
hand, CRA40 demonstrates a spatial precipitation distribution more similar to that of the
GGKRIG and superior to ERA5.

Figure 3 shows the scatter density plots of the ERA5 product and the CRA40 product
against the gauges to quantitatively compare the 13-year daily average precipitation in
mainland China from 2003 to 2015. It should be kept in mind that only the grids that
are overlapped with at least one rainfall gauge are selected for comparison in the scatter
density plots. It is noted that CRA40 performs better than ERA5 in terms of RB, the RMSE,
CC, and FSE of the annual daily average precipitation. It is worth noting that in terms of
the CC, the correlation between the CRA40 product and the real data gauges reaches 0.97,
while the correlation of the ERA5 product is relatively slightly lower at 0.91. In terms of
RB, both of them show overestimation, with a large degree of deviation in precipitation for
ERA5 (18.59%) and a relatively small degree of deviation for CRA40 (5.25%). Such obvious
overestimation of precipitation by ERA5 in some areas can be found in Figure 2c.
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Meanwhile, in addition to the distributional characteristics of point densities that can
be observed in the scatter density plots, a more pronounced difference in the distributional
characteristics of precipitation can also be seen. When the points are biased towards the
vertical axis, where the reanalysis precipitation products are located, it means that the
corresponding reanalysis precipitation product overestimates the precipitation intensity
on the ground. In addition, the density of points is marked in color; the closer to the
vertical axis, the higher the density of points, and the more the reanalysis precipitation
product overestimates the precipitation. The higher density of points of CRA40 and ERA5
are both concentrated in the region composed of the coordinate set of {x, y | x ∈ [0, 3],
y ∈ [0, 3]}. Among them, the points of CRA40 are mostly linearly distributed along the line
1:1, indicating that the degree of bias is small and the analyzed surface precipitation is better
than that of ERA5, while there are individual lattice points that significantly underestimate
the surface precipitation within [1–4) mm/day. The points of ERA5 show a more significant
distribution of bias towards the vertical axis, suggesting that they significantly overestimate
the intensity of precipitation observed with the surface rainfall gauge. It is noted that
some points of ERA5 are high above the 1:1 line when precipitation rates are between
2 and 6 mm/day, implying that ERA5 substantially overestimates precipitation in some
regions [40,41].

Table 3 provides more detailed statistics for the eight subregions in China, and the
values of the metrics have been rounded to two decimals, with the best performance in
different regions and time periods highlighted in bold. As a whole, CRA40 shows better
performance compared to ERA5. It is worth noting that CRA40 and ERA5 perform poorly
in the arid and semi-arid region of XJ and the higher-altitude region of QZ. In terms of RB,
ERA5 significantly overestimates the XJ (49.35%), QZ (70.87%), and YG regions (36.67%),
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while CRA40 relatively overestimates XJ (31.40%) and QZ (23.12%) as well as DB (11.04%),
and exhibits slight overestimation in all other regions. In terms of the CC, ERA5 has low
correlation in the XJ (0.74), QZ (0.74), YG (0.50), and HN (0.4) regions, while CRA40 has
poor correlation in XJ (0.68), YG (0.75), and HN (0.69).

Table 3. RMSE, RB, FSE, and CC for the 13-year daily average and seasonal daily precipitation by region.

Indexes Time Type China XJ QZ XB DB HB YG CJ HN

RMSE

13 years CRA40 0.34 0.41 0.51 0.16 0.21 0.20 0.37 0.38 0.49
ERA5 0.75 0.50 1.21 0.43 0.29 0.30 1.30 0.61 0.86

Spring CRA40 0.41 0.44 0.44 0.13 0.19 0.17 0.50 0.47 0.77
ERA5 0.97 0.50 0.98 0.36 0.37 0.21 1.42 1.08 1.71

Summer
CRA40 0.75 0.88 1.18 0.37 0.49 0.50 0.81 0.78 1.14
ERA5 1.22 1.02 2.44 0.69 0.48 0.69 1.92 0.92 1.22

Autumn
CRA40 0.29 0.29 0.41 0.15 0.15 0.14 0.34 0.33 0.47
ERA5 0.70 0.43 1.13 0.57 0.27 0.28 1.30 0.37 0.56

Winter
CRA40 0.16 0.13 0.14 0.04 0.09 0.09 0.21 0.23 0.23
ERA5 0.52 0.17 0.41 0.19 0.15 0.12 1.02 0.45 0.61

RB (%)

13 years CRA40 5.25 31.40 23.12 6.92 11.04 5.13 2.65 2.95 4.51
ERA5 18.59 49.35 70.87 28.91 16.15 8.94 36.67 8.83 8.72

Spring CRA40 6.89 27.58 29.34 10.46 14.37 8.39 9.51 3.24 4.42
ERA5 22.93 58.79 78.34 40.03 30.69 9.46 45.37 12.87 16.20

Summer
CRA40 4.77 52.49 21.24 6.25 8.58 4.64 0.77 3.49 2.71
ERA5 12.81 40.59 56.05 16.76 7.53 8.47 21.94 8.65 1.15

Autumn
CRA40 3.74 13.04 20.30 5.20 11.45 1.07 −1.44 2.55 8.75
ERA5 20.32 63.50 83.93 37.60 24.12 6.37 38.38 4.51 5.28

Winter
CRA40 6.86 −4.94 51.62 14.36 37.61 18.64 9.93 1.16 6.57
ERA5 36.61 33.86 299.84 120.62 61.94 23.73 141.78 4.88 24.40

FSE

13 years CRA40 0.05 0.36 0.19 0.02 0.03 0.02 0.05 0.04 0.05
ERA5 0.24 0.53 1.07 0.17 0.06 0.05 0.59 0.10 0.17

Spring CRA40 0.07 0.39 0.20 0.02 0.04 0.02 0.10 0.05 0.11
ERA5 0.40 0.51 0.98 0.18 0.13 0.04 0.83 0.25 0.53

Summer
CRA40 0.12 1.00 0.44 0.06 0.06 0.06 0.11 0.11 0.17
ERA5 0.33 1.33 1.90 0.20 0.06 0.11 0.64 0.15 0.20

Autumn
CRA40 0.05 0.23 0.15 0.02 0.02 0.01 0.05 0.04 0.08
ERA5 0.26 0.49 1.11 0.29 0.07 0.05 0.64 0.06 0.11

Winter
CRA40 0.04 0.08 0.19 0.01 0.04 0.02 0.07 0.03 0.03
ERA5 0.38 0.13 1.56 0.32 0.10 0.04 1.84 0.11 0.23

CC

13 years CRA40 0.97 0.68 0.80 0.95 0.95 0.95 0.75 0.88 0.69
ERA5 0.91 0.74 0.74 0.90 0.93 0.88 0.50 0.80 0.40

Spring CRA40 0.98 0.67 0.88 0.95 0.94 0.98 0.88 0.97 0.89
ERA5 0.94 0.79 0.82 0.93 0.91 0.93 0.81 0.89 0.65

Summer
CRA40 0.93 0.58 0.72 0.92 0.92 0.90 0.75 0.65 0.61
ERA5 0.88 0.67 0.61 0.87 0.91 0.85 0.57 0.66 0.59

Autumn
CRA40 0.95 0.68 0.85 0.97 0.95 0.94 0.80 0.66 0.93
ERA5 0.84 0.75 0.83 0.90 0.94 0.88 0.43 0.75 0.83

Winter
CRA40 0.98 0.77 0.36 0.86 0.94 0.99 0.69 0.96 0.93
ERA5 0.86 0.77 0.76 0.65 0.94 0.95 0.54 0.82 0.71

Note: best performance is highlighted in bold.

3.2. Seasonal Daily Mean Precipitation

Southeast China has a predominantly monsoon climate, while northwest China has
an arid and semi-arid climate. The location of China determines that precipitation in
China will show different geographic patterns seasonally, influenced by Asian monsoons,
the Tibetan Plateau, and the prevailing westerly winds from the North Atlantic Ocean.
Figure 4 shows the spatial distribution of the spatially continuous rain gauge data based
on the Kriging interpolation method and the seasonal daily mean precipitation of the
CRA40 and ERA5 reanalysis products for mainland China. Figure 5 quantifies the seasonal
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performance of the two reanalysis precipitation products using scatter density plots, and
Table 3 provides more detailed seasonal statistics for the eight subregions, where the RMSE,
FSE, RB, and CC are calculated by comparing the seasonal daily mean precipitation with
that of the gauges.
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As shown in Table 3, both CRA40 and ERA5 tend to overestimate the seasonal daily
precipitation in the eight subregions of China. Overall, CRA40 performs better than
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ERA5 in assessing seasonal precipitation in most subregions. In the spring season, CRA40
simulates a significant overestimation of precipitation in XJ, QZ, XB, and DB (27.58%,
29.34%, 10.46%, and 14.37%, respectively), while showing relatively better performance
in other subregions. On the other hand, ERA5 generally overestimates precipitation in all
eight subregions, particularly in XJ, QZ, XB, DB, and YG (58.79%, 78.34%, 40.03%, 30.69%,
and 45.37%, respectively). Only in HB does ERA5 show relatively lower overestimation
(9.46%), but is still worse than CRA40. In the summer season, both CRA40 and ERA5 exhibit
overestimation in all subregions, with greater overestimation in XJ and QZ compared to
other regions (CRA40: 52.49%, 21.24%; ERA5: 40.59%, 56.05%). In the fall season, CRA40
demonstrates relatively small RB across regions, with significant overestimation only in
XJ, QZ, and DB (13.04%, 20.30%, 11.45%), and slight underestimation in YG (−1.44%).
However, ERA5 shows significant overestimation in XJ, QZ, XB, and YG (63.50%, 83.93%,
37.60%, 38.93%). It should be noted that both products perform relatively poorly in
assessing winter precipitation compared to the other three seasons. CRA40 underestimates
precipitation in XJ (−4.94%) and significantly overestimates it in QZ and DB (51.62%,
37.61%). On the other hand, ERA5 shows significant overestimation in all seven subregions
except CJ (≥23.99%), with highly significant overestimation in QZ, XB, and YG (299.84%,
120.62%, and 141.78%, respectively). In general, both CRA40 and ERA5 perform relatively
well in assessing seasonal precipitation for HN, CJ, and HB in southeastern China, with
CRA40 exhibiting smaller a FSE and higher CC. However, there is room for improvement
in their estimations of winter precipitation. In particular, both products show a significant
overestimation of precipitation in QZ during winter, and the CCs of CRA40 are smaller in
winter in all subregions when compared to the other three seasons.

3.3. Daily Precipitation

Figure 6 presents the daily variations in RB, bias, CCs, and RMSE for the two reanalysis
precipitation products in mainland China from 2003 to 2015. The daily bias and RMSE
generally exhibit annual periodicity and some correlation, with the highest RMSE occurring
in summer and the lowest in winter. This pattern is particularly pronounced in the XJ and
QZ regions. However, the daily CC values fluctuate dramatically and do not show a clear
trend. This indicates that the two reanalysis products are strongly influenced by seasonal
climate and surface characteristics. Furthermore, in terms of RB, it can be seen that CRA40
and ERA5 also show a certain regularity, i.e., the maximum value of RB often occurs in the
winter, and the minimum value mostly occurs in the summer. This phenomenon is more
clearly visible in the Chinese region. Individual dates with very large RB values were found
in eight subregions of China, mainly in winter, and CRA40 showed more days with very
large RB values. After separately analyzing the single day data with significant RB values,
it was found that the reason for the significant RB values was due to the fact that the gauges
captured a negligible amount of precipitation on a single day, whereas the reanalysis of
the precipitation product simulated significantly more precipitation. In terms of the daily
RB, bias, CC, and RMSE, ERA5 generally outperforms CRA40. Although CRA40 exhibits
relatively small daily precipitation deviations, the daily CCs are generally significantly
lower (Figure 6b,c). In the QZ and YG regions, ERA5 shows a more pronounced positive
bias compared to CRA40, especially in summer. The large positive bias of ERA5 in these
regions may be the main reason for its poorer performance in summer (Figure 6j,z). It is
worth noting that both ERA5 and CRA40 display more negative deviations in the CJ and
HN regions, particularly in summer and fall. Both CRA40 and ERA5 tend to assimilate
observed and simulated data at larger spatial scales, but they may have limitations in
capturing localized precipitation events, resulting in the underestimation of precipitation.
Overall, these findings highlight the influence of seasonality, surface characteristics, and
regional factors on the performance of the two reanalysis precipitation products in mainland
China. In general, the quality of ERA5 products is better than that of CRA40 in daily-scale
precipitation analyses in China and in various subregions, but both products have their
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limitations in capturing local precipitation events, especially during the rainy season and
in complex terrain areas.
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3.4. Probability Distributions by Occurrence and Precipitation Volume

The probability distribution function (PDF) reveals the inhomogeneity of precipitation
in time and space, and has the ability to characterize precipitation products to detect pre-
cipitation. Precipitation in mainland China exhibits large variations in time and intensity.
Figures 7 and 8 reveal the ability of the reanalysis precipitation products to detect different
threshold precipitation rates in terms of daily-scale precipitation event occurrence (PDFc)
and precipitation volume (PDFv), with PDFc as well as PDFv computed only in network
cells with non-zero values of both reanalysis precipitation product and surface rain gauge
precipitation observations [40]. It is noteworthy that the reanalysis precipitation products
and the rain gauge observations exhibit similar trends, showing a higher occurrence of pre-
cipitation when the precipitation rate is below 5 mm/day. However, at precipitation rates
below 1 mm/day (sporadic precipitation) and above 30 mm/day (heavy precipitation),
the rain gauge observations show a higher frequency of precipitation events compared to
both CRA40 and ERA5, suggesting an underestimation with the reanalysis products in
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these ranges. Specifically, CRA40 precipitation occurrences align more closely with the rain
gauge observations at rates below 1 mm/day, while ERA5 has precipitation occurrences
more consistent with the rain gauge observations at rates above 30 mm/day. On the other
hand, for precipitation rates ranging from 1 mm/day to 25 mm/day (light and medium pre-
cipitation), both CRA40 and ERA5 generally yield a higher number of precipitation events
compared to the rain gauge observations. Moreover, ERA5 exhibits a higher incidence of
precipitation compared to CRA40 within this range of 1–30 mm/day. This suggests that
CRA40 performs better in capturing light and medium-weight precipitation but has limited
capability in detecting heavy precipitation, while the opposite holds true for ERA5.
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In addition, when precipitation rates are less than 1 mm/day, the precipitation
amounts from the two reanalysis precipitation products are more consistent with the
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rain gauge observations. At precipitation rates from 1 mm/day to 30 mm/day, ERA5
estimated more precipitation than rain gauges, and CRA40 performs relatively better
than ERA5, which is consistent with the precipitation shown in Figure 2. However, at
precipitation rates greater than 30 mm/day, these two reanalysis precipitation products
estimate less precipitation than the rain gauges, except for areas XJ, QZ, and XB, where
the ERA5 estimates precipitation more closely aligned with the gauge observations. This
result suggests that both CRA40 and ERA5 underestimate the amount of precipitation
for sporadic and heavy precipitation, and overestimate the amount of precipitation for
light and medium precipitation, while CRA40 significantly underestimates the amount of
precipitation for heavy precipitation. In summary, in the precipitation detection of China
and its eight subregions, CRA40 has better precipitation detection performance when the
precipitation rate is lower than 30 mm/day. When the precipitation rate is greater than
30 mm/day, the detection performance of ERA5 is better.

3.5. Daily Precipitation Detection Capability

Figure 9 shows the performance of CRA40 and ERA5 in terms of the detection rate
(POD), critical success index (CSI), and false alarm rate (FAR) for China and eight sub-
regions, with thresholds ranging from 1 to 250 mm/day at intervals of 1 mm/day. Both
reanalysis precipitation products exhibit a general decreasing trend in POD and CSI as
the thresholds increase, while the FAR displays an increasing trend. Overall, ERA5 out-
performs CRA40 in terms of these statistical metrics. Specifically, ERA5 demonstrates a
higher POD, higher CSI, and lower FAR for most threshold intervals in mainland China,
except for the precipitation rates in the range of 50–150 mm/day, where CRA40 achieves a
slightly better POD than ERA5. In the other eight subregions of China, ERA5 consistently
shows a higher POD, CSI, and lower FAR compared to CRA40. It is worth noting that
both CRA40 and ERA5 exhibit low PODs and CSIs (close to 0%) and high FARs (close
to 100%) near the threshold value of 250 mm/day. This indicates that neither ERA5 nor
CRA40 perform well in accurately detecting and capturing precipitation events at high
precipitation rates. In summary, ERA5 generally surpasses CRA40 in terms of the POD,
CSI, and FAR, indicating its superior performance in detecting precipitation events across
various threshold values. However, both CRA40 and ERA5 exhibit limitations in accurately
capturing high precipitation rates.

3.6. Spatial Analysis

Figure 10 shows the spatial distribution of bias, RB, RMSE and CCs for the CRA40
and ERA5 reanalysis precipitation products for the 13-year daily mean precipitation in
mainland China, which will help hydrological modelers to analyze the error propagation
during hydrological simulation. As can be seen in Figure 10, the spatial distribution of pre-
cipitation bias, RB, RMSE, and CCs in mainland China exhibit similar patterns for CRA40
and ERA5. These two datasets generally overestimate precipitation in the northern and
western regions of China, with ERA5 showing a greater degree of overestimation. These
two datasets slightly underestimate precipitation in the southeast. Notably, ERA5 signifi-
cantly overestimates precipitation in the YG region, while CRA40 exhibits comparatively
less overestimation. The RMSE values are generally close to 0 mm in most areas. Higher
RMSE values are primarily found in humid climate regions (HN, CJ, and YG) and arid
climate regions (XJ). Importantly, the RMSE of ERA5 in the southeastern part of the QZ
region is notably higher than that of CRA40. Regarding the CC, CRA40 performs better
than ERA5. Higher CC values are observed in eastern, southeastern, and northwestern
China, ranging mostly between 0.7 and 1. Slightly lower CC values are seen in the YG
and northwestern QZ regions. Both CRA40 and ERA5 generally exhibit positive precip-
itation biases, particularly in the YG, HN, and CJ regions, with ERA5 displaying a more
pronounced bias. In contrast, positive biases are relatively small in the XJ, XB, DB, and HB
regions. It is noteworthy that CRA40 demonstrates a significantly smaller bias in the QZ
region, whereas ERA5 exhibits a substantial positive bias.
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Figure 11 shows the occurrence probability and occurrence cumulative distribution
functions of the bias, RB, RMSE, and CC statistics within the Chinese region. As can be
seen in Figure 11, there is a significant difference between CRA40 and ERA5 in PDFc and
CDFc for the deviation, RB, RMSE, and CC statistics, and CRA40 performs relatively better.
The PDFc and CDFc for CRA40 indicate that there are significantly more pixels, with an
estimated bias equal to 0 mm/day, than there are for ERA5. Similar conclusions can be
drawn in the RMSE values in the range of 0–0.4 mm. Furthermore, in order to better
compare the performance of the two reanalysis precipitation products, a set of statistics
used to evaluate the quantification is given below. For CRA40 and ERA5, 24.1% and 51.23%
of the deviations in the 13-year daily average precipitation are greater than 0.5 mm, 63.38%
and 82.10% of the RB are greater than 5%, 47.59% and 74% of the RMSE are greater than
0.4 mm, and 88.36% and 73.90% of the CC are greater than 0.7, respectively.
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4. Discussion

This study uses the eight indicators described above to assess the 13-year daily mean
precipitation, seasonal daily mean precipitation, and daily precipitation at different time
scales over the period of 2003–2018. We find some bias and different regional applicabil-
ity of the CRA40 and ERA5 reanalysis precipitation products to rain gauge observations
within mainland China. The vast expanse of China results in distinct regional variations in
precipitation patterns, and these localized differences are quite noticeable. The accuracy of
precipitation forecasts is significantly influenced by the intensity of rainfall in a particular
area [41,42]. Therefore, to further explore the characteristics and applicability of CRA40
and ERA5 under different intensities of precipitation in mainland China and its subregions,
precipitation was classified into six classes according to the Chinese national standard Clas-
sification of Precipitation Classes (GB/T 28592-2012) [38] and analyzed using probability
distributions based on the number of occurrences and amount of precipitation.

As shown in Figure 2, it can be seen that both CRA40 and ERA5 can better simulate the
spatial variation trend of precipitation in China, but the spatial distribution characteristics
of precipitation in the CRA40 product are more similar to those of the GGKRIG. It is worth
noting that ERA5 and CRA40 may have significantly overestimated the annual mean daily
precipitation in the southern Himalayas in the YG region. This overestimation could be
attributed to the absence of surface rainfall gauge stations in that area, resulting in the
underestimation of precipitation due to the influence of surrounding rain gauge station
values during the interpolation process.

As can be seen from Figure 3, CRA40 (ERA5) has a small number of significantly
underestimated (overestimated) data points. After a careful check of the locations of
the underestimated and overestimated points in the above regions, it is found that the
underestimated points of CRA40 are distributed at the sea–land junction of the Yangtze
River estuary. This is probably attributed to the impact of the missing values at the sea–land
boundary. As for ERA5, and the overestimated points are distributed at the mountainous
areas and mountain ranges with complex topography in parts of YG and HN (Figure 2c,d).
These results are consistent with those of Fallah et al. [43] and Nogueira et al. [44], whose
findings suggest that ERA5 has poor-quality precipitation estimation in mountainous and
mountain regions with complex precipitation processes. Based on the index calculation
results in Table 3, it can be seen that CRA40 has relatively better applicability in Chinese
mainland and seven subregions except XJ, and the product quality of ERA5 in the XJ region
is slightly better than CRA40.

The daily bias and RMSE generally exhibit annual periodicity and some correlation,
with the highest RMSE occurring in summer and the lowest in winter. This pattern is
particularly pronounced in the XJ and QZ regions. In addition, the cyclical characteristics
of bias and RMSE are relatively more pronounced in the QZ and XJ regions, suggesting
that the two reanalysis precipitation products are more influenced by seasonal climate
and surface features. In the CJ and HN regions, both the CRA40 and ERA5 products
exhibit more negative deviations. This is likely attributed to the complex topography of
these regions, including mountain ranges and hills, which affect precipitation distribution.
Additionally, the presence of extensive vegetation and wetlands in these regions, along
with their status as rainy seasons, further complicates the estimation and observation
of precipitation.

In the daily precipitation detectability assessment, both CRA40 and ERA5 are highly
biased relative to the rain gauge observations for light rainfall (1–10 mm/day), while the
opposite is true for heavy precipitation (greater than 30 mm/day), which is consistent
with the findings of Hénin et al. [45] and Sharifi et al. [46]. The poor detection of heavy
precipitation may be due to the fact that the reanalysis precipitation products are assimilated
or simulated from multiple observations. And the accuracy of the original input data
and the accuracy of the simulation algorithms will affect the accuracy of the reanalysis
precipitation products [47]. China is a vast country with complex geographical units and
diverse climatic environments, and ground stations are sparse in some parts of the country,
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making input data from satellites and radar more uncertain. In addition, both CRA40 and
ERA5 reflect only the average state of precipitation over a 0.25◦ × 0.25◦ grid area, with
limited ability to detect localized precipitation in complex terrain environments. At the
same time, the regional representativeness of the rain gauge observations is low (especially
in the QZ and XJ regions), which in turn leads to a certain bias between the reanalysis
precipitation products and the ground observations.

5. Summary

The applicability of the first generation of the CRA40 daily precipitation product to
mainland China has been assessed in terms of both categorical and continuous statistical
indicator analyses, with the daily-scale rain gauge observations from 2003 to 2015 from
the China Meteorological Information Center (CMIC) as a reference, and the ERA5 daily
precipitation product as a comparative assessment. The main findings are summarized
as follows:

(1) CRA40 performs better than ERA5 across mainland China in terms of the 13-year
daily average precipitation. Compared to ERA5, CRA40 exhibits a higher CC (0.97), a
smaller RB (5.25%), a lower RMSE (0.34 mm), and a smaller FSE (0.05), while ERA5
has a lower CC (0.91), a larger RB (18.59%), a slightly higher RMSE (0.75 mm), and a
higher FSE (0.24). Both CRA40 and ERA5 show less overestimation of precipitation
in wet regions (CJ and HN), but exhibit more pronounced overestimation in high-
altitude and dry climatic regions (QZ and XJ). Additionally, CRA40 generally had
smaller RB and RMSE values in wetter regions and higher CC values compared to
ERA5, except in XJ, where the CC values are slightly lower than ERA5.

(2) Seasonally, CRA40 has less overestimation and higher CC in areas with abundant
precipitation over southeastern China (HN, CJ, and HB). The RB values of ERA5 are rel-
atively large in all seasons (22.93%, 12.81%, 20.32%, and 36.54%), while CRA40 exhibits
only slight overestimation in all seasons (6.89%, 4.77%, 3.74%, 6.86%). Additionally,
CRA40 had high CC values (≥0.93), while ERA5 had lower CC values (≥0.84).

(3) ERA5 precipitation products have better quality than CRA40, and are more suitable for
daily-scale precipitation studies in mainland China and its sub-divisions. Although
the daily bias of ERA5 is relatively large, it has higher daily series CC values, which
can better reflect the characteristics and variations in precipitation events and provide
a reliable basis for the assessment of precipitation (Figure 6).

(4) The analysis of probability density functions for sporadic precipitation (<1 mm/day)
and light to medium rainfall (1–25 mm/day) shows that CRA40 better captured
these categories, whereas ERA5 performs better in capturing heavy precipitation
(>30 mm/day). Both CRA40 and ERA5 underestimate trace and heavy rainfall and
overestimate light and moderate rainfall, with CRA40 underestimating heavy precipi-
tation to a greater extent.

(5) ERA5 exhibits better contingency statistics than CRA40, with a higher POD and CIS
and a lower FAR for most threshold intervals. Both CRA40 and ERA5 have poor
performance in detecting high precipitation rates.

(6) Both CRA40 and ERA5 exhibit better performance in estimating precipitation during
the spring, summer, and autumn seasons compared to winter. For most of the time,
both CRA40 and ERA5 demonstrate a pronounced overestimation, particularly in the
QZ region at higher altitudes. CRA40 shows a lower level of overestimation (51.62%)
during winter in comparison to ERA5 (299.84%), but its CC (0.36) is lower than that of
ERA5 (0.76) (Figures 4 and 5 and Table 3).

(7) In the high-altitude QZ region, the quality of CRA40 precipitation products is poor
in winter, showing a low correlation, while CRA40’s product quality is better than
ERA5 in the other three seasons. In the arid area of XJ with sparse precipitation,
ERA5 is more suitable than CRA40. Although ERA5 has a relatively large relative
deviation, it generally has a higher correlation. In the YG, CJ, and HN regions, where
precipitation is abundant and the terrain is complex, CRA40 has better application



Remote Sens. 2023, 15, 5300 19 of 21

potential than ERA5. In the XB, DB, and HB regions with less precipitation, except
for the high deviation and relatively low correlation of ERA5 in winter in the XB
region, the performance of CRA40 and ERA5 products is relatively stable and reliable
(Table 3).

This study identifies and quantifies the error characteristics of the CRA40 and ERA5
reanalysis daily precipitation products, which are very important for hydrological ap-
plications in mainland China. The results of the performance evaluation study on the
first-generation global land surface reanalysis daily precipitation product, CRA40, and
the fifth-generation European reanalysis product, ERA5, in China is expected to provide
credibility to the use of the two products and scientific references in hydrological applica-
tions. In mainland China, CRA40 has better precipitation observation accuracy than ERA5
for 13-year daily average precipitation and seasonal daily average precipitation, which
indicates that the CRA40 daily precipitation product has high potential for applications in
precipitation research and hydrological simulation in mainland China. However, there is
still a gap between CRA40 and ERA5 in terms of continuous daily precipitation observation
accuracy and error. In addition, the relative bias between CRA40 and ERA5 is large in
the QZ region in winter, which can be calibrated through ground observations to improve
the accuracy in the subsequent improvement of the product [48,49]. Although reanalysis
products have their limitations, they still have important value in studying climate change
and exploring historical weather events. When using CRA40 and ERA5 to reanalyze pre-
cipitation products, their characteristics and uncertainties should be fully considered, and
comprehensive analysis and judgment should be conducted in conjunction with other
observational data.
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