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Abstract: Synthetic aperture radar interferometry (InNSAR) has emerged as an effective technique for
monitoring potentially unstable landslides and has found widespread application. Nevertheless, in
mountainous reservoir regions, the precision of time-series INSAR outcomes is often constrained by
topography-dependent atmospheric delay (TDAD) effects. To address this limitation, we propose a
novel InSAR time-series method that integrates TDAD correction. This approach employs advanced
deep learning algorithms to individually model and mitigate TDAD for each interferogram, thereby
enhancing the accuracy of small baseline subset INSAR (SBAS-INSAR) and stacking InSAR time-series
analyses. Utilizing Sentinel-1 data, we apply this method to identify potential landslides in the Baihetan
reservoir area, located in southwestern China, where we successfully identified 26 potential landslide sites.
Comparative experimental results demonstrate a significant reduction (averaging 70% and reaching up to
90%) in phase standard deviation (StdDev) in the corrected interferograms, indicating a marked decrease
in phase-topography correlation. Furthermore, the corrected time-series INSAR results effectively remove
TDAD signals, leading to clearer displacement boundaries and a remarkable reduction in other spurious
displacement signals. Overall, this method efficiently addresses TDAD in time-series INSAR, enabling
precise identification of potentially unstable landslides influenced by TDAD, and providing essential
technical support for early landslide hazard detection using time-series INSAR.

Keywords: topography-dependent atmospheric delay; Baihetan reservoir area; potential landslides;
time-series INSAR; deep neural network

1. Introduction

Landslide disasters represent a significant threat in high mountainous and canyon re-
gions across the globe, resulting in thousands of injuries, fatalities, and substantial damage
to critical infrastructure [1]. The southwestern region of China is particularly susceptible to
frequent landslides due to its intricate terrain and diverse geological structures, which pose
significant societal and economic risks. Early identification of landslide hazards becomes
imperative to mitigate casualties and avert losses resulting from such disasters.

In recent decades, synthetic aperture radar (SAR) interferometry (InNSAR) technology
has been widely applied in landslide monitoring due to its all-weather, all-day coverage
capabilities, among other advantages [1-13]. Researchers have extensively utilized time-
series INSAR techniques to identify potential landslide hazards [5,6,14-20]. Time-series
InSAR techniques are still limited by atmospheric delays [21-29], although many methods
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have been proposed to correct different atmospheric delays to improve the accuracy of dis-
placement monitoring (e.g., [27,28,30-32]). Among these atmospheric delays, the influence
of topography-dependent atmospheric delay (TDAD) is particularly severe in many cases.
This component is caused by variations in atmospheric refractivity in the vertical profile
and it is highly correlated with the topography and primarily affects areas with significant
terrain variations [33]. Numerous methods have been proposed to correct TDAD in InSAR,
which can be broadly categorized into three types. The first type is the mathematical
modeling method, where TDAD is estimated based on the phase data themselves. The
most widely used method assumes a linear relationship between the interferometric phase
and topography to estimate the TDAD [4,34]. The second type uses external auxiliary data
to estimate TDAD, including meteorological models [34,35], GNSS data [36—42], spectral
measurements [43,44], or a fusion of these data sources [1,45]. The third type is based on
deep neural network approaches, such as [46,47]; methods of this kind are based on the
premise that topography is strongly correlated with TDAD and aim to model it to reduce
the influence of TDAD. Although the above methods have achieved certain results in
different regions, there are some drawbacks to them. The first type, mathematical modeling,
estimates the TDAD based on a certain model for all the interferograms of all conditions.
It is clear that even in the same area, the interferograms with different SAR acquisitions
affected by the TDAD are not the same [4,48]. The second type requires external data, which
are constrained by low spatiotemporal resolution [1,23,49], and the third type, based on
deep learning, has demonstrated successful TDAD correction in individual interferograms.
However, currently, there is a lack of relevant cases and analysis regarding the improvement
of time-series INSAR results influenced by TDAD, which deserves further research.

In this study, we propose a time-series INSAR method that incorporates TDAD correc-
tion using a deep neural network to enhance the accuracy of the interferometric phase in
each interferogram. The corrected interferograms are then utilized in small baseline subset
InSAR [50] (SBAS-InSAR) and stacking InSAR [51] time-series techniques. We apply this
method to identify potential landslide hazards in the Baihetan reservoir area of southwest-
ern China using Sentinel-1 data. The effectiveness and applicability of the proposed method
in TDAD correction are evaluated from both qualitative and quantitative perspectives. The
improved time-series INSAR algorithm can significantly reduce the influence of TDAD,
enhance the reliability of time-series results, identify landslides affected by TDAD, and is
of great significance for the early identification and monitoring of potential landslides.

2. Study Area and Datasets

As shown in Figure 1, the Baihetan hydropower station is located in the territory of
Ningnan County, Sichuan Province, and Qiaojia County, Yunnan Province, downstream of
the Jinsha River. It is the second cascade power station in the downstream mainstream of the
Jinsha River, mainly for power generation, with additional functions of flood control, sedi-
ment interception, improvement of downstream navigation conditions, and development
of the reservoir area for navigation purposes. The region is situated on the southeastern
edge of the Qinghai-Tibet Plateau, with elevations ranging from 1000 to 3000 m. It be-
longs to the high mountains and plateau geomorphic unit of southwestern Sichuan and
northeastern Yunnan, as well as the Transverse Mountain System. The area is primarily
composed of fluvial erosion landforms, tectonic landforms, and glacial erosion landformes,
with deep-cut valleys and significant weathering and erosion. This study focuses on the
area of approximately 800 km? along the main channel of the Jinsha River, from Hulukou to
Xiangbilin, where the Baihetan Hydropower Station is situated. The study area is densely
populated, with residential areas along the river, multiple transportation routes, and intense
human engineering activities. The area is characterized by poor stability, large elevation
differences in slope, and sparse vegetation. Additionally, factors such as river erosion make
it highly susceptible to geological hazards such as landslides, collapses, and debris flows.
Therefore, it is a key section for geological hazard prevention and control in the Baihetan
reservoir area.



Remote Sens. 2023, 15, 5287 3of 15

Baihetan hydropower station

28°N

o d)

Baihetan

A

26°N

Figure 1. (a) The location of Baihetan; (b) topographic map of the study area; (c,d) photos of Baihetan
hydropower station [16].

This study utilizes Sentinel-1 SAR data for InNSAR time-series analysis. The satellite
data are acquired in the C-band with short revisit periods and wide coverage, and are
widely applied in geological hazard monitoring. A total of 37 descending single-look
complex (SLC) images were acquired for the study area (Figure 2) for the period from
March 2017 to June 2018. The SLC images were obtained in VV polarization mode under
the interferometric wide swath mode, with an incidence angle of 39.99°.
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Figure 2. Temporal and spatial baseline map. The color bar represents the coherence of interferometric pairs.
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3. Methodology
3.1. Typical Time-Series InSAR Method Used in This Study

Differential stacking [51], based on D-InSAR technology, is a form of InNSAR technique
that involves the superimposition and weighted averaging of multiple-phase images gener-
ated through D-InSAR processing. Its primary objective is to reduce errors and obtain more
precise surface displacement information. This method assumes that the noise phase in the
interferograms is random and equal and that the surface within the region exhibits linear
changes. Based on this assumption, it effectively reduces the generation of random errors.
The main steps involve the selection of suitable interferometric pairs and the subsequent
stacking of all interferometric images, weighted by time baseline. This process ultimately
yields a displacement quantity that is accumulated based on time baselines. Consequently,
in the final phase image, the quality of results is enhanced, resulting in more accurate
displacement information.

PS-InSAR [52] (persistent scatterer interferometric synthetic aperture radar) technol-
ogy generates interferometric pairs, and due to the selection of a single master image,
it may include interferometric pairs with longer spatial baselines, making it susceptible
to spatial decorrelation effects. SBAS (small baseline subset) technology, proposed by
Berardino et al. [50] in 2002, is a technique that reduces the effects of temporal and spatial
decorrelation and atmospheric delays in traditional INSAR techniques. The basic principle
is to partition existing images into subsets by setting time and spatial baseline thresholds.
This ensures that the images within a subset have small inter-image baselines, while the
baselines between subsets are large. The least squares method is used to compute the subsi-
dence sequence within each subset, and a singular value decomposition (SVD) method is
employed to jointly solve all subsets, thereby obtaining the complete subsidence sequence
over the entire period.

3.2. Time-Series InSAR with TDAD Deep Learning Correction

This paper takes into account the topography and displacement characteristics of the
Baihetan area, as well as the ability of neural networks to approximate any function model,
as indicated by the universal approximation theorem [53]. Therefore, we employ a neural
network model to correct TDAD and obtain more reliable time-series INSAR results. The
specific implementation process is outlined in Figure 3.

Firstly, SAR data preprocessing is conducted, involving processing N scenes of SLC
images to obtain M pairs of differential interferometric phases. The main operations include
registration, interferometry, filtering, phase unwrapping, and geocoding. After obtaining M
pairs of differential interferometric results, considering the topography and displacement
characteristics of the Baihetan reservoir area, a deep neural network model is constructed
to model TDAD. The design of the deep neural network model is based on several aspects.
Firstly, the characteristics of the problem to be solved are considered: (1) TDAD is related
to topography, so the topography information is incorporated into the model during the
modeling process; (2) long-scale delay signals often exist in the interferometric phase, so
spatial location information, i.e., latitude and longitude information, needs to be considered
during modeling; (3) due to the presence of decorrelation noise, the model needs to take
into account the impact of noise signals. Thus, coherence data are integrated into the model.
Furthermore, since different regions may have different dominant phase components (such
as TDAD phase, long-scale dominant phase, etc. [47]), a channel attention mechanism
module [54] is introduced in this study to address this issue. Moreover, considering
the problem of underfitting and overfitting [55-57], appropriate network layer settings
are needed. First, since the relationship between TDAD and topography is nonlinear
and spatially heterogeneous, a sufficiently deep network layer is required to capture this
complexity. Then, due to the limited extent of the Baihetan reservoir area, when the model
is set to be too complex, its complexity may exceed the complexity of the problem. Taking
these two points into consideration, this study sets the model layers to be 4096, 2048, 1024,
512, and 1. In addition, the main hyperparameter settings for training are as follows:
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A batch size of 8192 was used. The optimizer employed was adaptive moment estimation
(Adam) [58], a widely adopted optimization algorithm in deep learning known for its merits
of requiring fewer hyperparameters and delivering strong performance. The learning rate
was set at 0.0002. The proposed neural network underwent 50 epochs of training. The loss
function chosen was the mean squared error (MSE). The specific modeling process is as
follows (1)—(9):

X096 = RELU(FC(Xdem, X1on, X1at, Xcc)) 1
Xfm% = ECANet(Xy096) (2)
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Figure 3. Temporal-spatial INSAR technique integrated with a TDAD correction process.

Once the model construction is completed, each pair of geocoded unwrapped phases
along with their corresponding elevation, latitude, longitude, and coherence data are input
into the deep neural network to perform TDAD correction for each interferometric pair. After
obtaining the simulated TDAD phase, it is subtracted from the original phase to obtain the
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corrected unwrapped phase. Finally, the corrected unwrapped phase is used for time-series
analysis (i.e., stacking INSAR and SBAS-InSAR) to obtain time-series results, and a comparison
is made between the pre- and post-correction time-series results to analyze the performance.

4. Results and Discussion
4.1. Corrected Time-Series Results and Verification

This paper presents a statistical analysis of the results of the time-series INSAR technique
with TDAD correction for the Hulukou to Xiangbiling section in the Baihetan reservoir area,
focusing on the identification of potential landslide hazards. Figure 4 illustrates the time-
series INSAR displacement results in the Baihetan region after TDAD correction. Based on the
InSAR displacement results corrected by the deep neural network, we successfully identified
26 potential landslide hazard points with significant displacement. All these potential landslides
were validated by the optical remote sensing images and the local microtopography. After
correcting TDAD, the InSAR technique demonstrates good reliability in high-precision time-
series computation. Therefore, the landslides identified by InSAR exhibit high coherence and
clear displacement, providing highly reliable monitoring results.
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Figure 4. Details of the results of the identification of suspected geologic hazard sites. The color bar
represents the range of displacement.
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In terms of the overall distribution, the potential landslide hazard points are dis-
tributed with 9 points on the left bank and 17 points on the right bank of the Jinsha River
(Figure 4). Among these, nine points exhibit significant displacements, and three of them
are shown corresponding to Google Earth images in Figure 5b—d.
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Figure 5. (a) InSAR identification of geohazard hazard site distribution; (b—d) the typical slope
Google Earth images.

4.2. Comparative Analysis of Results before and after Correction
4.2.1. Comparison and Analysis of the Interference Phase before and after Correction

To evaluate the effectiveness of the model, we selected two typical interferograms
from the Baihetan reservoir area for analysis. Figure 6 shows the correction results for these
two interferograms, with the first three columns presenting the original interferogram,
simulated interferogram, and corrected interferogram, respectively. It is evident from
the figures that the selected interferograms exhibit a correlation with topography and are
significantly affected by TDAD (Figure 6a,d), highlighting the necessity of TDAD correction.
Comparing the original interferogram and the simulated interferogram (Figure 6a,b,d,e),
we can observe a high degree of spatial similarity between them. This indicates that the
model successfully captured the TDAD in the interferograms. After model correction
(Figure 6¢,f), the phase becomes smoother overall, and its spatial correlation with topogra-
phy is significantly reduced. This suggests that the model effectively learned and mitigated
the TDAD characteristics, resulting in a more reliable and accurate corrected phase, which
benefits the generation of more reliable time-series INSAR results.

To validate the correction results of our method, we conducted a comparison with a
traditional linear model atmospheric correction method. As shown in Figure 7, we present
the results of the linear model and our deep neural network model corrections for two
typical interferometric pairs in the Baihetan area. It is evident that after linear model
correction, good correction results were obtained for some regions (Figure 7b,d) but the
improvement is limited due to the spatial heterogeneity in atmospheric delay, which cannot



Remote Sens. 2023, 15, 5287 8 of 15

be addressed using a specific model-based correction method [4,24,31], while clear global
improvement was achieved (Figure 7c,f).

Original IFGS Simulated IFGS Corrected IFGS
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Figure 6. Typical interferometric phase correction results in the Baihetan area. (a,d) The original inter-
ferometric phase; (b,e) the model-simulated interferometric phase; (c,f) the corrected interferometric
phase. The color bar represents the differential phases.
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Figure 7. Typical interferometric phase correction results in the Baihetan area. (a,d) The original
interferometric phase; (b,e) linear-model-corrected interferometric phase; (c,f) deep-neural-network-
corrected interferometric phase. The color bar represents the differential phases.
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Furthermore, we conducted quantitative evaluations for the two typical interferograms
in the Baihetan reservoir area (Figure 8). The evaluation includes the correlation between
the phase and topography before and after correction and the distribution of the phase
before and after correction.
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Figure 8. Statistics of before and after correction of typical interferometric phases in the Baihetan area.
(a,d) Phase and topography correlation before correction; (b,e) phase and topography correlation
after correction; (c,f) phase distribution before and after correction.

In the first column, we calculated the correlation between the phase and topography
before correction, and in the second column, we calculated the correlation after correction.
The third column presents the distribution of the phase before and after correction. As
the displacement phase is usually unrelated to topography, a reduced correlation between
phase and topography indicates the successful removal of the TDAD. Figure 8a,d show
that the original interferograms exhibit strong correlations with topography, with Pearson
correlation coefficients of —0.87 and 0.85, respectively. After model correction, the corre-
lation between topography and phase is significantly reduced, with Pearson correlation
coefficients dropping to —0.23 and 0.19, respectively, representing an average reduction
of 76% (Figure 8a—e). Moreover, after correction, the phase distribution becomes more
concentrated, with its mean centered around zero, and the standard deviation (StdDev) sig-
nificantly decreases from 4.81 and 4.74 to 1.39 and 1.17, representing an average reduction
of 73% (Figure 8c,f).

In summary, through qualitative and quantitative evaluations of the two typical
interferograms from the Baihetan reservoir area, we verified the effectiveness of the model
correction. The correlation between phase and topography is significantly reduced after
correction, and the phase distribution becomes more concentrated with reduced StdDev.
These results indicate that the model successfully removes TDAD, thereby enhancing the
reliability of the phase results and contributing to generating more reliable time-series
InSAR results.

To assess the applicability of the model, we conducted a StdDev statistical analysis
on all interferograms from the Baihetan reservoir area. The specific results are shown in
Figure 9. Figure 9a illustrates the percentage of reduction in phase StdDev for the selected
127 differential interferograms, while Figure 9b represents the corresponding distribution.
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Figure 9. Statistics of phase StdDev before and after correction of all interferometric phases in the
Baihetan area. (a) The result of the proportion of phase StdDev reduction for all interferometric
phases; (b) the distribution of the proportion of StdDev reduction.

From Figure 9a, it is evident that after correction, the StdDev of all interferograms
significantly decreases, indicating the model’s excellent TDAD correction performance.
However, it is essential to note that if the model lacks robustness or applicability, there might
be substantial differences in the correction effects for different interferograms or regions.
Therefore, when the StdDev of the percentage reduction in the interferogram StdDev is low,
it indicates that the model exhibits good robustness and applicability. Figure 9b presents
the distribution of the percentage reduction in interferogram StdDev. The results show that
the mean percentage reduction is 0.70, with a StdDev of 0.11. This indicates that the model
demonstrates excellent robustness and wide applicability, making it effectively suitable for
TDAD correction.

4.2.2. Comparison and Analysis of Time-Series Results before and after Correction

As shown in Figures 10 and 11, this study utilized two time-series INSAR techniques to cal-
culate the annual average displacement rates in the Baihetan reservoir area. Figures 10A and 11A
show the displacement results before correction, while Figures 10B and 11B show the displace-
ment results after correction.

Firstly, a comparative analysis was conducted on the stacking INSAR TDAD corrected
results in the Baihetan area. From Figure 10A, it can be observed that although phase
stacking can effectively reduce random noise in the interferograms and estimate average
displacement rates, the TDAD signals in the interferograms, which are non-stationary
over large spatial scales, cannot be simply removed through phase stacking, leading to the
presence of systematic errors in the results. Conversely, after TDAD correction, most of the
systematic errors are eliminated, leaving only local small-scale residual signals (Figure 10B).

We selected two representative areas to show the performance of TDAD correction
in the stacking InSAR results. As shown in Figure 10C,E, the displacement center was
affected by TDAD, and this signal covered the entire region, resulting in an overestimation
of the displacement results, causing unclear displacement boundaries, and thus making it
difficult to accurately locate displacement boundaries (Figure 10(c2,el)). After correction
(Figure 10B), the TDAD signal was effectively removed, and the landslide boundaries
appeared more distinct and accurate (Figure 10(d2,f1)). Therefore, it is concluded that
the time-series INSAR results after TDAD correction can accurately characterize surface
displacements, which is of great significance for the early identification of landslide hazards
in the Baihetan area.

Next, the analysis was extended to the displacement results of SBAS-InSAR. As
shown in Figure 11 A, in the original displacement results, long-wavelength signals
did not dominate, but there existed spatially distributed signals related to topography,
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i.e., TDAD signals. In this case, the non-stationarity of the atmospheric delay signals
in the interferograms was mainly caused by TDAD. As mentioned in Section 3, the
deep neural network effectively reduces the errors caused by TDAD noise. Comparing
Figure 11A and B, it can be observed that after TDAD correction, the local-topography-
dependent component was effectively removed.

We selected two representative areas to show the performance of TDAD correction
in the SBAS-InSAR results. From Figure 11(c1,c3,d1,d3), it is evident that within a small
range, the time-series results were influenced by TDAD, resulting in overall accelerated
displacement results. Based on the previous analysis of c1 and d3 (potential landslide
hazard areas), it can be observed that after correction, the values in the displacement area
were overestimated, and the contours became more evident. The main reason was the
existence of error signals, causing an overall overestimation in that region while relatively
reducing the values in the displacement area, thus disrupting the displacement contours.
Consequently, the area was not identified in the pre-correction time-series results. Similar
analyses apply to E(el-e3) and F(f1-f3), and are thus not repeated here.

In conclusion, through the comparative analysis of the displacement results in SBAS-
InSAR, it was found that the DNN effectively removes the TDAD signal and can identify
potential landslide hazard points after TDAD correction.

26°30'N

Figure 10. TDAD correction using the stacking InNSAR technique in the Baihetan area. (A,B) The
stacking InSAR result before/after correction; (C,D) the details of area Al before/after correction;
(E,F) the details of area A2 before/after correction; (G,H) the corresponding Google image maps. The
color bar represents the range of displacement.
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Figure 11. TDAD correction using the SBAS-InSAR technique in the Baihetan area. (A,B) The SBAS-
InSAR result before/after correction; (C,D) the details of area Al before/after correction; (E,F) the
details of area A2 before/after correction; (G,H) the corresponding Google image maps. The color
bar represents the range of displacement.

5. Conclusions

This study focuses on the correction of TDAD in time-series InNSAR for potential land-
slide identification and monitoring. We present a novel time-series InNSAR algorithm based
on deep learning for correcting TDAD. We used Sentinel-1 image data from 2018 to 2019
and applied the proposed method to identify the potential landslide hazards in the Bai-
hetan reservoir area. A comparative analysis was conducted between the time-series results
obtained using the new algorithm and original time-series methods. Our major findings
can be summarized as follows:

1. Comparing the results of interferometric pairs considering TDAD effects, the StdDev
of the interferometric phases was reduced by an average of 70% and up to 90% among
127 interferograms in the study area. The proposed method was compared with traditional
approaches (GACOS), demonstrating the superiority of TDAD correction. The proposed
method demonstrates certain applicability, with a StdDev of the StdDev reduction ratio
being only 0.11.

2. The comparison of the time-series INSAR results before and after TDAD correction
reveals that the corrected time-series displacement results show clearer displacement
boundaries and can identify potential landslide hazards affected by TDAD signals. This



Remote Sens. 2023, 15, 5287 13 of 15

finding is of significant importance for the early identification and warning of potentially
unstable landslides.

3. The improved time-series INSAR results successfully identified 26 potential land-
slide hazard points in the Baihetan area. This finding provides robust support for early
identification and warning of landslides, making it highly valuable for mitigating and
responding to potential geological disasters.
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