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Abstract: Recently, factor graph optimization (FGO)-based GNSS/INS integrated navigation has
garnered widespread attention for its ability to provide more robust positioning performance in
challenging environments like urban canyons, compared to traditional extended Kalman filter (EKF)-
based methods. In existing GNSS/INS integrated navigation methods based on FGO, the primary
approach involves combining single point positioning (SPP) or real-time kinematic (RTK) with INS
by constructing factors between consecutive epochs to resist outliers and achieve robust positioning.
However, the potential of a high-precision positioning system based on the FGO algorithm, combining
INS and PPP-B2b and that does not rely on reference stations and network connections, has not been
fully explored. In this study, we developed a loosely coupled PPP-B2b/INS model based on the EKF
and FGO algorithms. Experiments in different urban road and overpass scenarios were conducted to
investigate the positioning performance of the two different integration navigation algorithms using
different degrades of inertial measurement units (IMUs). The results indicate that the FGO algorithm
outperforms the EKF algorithm in terms of positioning with the combination of GNSS and different
degrades of IMUs under various conditions. Compared to the EKF method, the application of the
FGO algorithm leads to improvements in the positioning accuracy of approximately 15.8%~45.9% and
19%~41.3% in horizontal and vertical directions, respectively, for different experimental conditions.
In scenarios with long and frequent signal obstructions, the advantages of the FGO algorithm become
more evident, especially in the horizontal direction. An obvious improvement in positioning results
is observed when the tactical-grade IMU is used instead of the microelectron-mechanical system
(MEMS) IMU in the GNSS/INS combination, which is more evident for the FGO algorithm than for
the EKF algorithm.

Keywords: PPP-B2b; inertial navigation systems; factor graph optimization; extended Kalman filter;
integrated navigation

1. Introduction

The increasing demand for location services in emerging fields, such as autonomous
driving and mobile robotics, has drawn much attention to the development of accurate,
highly reliable, and continuously robust positioning technology. Global Navigation Satellite
System (GNSS), one of the most important positioning technologies, can provide users
with high-accuracy location, velocity, and time information continuously under all weather
conditions [1,2]. PPP is a widely used real-time high-accuracy positioning method in
combination with GNSS, which requires access to precise satellite orbit and clock products
broadcasted through the internet in real time [3,4]. PPP-B2b services, as one of the main
features of BDS-3, broadcast high-precision satellite clock and orbit correction information
via geosynchronous earth orbit (GEO) satellites, aiming to provide real-time decimeter-level
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positioning results to users [5–7]. Compared with the real−time service (RTS) provided
via the internet, the PPP-B2b service broadcasts correction information through BDS GEO
satellites, which allows the users to perform the PPP without any internet communication
and greatly expands the application scenarios of PPP.

However, GNSS positioning performance can degrade in complicated urban environ-
ments due to factors such as signal blockage and multipath interference. To mitigate these
problems and improve positioning performance in urban environments, one solution is to
integrate GNSS with other sensors, such as inertial navigation system (INS), to compensate
for the limitations of GNSS in the presence of signal dropouts or interference [8,9].

Many previous studies have demonstrated the efficient performance of integrated
GNSS and INS system using either a loosely or tightly coupled model. Elsheikh et al. [10]
showed that integrating the real-time single frequency PPP with a low-cost consumer-
grade INS can provide a continuous and precise navigation solution with an horizontal
sub-meter accuracy even when passing under bridges and overpasses, where the GNSS is
unable to obtain a reliable solution. In this experiment, real-time clock and orbit products
from National Centre for Space Studies (CNES) were used in the PPP process; thus, it
required a stable internet access. Kan et al. [11] conducted a PPP/INS tight integration
experiment in urban environments using SSR-corrected data from different analysis centers,
and the results showed that the three-dimensional positioning error remained around one
meter. In the aforementioned studies, real-time precise ephemeris sent via the internet
from different institutions, such as CNES, were used for PPP/INS integrated navigation.
In addition to the RTS service transmitted via the internet, the satellite-based PPP-B2b
service provided an alternative way for real-time PPP application. Xu et al. [12] investigated
the performance of PPP/INS loose integration using PPP-B2b corrections, and the results
showed a positioning accuracy of 0.36 m in open environments and approximately 0.85 m
in obstructed environments. In the abovementioned studies, the Kalman filter was adopted
for the parameter estimation in the GNSS/INS integrated navigation due to its maturity
and computational efficiency in implementation.

Factor graph optimization (FGO) [13,14] has been widely used in the field of robotic
navigation and has demonstrated its superior accuracy and effectiveness over filter-based
methods for solving Maximum A Posteriori (MAP) estimation problems, particularly in
complicated environments. FGO achieves optimal state estimation by solving non-linear
optimization problems [15]. These improvements benefit from FGO’s iterative and tempo-
ral correction capabilities, as mentioned in [16]. Iterative linearization plays a significant
role in minimizing the linearization errors in non-linear observation models. Additionally,
the simultaneous utilization of all observations within the FGO window enhances the
ability to withstand outliers. Therefore, FGO can be also used in various challenging GNSS
scenarios, and T. Pfeifer et al. [17] demonstrate its strong potential in sensor fusion. Indel-
man et al. [18] show that utilizing FGO in GNSS/INS loosely coupled integration (LCI)
results in superior performance compared to the extended Kalman filter (EKF) estimator
when using simulated data. Wen et al. [19] evaluates the application of loosely coupled
and tightly coupled algorithms using pseudoranges and INS measurements for real-time
positioning, revealing that FGO outperforms the EKF estimator in the complex urban
environments. Wen et al. [20] proposes a formula for single point positioning (SPP) and
RTK positioning based on FGO and evaluates the algorithm’s feasibility in the challenging
urban environment of Hong Kong, showing significantly improved positioning accuracy
compared to filter-based estimators. Zhang H. et al. [21] proposes a state estimation al-
gorithm using FGO in continuous time for GNSS/INS navigation systems to address the
problem of significant trajectory deviations when GNSS observations temporarily become
unreliable, aiming to achieve smoother trajectory estimations for the system. Liu et al. [22]
have proposed an invariant filter estimator for tightly fusing monocular/stereo visuals,
IMU measurements, and pseudoranges from GNSS. Experiments have shown that this
method provides a significant advantage in terms of computational load compared to
FGO-based algorithms, while achieving comparable levels of accuracy. Wang et al. [23]
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have proposed a factor graph optimization-based multi-GNSS real-time kinematic frame-
work, in which continuously tracked double difference ambiguities are utilized to establish
ambiguity constraints for position states that share common-view satellites within the win-
dow. Additionally, a marginalization-based carrier phase ambiguity propagation method
is introduced to achieve more reliable and continuous ambiguity resolution. The results
demonstrate that, in open urban environments, this method performs comparably to the
traditional EKF-based RTK, achieving centimeter-level positioning accuracy. However, in
complex urban environments, this method outperforms EKF, with a 69.6% improvement in
3D positioning accuracy.

However, current research on FGO mainly combines SPP or RTK with INS mea-
surements, scarcely considering the use of PPP-B2b, which can provide high position-
ing accuracy without relying on base station and internet communication. Research on
comparing PPP/INS integration using FGO and EKF has not been conducted in detail,
especially for the combination of PPP-B2b and low-cost MEMS inertial navigation for
navigation purposes.

2. Materials and Methods

The theory of PPP-B2b aided with low-cost inertial measurement unit (IMU) can be
divided into four parts, including the recovery of PPP-B2b, PPP positioning based on BD3
B2b service, the models of PPP-B2b/INS LCI based on EKF, and the models of PPP-B2b/INS
LCI based on FGO. These four parts are elaborated in the following subsections.

2.1. Recovering Precise Orbit Corrections, Clock Offsets, and DCBs with PPP-B2b

As it is known, it is highly complicated to access the precise satellite orbit and clock
products for PPP processing. The orbit clock corrections in PPP-B2b message, broadcasted
by BDS-3 GEO satellites, were used to correct precise satellite orbit corrections, clock offset
corrections, and DCBs for BDS-3 and GPS in the satellite-fixed frame. It is essential to
transform the satellite position corrections provided by the PPP-B2b message into the
ECEF frame. The satellite position vectors [∆Ox ∆Oy ∆Oz] can be calculated using
Equation (1): 

er =
r
|r|

ec =
r× .

r
|r×r|

ea = ec × er[
∆Ox ∆Oy ∆Oz

]
=
[

er ea ec
]
·

 ∆Or
∆Oa
∆Oc


(1)

where er, ec, and ea represent the components of the direction unit vector in the radial,
along-track, and cross-track directions, respectively; [∆Or ∆Oa ∆Oc]

T is the orbit correction
vector in the satellite-fixed frame. r and

.
r represent the satellite position and velocity vector

of the broadcast ephemeris, respectively.
The precise satellite position vector

[
X Y Z

]T
orb can be calculated by applying

Equation (2): X
Y
Z


orb

=

X
Y
Z


brd

−

 ∆Or
∆Oa
∆Oc

 (2)

where
[
X Y Z

]T
brd represents the satellite position vector calculated based on the broad-

cast ephemeris. The satellite position vector
[
X Y Z

]T
orb, calculated using Equation (2),

is the satellite position with the antenna phase center (APC) as the reference point. In
contrast, the orbit correction products provided by IGS ACs are with respect to the center
of mass (CoM) of satellites. Therefore, the transformation between the CoM satellites and
APC satellites should be taken into account. The relative correction can be derived from
the latest “igs14.atx” file provided by IGS.
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The correction of satellite clock offset is also provided by the PPP-B2b service. The
precise clock offset can be calculated using the PPP-B2b clock correction parameter C0 by
applying Equation (3).

dt
s
B2b = dts

brd −
C0

C
(3)

where dt
s
B2b represents the satellite clock offset derived from the broadcast ephemeris, dt

s
B2b

is the precise orbit clock offset, and C denotes the speed of light.
It should be noted that the clock offsets of BDS-3 provided by PPP-B2b products are

based on the B3I signal, which differ from the RTS clock corrections, and all are based on the
ionosphere-free linear combination (IFLC). Therefore, the clock estimations of GPS without
considering the hardware code bias during the estimation process caused the inaccuracy,
which can be corrected using the corresponding differential code bias (DCB) parameters by
applying Equation (4):

dtC
B2b,B3I = dtC − BC

s,B3I (4)

where dtC
B2b,B3I is the precise satellite clock offset at the frequency of B3I; dtC represents the

actual satellite offset, and BC
s,B3I is the DCB between different systems and B3I.

2.2. Mathematical Model of Real-Time PPP-B2b

In order to eliminate the first-order ionosphere delay, it is usual to adopt the ionosphere-
free (IF) code and phase combinations. The linearized IF model can be written as follows:

PG
IF = αPG

1 + (1− α)PG
2 = ρ + dtG

r − dtG
s + δT + εPIF

LG
IF = αLG

1 + (1− α)LG
2 = ρ + dtG

r − dtG
s + δT + N IF + εLIF

PC
IF = αPC

1 + (1− α)PC
2 = ρ + dtC

r − dtC
s + δT + ϕ · DCBC

1,3 + εPIF

LC
IF = αLC

1 + (1− α)LC
2 = ρ + dtC

r − dtC
s + δT + N IF + εLIF

(5)

where PG
IF, LG

IF, PC
IF, LC

IF represent IF pseudoranges and carrier phases of GPS and BDS-
3, respectively; PG

1 PG
2 PC

1 PC
2 represent pseudoranges of GPS and BD3 at different fre-

quencies; and LG
1 LG

2 LC
1 LC

2 denote carrier phases of GPS and BD3 at different frequencies.
α = f 2

i /( f 2
i − f 2

j ) wherein fi, f j are different frequency values; ρ denotes the geometric

distance from satellites and receiver; dtG
r , dtC

r are the clock offsets of GPS and BD3 at
the receiver, and dtG

s , dtC
s are the clock offsets of GPS and BD3 at the satellites; δT is the

tropospheric delay, and λIF · N IF = λIF NIF − bs
IF + br,IF − Br,IF is the ambiguity parameter

absorbing several types of hardware biases. DCBC
1,3 = BC

B1I − BC
B3I is the DCB for the

frequency of fB1I .εPIF and εLIF denote the unmodelled errors of ionospheric-free code and
phase combinations.

When compared with RTS-PPP, the satellites orbit and clock errors are considered to
be eliminated when the orbit and clock estimations are considered to be corrected by the
PPP-B2b service. However, there are some occasions when the orbit and clock corrections
cannot be matched because the orbit and clock corrections are asynchronous with the
occasional update. It is fully recommended to extend the validity of the clock corrections
from 12 s to 26 s, by using the final matched clock and orbit correction pair until they are
synchronous with the update [24].

2.3. PPP-B2b/INS Loosely Coupled Integration Based on EKF

It is typical for inertial navigation with auxiliary information to apply EKF for GNSS/INS
integrated navigation. Considering the ultra-low-cost IMU used in studies, this algorithm
uses 15 dimensional error state vectors, including navigation state vectors and IMU error
vectors, which can be expressed as follows:

δx = [(δrn
IMU)

T (δvn
IMU)

T φT δbT
g δbT

a ] (6)
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where δrn
IMU = [δrN δrU δrD] and δvn

IMU = [δvN δvU δvD] denote the position error
vector and velocity error vector in the n-frame, respectively, and φ = [φN φE φD] is the
three-dimensional attitude error vector; bg, ba represent the errors of the gyroscope and
accelerometer biases, respectively. After the error disturbance analysis, the error differential
of attitude, velocity and position can be deduced and can be written as follows:

.
φ = −ωn

in × φ + δωn
in −Cn

b δωb
ib (7)

δ
.
vn

= Cn
b δ f b + Cn

b f b × φ− (2ωn
ie + ωn

en)× δvn + vn × (2δωn
ie + δωn

en) + δgn
l (8)

δ
.
rn

= −ωn
en × δrn + δθ× vn + δvn (9)

where ωn
ie denotes the earth angular rotation rate vector in the n-frame; ωn

en is the angular
rate vector of the n-frame; ωn

in = ωn
ie + ωn

en refers to angular velocity vector; Cn
b is the

coordinate transformation matrix from b-frame to n-frame; δωb
ib is the gyro measurement

error; f b is the specific force vector in the b-frame and δ f b is its error vector; δωn
ie and

δωn
en denote errors of ωn

ie and ωn
en, respectively. δgn

l represents the local global error;
δθ = [δλ cos ϕ− δϕ · δλ sin ϕ], where ϕ refers to the latitude and δλ and δϕ are errors of
latitude and longitude; more details on the above three equations can be found in [8].

The gyro and accelerometer biases are modeled as first-order Gauss–Markov processes
and can be expressed as follows:

δ
.
bg = − 1

Tgb
δbg + wgb

δ
.
ba = − 1

Tab
δba + wab

(10)

where Tgb, Tab are the correlations of the gyroscope and the accelerometer; wgb and wab
represent their corresponding driving white noise.

PPP-B2b/INS LCI establishes the system state differential equation according to the
error equation of INS. The difference between the position and speed calculated by GNSS
and INS mechanization is used as the measurement value, and the optimal solution of the
carrier’s speed, position, attitude, and INS sensor error is obtained with Kalman filtering.
Meanwhile, the estimated result is inputted back to correct the INS. The typical state vector
used in PPP-B2b/INS LCI can be expressed as Equation (6), and the state and observation
equation for PPP-B2b/INS LCI can be written as follows:

XLCI,k = φLCI,k,k−1XLCI,k−1 + ΓLCI,k−1ωLCI,k−1, ωLCI,k−1 ∼ (0, QLCI,k) (11)

ZLCI,k = HLCI,kXLCI,k + εLCI,k, εLCI,k ∼ N(0, RLCI) (12)

ZLCI,k =

[
pn

GNSS,IF
vn

GNSS,IF

]
−
[

pn
INS

vn
INS

]
(13)

where XLCI,k and XLCI,k−1 are the state vectors of LCI at epochs of k and k− 1, respectively;
φLCI,k,k−1 is the system transition matrix from epoch k − 1 to epoch k; ωLCI,k−1 denotes
vector of system noise at epoch k− 1, and ΓLCI,k−1 is the matrix of noise distribution; QLCI,k
represents the covariance matrix of state noise; ZLCI,k denotes the innovation vector of
the difference of position pn

GNSS,IF, pn
INS and velocity vn

GNSS,IF, vn
INS between PPP-B2b

position solution and INS solution of prediction. εLCI,k denotes observation noise with
prior covariance of RLCI ; HLCI,k is design matrix of LCI.

In order to use the basic equation of discrete-time Kalman filter conveniently, it is
necessary to discretize Equation (11), including system transition matrix with discrete-time
φLCI,k,k−1 and driving white noise with equivalent discretization ωLCI,k−1.
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However, PPP-B2b positioning solution is referred to a GNSS antenna phase center,
while the positioning solution predicted with INS mechanization is based on the center
of IMU, which is not geometrically aligned. Therefore, it is necessary to correct the corre-
sponding lever arm offsets during the data fusion. The design matrix HLCI,k that considers
the lever arm offset can be expressed as follows:

HLCI,k =

 I3×3 03×3

(
Cn

b lb×
)

03×3 03×3

03×3 I3×3 Hφ 03×3 −Cn
b

(
lb×

) (14)

where Hφ =
[(

ωn
ie + ωn

en
)
× Cn

b

(
lb×

)
+ Cn

b

(
lb ×ωb

ib

)
×
]
.

The algorithm structure of PPP-B2b/INS LCI based on the EKF is shown in Figure 1.
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2.4. PPP-B2b/INS Loosely Coupled Integration Based on FGO

In this section, we initially formulate and derive our state estimation problem within
a probabilistic framework. The entire problem is structured as a factor graph, where the
measurements from sensors form a series of factors that, in turn, constrain the system
state. The three types of factors in the probabilistic graph will be discussed in detail in
this section.

A. Formulation

We define the optimal system state as the state that maximizes the posterior probability
for all the provided measurements. Assuming all measurements are independent and the
noise associated with each measurement follows a zero-mean Gaussian distribution, the
Maximum A Posteriori (MAP) estimation problem can be further transformed into a
minimizing sum of costs, where each cost corresponds to a specific measurement.

The optimization system, defined in this paper, aims to achieve the MAP estima-
tion for all measurement values. It assumes that all measurements are independent and
follow a zero-mean Gaussian distribution. The MAP problem is then transformed into
the minimizing sum of costs, where each cost represents a measurement. For the FGO’s
PPP-B2b/INS LCI, the observations include the preintegration of IMU measurements and
PPP-B2b positioning. To enhance the efficiency of the solver, a sliding window approach is
adopted. The variables to be optimized within the sliding window X = [x0, x1, x2, · · · , xn]
can be expressed as follows:

xk =

[(
pw

wbk

)T
,
(

vw
wbk

)T
,
(

qw
bk

)T
,
(
bgk

)T ,
(
bak

)T
]T

(15)
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where xk includes the position, velocity, and attitude of the world coordinate system at
time k, as well as the biases of the gyroscope and the accelerometer. n represents the size of
the sliding window. Within each GNSS second, we introduce an IMU preintegration factor
into the sliding window, regardless of the potential absence of GNSS positioning factors
due to interruptions. Put differently, the preintegration factors are spaced at 1 s intervals.
Additionally, the IMU preintegration factors are consecutive, indicating their temporal
continuity. This aids in the estimation of IMU biases, as the biases are also included in the
IMU preintegration factors. By minimizing the prior norm and the Mahalanobis norm of
all measurement residuals, we arrive at the following MAP estimation:

minX

∥∥rp −HpX
∥∥2

+ ∑
k∈[0,n]

∥∥∥rPre

(
ẑPre

k,k+1, X
)∥∥∥2

Σ
pre
k,k+1

+ ∑
i∈[0,m]

∥∥∥rPPP−B2b

(
ẑPPP−B2b

i , X
)∥∥∥2

ΣPPP−B2b
i

 (16)

where rPre and rPPP−B2b represent the residuals of the preintegration and PPP-B2b position-
ing observations, respectively. The next section will provide a more detailed description
of the residual definitions. m represents the number of satellite positioning factors, and k
represents the marginalized prior information, which will be discussed in detail later. The
Ceres solver is used to handle non-linear optimization problems.

B. IMU Preintegration Factor

The measurements involved in the inertial factors include biases, noise, linear acceler-
ations, and angular velocities of the platform. Since accelerometers operate near the Earth’s
surface, the linear acceleration measurements also include the gravitational component.
Taking into account the Coriolis and centrifugal forces produced by the Earth’s rotation,
the formula for the IMU in the EKF approach is modified accordingly. To better compare
the performance of the EKF and FGO algorithms, a correction term for the Earth’s rotation
is introduced in the IMU preintegration [25].

In practical applications, the frequency of IMU measurements is typically an order of
magnitude higher than the frequency of PPP-B2b positioning. Hence, individually estimat-
ing each state of the IMU measurements poses computational challenges. To address this
issue, we employ the IMU preintegration method, which consolidates multiple measure-
ments into a single measurement. The derived measurement for the inertial measurements
within the time interval [tk, tk+1] is calculated as follows:

∆ p̂
btk
btk+1

=
s

t∈[tk ,tk+1]
R

btk
bt

(~
at − bat

)
dt2

∆v̂
btk
btk+1

=
∫

t∈[tk ,tk+1]
R

btk
bt

(~
att − bat

)
dt

q̂
btk
btk+1

=
∫

t∈[tk ,tk+1]
1
2 Ω

( ~
ωt − bwt

)
q̂

btk
bt

dt

(17)

With

Ω(ω) =

[
−bω×c ω

−ωT 0

]
, bω×c =

 0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0

 (18)

where
~
at and

~
ωt, respectively, represent the measurements from the accelerometer and

the gyroscope. bat and bwt denote the biases of the accelerometer and the gyroscope. btk

represents the frame in the b system at time tk, while
{

∆ p̂
btk
btk+1

, ∆v̂
btk
btk+1

, q̂
btk
btk+1

}
represents

the relative position, velocity, and attitude between b and a. It can be constructed without
the initial position, velocity, and rotation of the IMU biases. Finally, the residuals associated
with the system state and the preintegrated IMU measurements can be expressed as follows:
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rPre

(
ẑPre

k−1,k, X
)

=



(
Rw

bk

)T(
pw

wbk+1
− pw

wbk
− vw

wbk
∆tk,k+1 − 1

2 gw∆t2
k,k+1 + ∆pw

g/cor,k,k+1

)
− ∆ p̂

btk
btk+1(

Rw
bk

)T
(

vw
wbtk+1

− vw
wbtk
− gw∆tk,k+1

)
+ ∆vw

g/cor,k,k+1

]
− ∆v̂

btk
btk+1

2
[(

qw
btk

)−1
⊗ qw

wi(k)
(tk+1)⊗ qw

btk
⊗ q̂

btk
btk+1

]
xyz

bgtk+1
− bgtk

batk+1
− batk


(19)

where Rw
bk

represents the transformation from the world coordinate system to the self coor-
dinate system at time k, gw represents the gravitational acceleration in the world coordinate
system, and [·]xyz is the algorithm for extracting the quaternion (small-angle) rotation
vector; ∆pw

g/cor,k,k+1 and ∆vw
g/cor,k,k+1 express the Coriolis correction components for the

velocity and position preintegration, as previously defined. Additionally, the residuals
encompass the online estimation and correction of gyroscope and accelerometer biases.

C. PPP-B2b Positioning Factor

Generally, PPP-B2b positioning is based on the ECEF, ENU, and NED coordinates.
Here, we consider the ENU coordinate as an example. By setting the first PPP-B2b position-
ing as the origin point, the PPP-B2b positioning in the ENU world frame, p̂w

PPP−B2b, and
its covariance in the ENU direction can be obtained using the GNSS receiver. Thus, the
residual of PPP-B2b positioning factor can be derived as follows:

rPPP−B2b

(
ẑPPP−B2b

i , X
)
= pw

wbk
+ Rw

bi
lb − p̂w

PPP−B2b

where lb is the lever arm offset expressed in the b-frame. The covariance in the ENU
direction is mainly determined by the quality of the PPP-B2b positioning measurement.

D. Marginalization

We employ marginalization to constrain the computational complexity of the sliding
window optimizer. When the count of IMU preintegration factors surpasses a predefined
threshold (equivalent to the size of the sliding window), the earliest IMU state is marginal-
ized. Furthermore, the GNSS positioning factors associated with the IMU preintegration
and marginalized states are converted into prior factors. For further insights into marginal-
ization in sliding window optimization, refer to [26]. In this section, we integrate the
enhanced IMU preintegration model into the FGO-based GNSS/INS integrated navigation
system. Analytical expressions are utilized to compute the residuals for both the IMU
preintegration factors and PPP-B2b positioning factors. We employ marginalization as a
strategy to decrease computational demands.

E. System Overview

Figure 2 shows the system for PPP-B2b/INS integration based on the FGO. We collect
IMU measurements at the input frequencies of 200 Hz for tactical-grade IMU and 100 Hz
for MEMS IMU. These measurements are deterministically extended for state variables and
related IMU factors on the graph at a rate of 1 Hz. GNSS observations are expected to be
available at a rate of 1 Hz as well. We employ the PPS signal from the GNSS receiver to
calculate the time delay of the pre-processed GNSS observations. The PPP-B2b correction
data needed for GNSS pre-processing is received and processed by the receiver in real-time
to generate precise ephemeris. Following each optimization, the estimated IMU biases
and re-calibrated gravity information are incorporated back into the IMU preintegration.
To provide navigation solutions at a high frequency, we generate a state for each new
IMU measurement obtained for the two optimization processes, enabling high-frequency
state estimation.
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Figure 2. Flowchart of the system for PPP-B2b/INS integration based on the FGO.

3. Description of Experiments

In order to verify the performance of the proposed PPP-B2b/INS integrated navigation
method based on FGO, two urban road vehicle experiments were conducted in Beijing,
China. This article presents two experiments composed of several typical urban landscapes
for detailed analysis. Experiment A took place from 371,514 to 374,911 s of 2269 week
in GPS time. The red line represents vehicle trajectory, which is shown in Figure 3. The
total length of the route was approximately 25.6 km. The experiment ran for 15 min in
a relatively open environment, and then entered the downtown area with dense foliage,
high-rise buildings, and overpasses. Experiment B took place from 375,476 to 377,401 s of
2269 week in GPS time. It was conducted in a more complex urban environment featuring
tall buildings and significant tree obstacles.
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Figure 3. Trajectories of two vehicle experiments. (A,B) Experiment A conduct from 371,514 to
374,911 s of 2269 week in GPS time; Experiment B conduct from 375,476 to 377,401 s of 2269 week in
GPS time.

As shown in Figure 4, the road vehicles were equipped with two types of receivers,
the NovAtel PwrPak7 GNSS receiver and a receiver equipped with the ComNav W803
board, capable of real-time receiving and processing of PPP-B2b information. The raw
observations of the GNSS were collected at a frequency of 1 Hz. At the same time, the
road vehicles were equipped with two different IMUs, a tactical-grade IMU (ISA100C)
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and a MEMS IMU (ADIS-16507). The detailed specifications about the IMU sensors are
shown in Table 1. To ensure temporal consistency, hardware-level time synchronization
was implemented to align the timestamps of various sensors to GPS time. For spatial
synchronization, the offset between the IMU center and the GNSS antenna was accurately
measured to calibrate the lever arm offset. The raw data from the tactical-grade and MEMS
IMUs were recorded at frequencies of 200 Hz and 100 Hz, respectively.
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Table 1. Parameters of the two types of IMUs used in the experiments.

IMU Grade Sampling
Bias Random Walk

Gyro
(◦/)

Acc.
(mGal)

Angular
(◦/
√

h)
Velocity
(m/s/

√
h)

IAS100C Tactical 200 Hz 0.5 100 0.03 0.1
ADIS-15507 MEMS 100 Hz 2.2 200 0.34 0.18

In both road vehicle experiments, a reference station equipped with the Septentrio
PolaRx5 GNSS receiver was set up on the rooftop of Building D in the Aerospace Infor-
mation Research Institute. This location provided a clear view of the sky. Using the raw
observations from the tactical-grade IMU and two GNSS receivers, a smoothed solution
based on tightly coupled multi-GNSS RTK and INS computation was obtained as the refer-
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ence trajectory for the experiments. This computation was performed using the commercial
software package IE 8.9.

In PPP-B2b positioning, this experiment used the B1C and B2a frequency bands of the
BeiDou system, as well as the L1 and L2 signals from GPS satellites, for ionosphere-free (IF)
combination. The PPP-B2b positioning results were obtained by processing the real-time
received PPP-B2b signals. In the event of a PPP-B2b signal interruption, the orbit and
clock corrections were performed by extending the PPP-B2b correction values [24]. If the
interruption lasted for more than 10 min, the PPP-B2b correction values were discontinued.
The more detailed PPP positioning strategies are shown in Table 2.

Table 2. Processing strategies for PPP-B2b.

Item Model

GNSS systems GPS and BDS-3
Elevation cut-off angle 7
Sampling rate 1s
Phase wind-up effect Model corrected
Ionospheric delay Ionosphere-free linear combination with dual-frequency

Tropospheric delay Dry component corrected by Saastamonien model; wet
component estimated

Satellite antenna phase center PCO and PCV values from igs14.atx
Receiver antenna phase center PCO and PCV values from igs14.atx
Receiver clock Epoch-wise estimated for each system
Ocean Tides FES2004
Phase ambiguities Continuously static integer ambiguities are estimated

4. Result and Discussion

In this section, the performance of PPP-B2b/INS integration navigation was studied
in various environments, including open sky, urban canyons, and obstructed areas such
as bridges and tree cover. The observations were processed using three modes: PPP-B2b,
KF-based PPP-B2b/INS integration, and FGO-based PPP-B2b/INS integrated navigation.
The performance of these three solutions was carefully analyzed and compared in terms
of accuracy. The performance was analyzed by comparing the Root Mean Square Er-
ror (RMSE) of the positional differences relative to a reference benchmark to evaluate
positioning accuracy.

4.1. Performance of PPP-B2b/INS Integration

Figure 5 shows the positioning sequences of Experiment A for PPP-B2b and EKF
and FGO PPP-B2b/INS integration navigation. The figure also displays the number of
available satellites (NSAT) and position dilution of precision (PDOP). The gray area in
the diagram represents periods when satellite signals are interrupted or when the quality
of satellite observations is poor. Within the initial 15 min after passing two bridges, the
number of available GNSS satellites ranged from 11 to 14, and PDOP values were mostly
below 2, ensuring continuous and reliable PPP positioning. However, as the vehicle entered
a semi-urban operating environment with trees, high-rise buildings, and overpasses, signal
tracking became intermittent, and NSAT frequently decreased. Due to frequent signal
interruptions, the PPP float ambiguities converged multiple times, typically taking about
twenty minutes to converge to a 4 decimeter-level accuracy. However, some outliers
appeared in the PPP-B2b positioning sequence, attributed to ambiguity resolution failures.
From Figure 5, it can be observed that the occurrence of outliers was accompanied by a
decrease in NSAT, an increase in PDOP, or severe multipath errors. Furthermore, all these
factors would reduce the accuracy of float ambiguities.
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are, respectively, presented (Experiment A). The NSAT and PDOP series are also presented in
the figure.

Figure 6 presents the specific observation environments of three scenarios, labeled
as I, II, and III. The first scenario is a road transitioning from an overpass to an open-sky
environment. The second scenario illustrates the vehicle crossing multiple overpasses in
succession, during which GNSS signals experience frequent and brief interruptions. The
third scenario depicts driving under an overpass, during which GNSS signal experienced
a relatively long interruption. In a real-world kinematic environment, obstacles such as
billboards, trees, and buildings inevitably lead to a decrease in the number of satellites and
the GNSS measurement quality, thereby affecting ambiguity resolution. In the EKF-based
PPP-B2b/INS integration, the utilization of high-frequency IMU data for state propagation
can improve the continuity and smoothness positioning results. As indicated by the shaded
area in Figure 7, from 372,961 to 374,011 s of week in GPS time, frequent signal interruptions
occurred during a 1050 s driving period, with the longest interruption lasting 44 s. The
PPP-B2b solution was almost unavailable during this period. Even with the data gap in
GNSS, the EKF-based PPP-B2b/INS integration can provide continuous position estimates.
However, the performance of the filter-based approach is closely related to the quality of
the GNSS positioning results at the current epoch. Therefore, when the quality of PPP-B2b
positioning is degraded, the system’s performance will be significantly affected. In contrast,
the FGO-based PPP-B2b/INS integration utilizes both the PPP-B2b positioning results at
current and past epochs as well as the pre-integration information from IMU to obtain
locally optimal navigation positioning information. As shown in Figure 5, the FGO method
exhibits stronger robustness in segments with frequent signal interruptions compared to
the EKF method, particularly in the U direction.
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Figure 6. Three typical car driving scenarios in Experiment A (Number I–III represents three different
observation environments).

To further compare the positioning performance of the two algorithms in complex
urban environments, we selected three typical urban scenarios. The scenario I is a relatively
open environment after passing through an overpass. The scenario II involves a city
canyon with tree obstructions, leading to frequent short-term interruptions in GNSS signals.
The scenario III is driving under a pedestrian bridge, causing longer periods of satellite
signal loss. To quantify the positioning performance of both EKF and FGO algorithms, we
collected data on the positioning errors over time throughout the entire driving period and
during the three typical scenarios. Figure 7 shows the time-varying curves of horizontal
error, zenith direction error, and 3D error for both algorithms during the entire driving
process and the three typical scenarios. The red line represents the positioning error of the
EKF algorithm, while the green line represents the positioning error of the FGO algorithm.
From the graph, we can observe the following:

1. In the scenario I, after the vehicle enters the relatively open area, the EKF algorithm
achieves a stable horizontal accuracy of around 0.4 m for seven minutes, while the
FGO method achieves a stable accuracy within 0.3 m, with it being 70% of the time
within 0.2 m. Additionally, the vertical error fluctuates more significantly for the EKF
algorithm compared to the FGO method.

2. For the scenario II, characterized by frequent short-term interruptions due to city
canyons and tree obstructions, the accuracy of positioning results obtained with
both algorithms show a decrease compared to that in the scenario I. However, the
FGO method exhibits better accuracy than the EKF method most of the time, and its
performance is more stable.
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3. In the scenario III with longer signal interruptions under the pedestrian bridge, the
accuracy of positioning results with these two methods shows a similar variation.
However, the FGO algorithm consistently outperforms the EKF method, especially in
the vertical direction.

Overall, the FGO algorithm demonstrates superior positioning performance compared
to the EKF algorithm in the selected urban environments, especially in scenarios with signal
interruptions and challenging environments.
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Table 3 presents the RMSE of the positioning results obtained with FGO and EK in the
three scenarios. In the horizontal direction, the RMSEs of the EKF algorithm for scenario
I–III are 0.255 m, 0.951 m, and 1.314 m, respectively, with a mean RMSE of 0.916 for the
entire period. For the FGO algorithm, the corresponding values are 0.734 m, 0.193 m,
0.727 m, and 0.932 m. In the vertical direction, the RMSE of the EKF algorithm for these
three scenarios are 0.732 m, 0.317 m, 1.207 m, respectively, with a mean value of 1.314 m,
while the FGO algorithm yields 0.586 m, 0.206 m, 0.743 m, and 0.932 m. Overall, the
FGO algorithm exhibits a 19.85% improvement in the horizontal direction and a 19.92%
improvement in the vertical direction over the EKF algorithm for the whole testing period.
For the three scenarios in Figure 6, the FGO algorithm achieves improvements of 24.53%,
23.54%, and 29.064%, respectively, in the horizontal direction, and 34.98%, 38.42%, and
39.84%, respectively, in the vertical direction. From the data analysis, it is evident that
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the FGO algorithm outperforms the EKF-based approach, particularly in scenarios with
frequent signal interruptions, with a more pronounced advantage in the vertical direction.

Table 3. Position errors of PPP-B2b/INS of EKF and FGO and the improvement observed in Experiment A.

Scene Direction EKF FGO Impro

Scenario I
Vert 0.317 0.206 34.98%
2D 0.255 0.193 24.53%
3D 0.423 0.3 29.01%

Scenario II
Vert 1.207 0.743 38.42%
2D 0.951 0.727 23.54%
3D 1.598 1.08 32.43%

Scenario III
Vert 0.988 0.594 39.84%
2D 1.314 0.932 29.064%
3D 1.708 1.181 30.84%

Total
Vert 0.732 0.586 19.92%
2D 0.916 0.734 19.85%
3D 1.253 0.996 20.55%

4.2. Performance of PPP-B2b/MEMS Integration

The previous section’s analysis of the PPP-B2b/INS integration algorithm was based
on tactical-grade IMU. Compared to expensive high-performance inertial sensors, MEMS
sensors exhibit the advantages of being lightweight, small in size, and cost-effective, making
them more suitable for navigation applications such as autonomous driving vehicles,
unmanned aircraft, and mobile robots. In order to further investigate the applicability of
the FGO and EKF algorithms, Experiment B incorporated data from a low-cost MEMS IMU
and was conducted in more challenging environments. The detailed parameters of the two
IMUs used in Experiment B are shown in Table 1. As shown in Figure 8, Experiment B’s
travel route included two additional typical scenarios, a partially obstructed environment
by trees and a heavily obstructed environment by trees, with the vehicle trajectory. The
positioning errors of PPP-B2b, the tactical-grade PPP-B2b/INS (PPP-B2b/T-INS), and the
MEMS-based PPP-B2b/INS (PPP-B2b/MEMS) are depicted in Figure 9. From the graph, it
can be observed that PPP-B2b performs almost unusably in situations with poor observation
quality, such as when there are few visible satellites or significantly elevated PDOP values.
In such cases, PPP-B2b positioning requires assistance from INS to achieve continuous
position estimation. The shaded areas in the graph represent challenging scenarios for both
GNSS systems, where frequent signal interruptions occur and last for about 3 min. During
this period, it can be seen that the position error of PPP-B2b/MEMS increases at a faster
rate than the position drift of PPP-B2b/INS. This is because MEMS sensors typically exhibit
a relatively poorer performance and stability compared to high-end inertial sensors due to
their higher noise levels and significant bias instability.

To further compare the positioning performance of two integration navigation algo-
rithms using different grades of IMUs in complex environments, we selected two typical
scenarios in urban tree-lined road environments. The scenario IV involves one side of
the road being obstructed by trees, resulting in a rapid decrease in the number of visible
satellites and prolonged interruptions in the GNSS signal. The scenario V involves ob-
struction on both sides of the road, leading to frequent short-term signal interruptions
and more prominent multipath effects. To quantify the performance of navigation algo-
rithms using different grades of IMUs and different algorithms, we recorded the positional
errors over time throughout the entire travel period and during the two typical scenar-
ios. Figures 10 and 11 presents line plots of horizontal errors, zenith direction errors, and
3D errors over time for the entire travel process and during the two typical scenarios.
The red lines represent the positioning errors using the EKF algorithm, while the green
lines represent the errors using the FGO algorithm. From the graph, we can observe
the following:
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1. In Scenario IV, due to the obstruction caused by trees, the performance of combina-
tion navigation significantly deteriorates. The integration system becomes highly reliant on
IMU predictions, causing the EKF-based PPP-B2b/MEMS to degrade into a mere inertial
navigation system in the absence of satellite observations. Because of the high noise level
of MEMS IMU, the errors quickly diverge. In contrast, the FGO algorithm can effectively
suppress error divergence in this scenario. The navigation system using tactical-grade
IMU performs better than MEMS IMU, with a slower error divergence, and the FGO-based
integration navigation remains significantly superior to the EKF-based one.

2. In Scenario V, frequent short-term interruptions in satellite signals and a consistently
low count of visible satellites result in significant degradation of PPP-B2b accuracy. In this
situation, the EKF-based combination navigation heavily relies on INS predictions, leading
to a relatively severe error divergence. The FGO algorithm, on the other hand, effectively
utilizes information from multiple past epochs and uses higher quality positioning results
within the sliding window as constraints. Regardless of whether tactical-grade IMU or
MEMS IMU is used for the navigation system, the FGO algorithm outperforms the EKF
algorithm in both horizontal and vertical directions, especially in scenarios with poor satellite
observation quality, where the advantages of the FGO algorithm are more pronounced.
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Overall, the FGO algorithm shows superior positioning performance compared to the
EKF algorithm, particularly in challenging environments with degraded GNSS signals or
limited satellite observations, and it consistently demonstrates advantages over the entire
travel duration for both types of IMUs used.

Similarly, we calculated the positioning RMSE of PPP-B2b/INS using tactical-grade
IMU and MEMS IMU, as shown in Tables 4 and 5. For PPP-B2b/T-INS integration naviga-
tion, the RMSE in the horizontal and vertical directions using the EKF algorithm for the first
typical scenario were 1.626 m and 1.707 m, respectively. The FGO algorithm achieved 0.88
m and 1.003 m, representing improvements of 45.917% and 41.264% compared to the EKF
algorithm, respectively. On the other hand, for PPP-B2b/MEMS combination navigation,
the RMSE in the horizontal and vertical directions using the EKF algorithm for the first
typical scenario were 1.629 m and 1.748 m, respectively. The FGO algorithm achieved
1.371 m and 1.071 m, representing improvements of 15.823% and 38.711% compared to
the EKF algorithm, respectively. These results indicate that using tactical-grade IMU can
significantly enhance the FGO-based integration navigation in specific complex environ-
ments compared to using MEMS IMUs, particularly in terms of horizontal accuracy. This is
because the FGO algorithm utilizes the higher precision IMU pre-integration information to
estimate the current state, resulting in better robustness against disturbances. Throughout
the entire travel distance in Experiment B, the FGO algorithm using tactical-grade IMU
achieved improvements of 18.849% and 29.494% in the vertical and horizontal directions
compared to the EKF algorithm, respectively. When using MEMS IMU, the FGO algorithm
achieved improvements of 19.084% and 20.079% in the vertical and horizontal directions,
respectively. These findings also suggest that, in the FGO-based PPP-B2b/INS integration
navigation, the IMU performance has a more pronounced impact on the system’s horizontal
performance in scenarios where there is a prolonged obstruction due to trees.

In addition, we have conducted statistics on the computational time cost of solving a
floating-point PPP-B2b/INS solution for EKF and FGO in different experiments, as shown
in Table 6. The average time required for the EKF algorithm to compute one epoch in
Experiment A and Experiment B is 0.027 s and 0.029 s, with a maximum computational
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cost of 0.053 s and 0.031 s, respectively. On the other hand, for the FGO algorithm, the
average computation time in Experiment A and Experiment B is 0.098 s and 0.089 s, with a
maximum computational cost of 0.522 s and 0.265 s, respectively. The computational cost of
FGO is more than three times that of EKF, and at specific moments, FGO’s computational
cost exceeds half a second.

Table 4. Position errors of PPP-B2b/T-INS EKF and FGO and the improvement in Experiment B.

Scene Direction EKF FGO Impro

Scenario IV
Vert 1.707 1.003 41.264%
2D 1.626 0.88 45.917%
3D 2.474 1.45 41.379%

Scenario V
Vert 0.514 0.295 42.725%
2D 1.695 1.096 35.356%
3D 1.837 1.196 34.904%

Total
Vert 0.635 0.516 18.849%
2D 1.115 0.786 29.494%
3D 1.401 1.054 24.767%

Table 5. Position errors of PPP-B2b/MEMS of EKF and FGO and the improvement in Experiment B.

Scene Direction EKF FGO Impro

Scenario IV
Vert 1.748 1.071 38.711%
2D 1.629 1.371 15.823%
3D 2.624 1.934 26.305%

Scenario V
Vert 0.527 0.323 38.685%
2D 1.807 1.169 35.28%
3D 1.953 1.27 34.978%

Total
Vert 0.639 0.517 19.084%
2D 1.141 0.912 20.079%
3D 1.444 1.166 19.241%

Table 6. Statistics of the computational time cost of solving a floating-point PPP-B2b/INS solution
for EKF and FGO in different experiments (Intel Core i7-12700H CPU).

Modes MEAN(s) STD(s) MAX(s)

EKF (Exp. A) 0.027 0.009 0.053
FGO (Exp. A) 0.098 0.029 0.522
EKF (Exp. B) 0.029 0.002 0.031
FGO (Exp. B) 0.089 0.020 0.265

5. Discussion

In this study, we constructed a loosely coupled model of PPP-B2b/INS using both
the EKF algorithm and the FGO algorithm, with the aim of exploring the positioning
performance of these two different combination navigation methods in challenging signal
environments. Additionally, we investigated and discussed the effects of different scenarios
and INS types on precise positioning. To better understand the reasons behind the improved
positioning accuracy of FGO compared to EKF, we conducted a statistical analysis of the
positioning errors for FGO with sliding windows of 1 and 10, as well as EKF, as illustrated
in Figure 12 and Table 7.

For PPP-B2b/T-INS integrated navigation, the FGO algorithm consistently demon-
strates improvements in both horizontal and vertical accuracies compared to the EKF
algorithm, especially in scenarios with signal obstructions or complex environments. These
improvements mainly stem from two aspects.
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T-INS

Vert 0.635 0. 538 0.516
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Firstly, for PPP-B2b/INS loosely coupled integration, the EKF typically employs
a single iteration to fuse PPP-B2b and INS data. In contrast, the FGO, as a process of
determining the optimal estimation based on the gradient, involves multiple iterations
within the sliding window and re-linearization, aiming to approach the optimal state [27].
This feature relaxes the requirement for the accuracy of initial estimator guesses and assists
in handling non-linear situations. When the FGO window size is set to 1, meaning that
the FGO method utilizes measurements from the previous epoch for optimal estimation,
it behaves similar to the EKF estimator. In this case, the key difference between the FGO
and EKF methods primarily lies in the number of iterations, as shown in Table 7. The FGO
method with a window size of 1 (1.150 m and 1.210 m) outperforms the EKF method (1.401
m and 1.444 m) due to a higher number of iterations and re-linearizations, which is a key
distinction between these two methods.

Secondly, the FGO method, compared to the EKF, takes into account more historical
data rather than just information from a single epoch [19]. It optimizes the parameters of
multiple epochs within the sliding window, effectively considering all historical information
connected by INS factors. As seen in Figure 12, when satellite observation quality is good,
the positioning performance of FGO with sliding windows of 1 and 10 is nearly identical.
However, in adverse GNSS signal conditions, the error curve for FGO with a sliding
window of 1 (blue) exhibits more drastic fluctuations compared to the error curve for FGO
with a sliding window of 10 (green). Table 7 also indicates that the overall positioning
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accuracy of FGO with a window size of 10 is better than that of FGO with a window size of
1. This is because the use of a sliding window enables the exploration and utilization of
the time correlation between historical epochs, effectively resisting outliers and enhancing
robustness towards outliers in GNSS measurements.

For PPP-B2b/MEMS integrated navigation, the FGO algorithm similarly exhibits
consistent improvements in both horizontal and vertical accuracies compared to the EKF al-
gorithm. A comparison reveals that FGO with tactical-grade IMU results in more significant
improvements in horizontal positioning performance compared to with MEMS IMU. This
is because higher grade IMUs provide more accurate preintegration information, leading
to a higher quality of IMU preintegration information within the sliding window. This, in
turn, facilitates resistance to outliers in PPP-B2b positioning solutions under adverse GNSS
signal conditions.

In summary, as observed from Figures 7, 10 and 11, in an open-sky scenario (Scenario I),
PPP-B2b/INS based on the FGO algorithm performs very similarly to the EKF method in
terms of positioning accuracy, with horizontal errors at around 0.2 m. In such cases, EKF is
evidently a preferable choice for PPP-B2b/INS integrated navigation due to its advantages
in terms of efficiency and lower computational complexity. However, in relatively complex
scenarios with features like trees, high-rise buildings, and overpasses (Scenarios II, III, IV,
V), where signal tracking becomes intermittent, FGO exhibits noticeable improvements
in the positioning performance. This is because, compared to EKF, FGO’s advantages
such as multiple iterations and time correlation make it a more recommended choice for
PPP-B2b/INS integrated navigation in complex environments. However, one challenge
faced in the application of FGO is that it requires the estimation of a larger set of parameters
compared to the EKF estimator, which is referenced in Equations (6) and (15), and it
involves repeated iterations and re-linearizations in each iteration, leading to an increased
computational load. Table 6 shows that FGO consumes more time than EKF, even with the
use of a sliding window. The computational efficiency of the EKF is significantly higher
than that of the FGO algorithm, which could potentially limit the widespread application
of FGO, especially in high-dynamic scenarios such as autonomous driving [15]. And this
study is solely based on the loose coupling of GNSS and INS, with a relatively lower
computational complexity. When adopting tight coupling or introducing other sensors
such as vision and LiDAR, the FGO may exhibit a relatively greater difficulty than EKF in
meeting the real-time navigation and positioning requirements of high-dynamic scenarios.

6. Conclusions

In this study, we conducted car experiments in different urban road and overpass
scenarios to explore the positioning performance of two different integration navigation
algorithms using different degrades of IMUs. The results indicate that the FGO algorithm
outperforms the EKF algorithm in different environments and with different degrades of
IMUs. The FGO algorithm improves the horizontal accuracy by approximately 15.8% to
45.9% and the vertical accuracy by 19% to 41.264%. In scenarios with prolonged signal
obstructions, especially in environments with more challenging GNSS signals, the advan-
tages of the FGO algorithm in horizontal positioning performance become particularly
evident. Moreover, compared to using MEMS IMU, both the EKF and FGO algorithms with
tactical-grade IMU exhibit better performances, and the FGO algorithm with tactical-grade
IMU shows more significant improvements in the horizontal positioning performance.
In conclusion, this study demonstrates the application advantage of the FGO algorithm
in PPP-B2b/INS integration navigation, especially in complex environments and when
using high-grade IMUs, offering further enhancements in positioning performance and
providing a robust solution for scenarios with poor or interrupted GNSS signals.

However, the PPP-B2b/INS loosely coupled integration relies solely on the positioning
results from GNSS without fully exploiting the raw GNSS measurements. This limitation
can lead to severe degradation in the performance of the navigation system when poor
PPP-B2b positioning results are used. In contrast, a tightly coupled approach directly
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utilizes the raw GNSS observations, allowing for the detection and rejection of outliers
at the raw measurement level [19,28]. Therefore, future research will focus on studying
PPP-B2b in combination with IMU using tightly coupled methods based on both the EKF
and FGO algorithms.
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