
Citation: Hafner, S.; Ban, Y.; Nascetti,

A. Semi-Supervised Urban Change

Detection Using Multi-Modal

Sentinel-1 SAR and Sentinel-2 MSI

Data. Remote Sens. 2023, 15, 5135.

https://doi.org/10.3390/

rs15215135

Academic Editors: Jon Atli

Benediktsson, Yuji Murayama,

Zhiyong Lv, Zhou Zhang, Gang Yang,

Nicola Falco and Weiwei Sun

Received: 10 August 2023

Revised: 6 October 2023

Accepted: 25 October 2023

Published: 27 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Semi-Supervised Urban Change Detection Using Multi-Modal
Sentinel-1 SAR and Sentinel-2 MSI Data
Sebastian Hafner , Yifang Ban * and Andrea Nascetti

Division of Geoinformatics, KTH Royal Institute of Technology, Teknikringen 10a, 114 28 Stockholm, Sweden;
shafner@kth.se (S.H.); nascetti@kth.se (A.N.)
* Correspondence: yifang@kth.se

Abstract: Urbanization is progressing at an unprecedented rate in many places around the world. The
Sentinel-1 synthetic aperture radar (SAR) and Sentinel-2 MultiSpectral Instrument (MSI) missions,
combined with deep learning, offer new opportunities to accurately monitor urbanization at a global
scale. Although the joint use of SAR and optical data has recently been investigated for urban
change detection, existing data fusion methods rely heavily on the availability of sufficient training
labels. Meanwhile, change detection methods addressing label scarcity are typically designed for
single-sensor optical data. To overcome these limitations, we propose a semi-supervised urban
change detection method that exploits unlabeled Sentinel-1 SAR and Sentinel-2 MSI data. Using
bitemporal SAR and optical image pairs as inputs, the proposed multi-modal Siamese network
predicts urban changes and performs built-up area segmentation for both timestamps. Additionally,
we introduce a consistency loss, which penalizes inconsistent built-up area segmentation across sensor
modalities on unlabeled data, leading to more robust features. To demonstrate the effectiveness of
the proposed method, the SpaceNet 7 dataset, comprising multi-temporal building annotations from
rapidly urbanizing areas across the globe, was enriched with Sentinel-1 SAR and Sentinel-2 MSI
data. Subsequently, network performance was analyzed under label-scarce conditions by training the
network on different fractions of the labeled training set. The proposed method achieved an F1 score
of 0.555 when using all available training labels, and produced reasonable change detection results
(F1 score of 0.491) even with as little as 10% of the labeled training data. In contrast, multi-modal
supervised methods and semi-supervised methods using optical data failed to exceed an F1 score of
0.402 under this condition. Code and data are made publicly available.

Keywords: remote sensing; deep learning; data fusion; consistency regularization; urbanization
monitoring

1. Introduction

While an increasing number of people are moving to cities, uncontrolled urban growth
poses pressing threats, such as poverty and environmental degradation. In response
to these threats, sustainable urban planning is essential. However, the lack of timely
information on the sprawl of settlements is hampering current urban sustainability efforts.
Earth observation (EO) is a crucial tool used to map land cover changes associated with
urbanization [1]. Change detection is typically conducted by comparing images acquired at
different times that cover the same geographical area in three consecutive steps: (1) image
preprocessing, (2) derivation of change variables, and (3) classification of change variables.
Image preprocessing includes making images acquired at different times radiometrically
and spatially comparable. For example, radiometric correction can remove atmospheric
effects in optical images [2], and speckle filtering can reduce noise in synthetic aperture
radar (SAR) images [3]. For the derivation of change variables from optical images, various
arithmetic methods have been developed, including image differencing, image ratioing,
image regression, and change vector analysis [4]. A more recent example is a piecewise
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distance to measure the change magnitude between bitemporal images [5]. In comparison,
change detection in multi-temporal SAR images is commonly conducted using ratio-related
operators, such as log-ratio, e.g., [6–9]. It should be noted that some research also focuses
on change detection from heterogeneous images acquired by different sensors, e.g., [10].
Finally, the derived change variables are classified into changed/unchanged pixels or
objects using either supervised or unsupervised algorithms [7,11–13].

In recent years, deep learning has become the state-of-the-art technology used
to process and analyze EO data [14]. As a result, the proportion of deep learning-
based change detection methods has significantly increased since 2016 [15]. Another
driver of the gain in popularity of deep learning has been the availability of open high-
resolution (10–30 m) data, provided by EO programs, such as the European Union’s
Copernicus program. Specifically, the Sentinel-1 (S1) C-band SAR mission with dual
polarization capability and the Sentinel-2 (S2) MultiSpectral Instrument (MSI) mission
(13 spectral bands) collect a large volume of EO data at spatial resolutions of 20 m
and 10 m, respectively. Moreover, and particularly relevant for change detection, both
missions provide frequent revisits of the same geographic area (i.e., sub-weekly).

To date, numerous urban change detection methods have combined deep learning
techniques with S1 SAR and/or S2 MSI data. For example, Daudt et al. [16] proposed a
Siamese network consisting of two encoders with shared weights to detect changes in
urban environments from bitemporal S2 image pairs. Their so-called Siam-diff network
was found to be better for change detection, compared to treating image pairs as a single
input by concatenating them along the channel axis (i.e., early fusion) [16]. In follow-up
work, Daudt et al. [17] incorporated this concept into fully convolutional neural networks
(CNNs) using the U-Net architecture as the backbone [18]. Numerous improvements to
Siamese networks have since been proposed, e.g., [19–24]. To improve change detection
for very-high-resolution (VHR) imagery, some research has focused on incorporating
more powerful CNN backbones into Siamese networks. For example, SNUNet employs
a nested U-Net to maintain high-resolution fine-grained representations through dense
skip connections [20], and HDA-Net employs a high-resolution net in combination
with a difference attention module [22]. Other research explored methods to detect
the edges of changed areas better. Basavaraju et al. [23], for example, incorporated a
new spatial pyramid pooling block into a Siamese network to preserve the shape of
change areas, which resulted in better change predictions from bitemporal S2 images.
Another improvement to Siamese networks is multi-task learning, where urban change
detection and building segmentation are learned simultaneously during training [25,26].
For example, Daudt et al. [25] proposed a dual-task Siamese network that employs
an additional decoder for the semantic segmentation of buildings, and Liu et al. [26]
demonstrated that the dual-task concept is effective in learning more discriminative
features from the input images. Adding a semantic segmentation task to the change
detection task was also explored in Papadomanolaki et al. [27] for a fully convolutional
long short-term memory (LSTM) network using S2 time series data as input.

In recent years, many urban change detection methods have employed the self-attention
mechanism to improve the modeling of long-range dependencies in VHR imagery [28–31].
Both Chen and Shi [28] and Chen et al. [29] extract image features with a CNN and employ
self-attention modules to learn more discriminative features. Transformers were also em-
ployed in combination with spatial and channel attention modules for feature refinement in
Liu et al. [30]. Bandara and Patel [31], on the other hand, proposed a fully transformer-based
change detection method. Specifically, ChangeFormer combines two hierarchically structured
transformer encoders with shared weights and a multi-layer perception decoder in a Siamese
network architecture. While these transformer-based methods are considered state-of-the-art for
urban change detection, it should, however, be noted that the effectiveness of these methods
has been predominately demonstrated on VHR datasets.

The recent development of deep learning-based methods for the fusion of SAR and
optical data, e.g., [32–34], is highly relevant for urban change detection from S1 SAR
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and S2 MSI imagery. Importantly, it should be noted that SAR-optical data fusion has
already been found useful for urban change detection using traditional machine learning
algorithms [35]. Ebel et al. [32] proposed a multi-modal extension of the Siam-diff network
by incorporating a separate encoder branch for each sensor modality. The extracted features
from the branches are concatenated and forwarded via skip connections to a single decoder.
Consequently, the fusion takes place at the different decoder levels. Following a similar
concept, the authors in [33] introduced a dual-stream U-Net architecture to fuse SAR and
optical data. Specifically, bitemporal image pairs from each sensor are initially concatenated
along the channel axis in an early fusion fashion. Subsequently, these image pairs are fed
separately to the respective U-Net stream to extract modality-specific change features.
Finally, the extracted features are fused at the decision level.

However, a major limitation of supervised deep learning is that models require large
amounts of labeled data which are costly and time-consuming to obtain, particularly for
change detection tasks. Therefore, several papers investigated unsupervised learning for
change detection. For example, Saha et al. [36] proposed a deep change vector analysis to
model spatial relationships among neighboring pixels. Deep change vector analysis uses a
pre-trained CNN to obtain deep change vectors from multi-temporal images. Since the vast
majority of pre-trained networks can only deal with RGB images, generative adversarial
networks were leveraged to learn robust feature representations in an unsupervised fashion.
This pretraining technique proved to be effective for the detection of changes in bitemporal
S2 images using the deep change vector analysis framework [37]. Others developed an
unsupervised change detection method by leveraging the high temporal resolution of S1
using an LSTM network [37]. Specifically, change detection was treated as an anomaly
detection problem where a shuffled time series was fed to the LSTM which was tasked to
rearrange the input in the correct order. While the model can rearrange pixels representing
no change in the correct order, the model was expected to fail for change pixels, which
enables the unsupervised detection of changes [37]. Recently, Kondmann et al. [38] intro-
duced an unsupervised bitemporal change detection method that first models pixels in
an image as linear combinations of their distant neighbors and then uses these models for
spatial context-based predictions for the subsequent image. Differences between the actual
values and the predictions based on several mutually exclusive neighborhood models are
used to derive changes via majority voting.

Although unsupervised change detection models require no labeled samples to learn
from, they often fall short of performances achieved by their supervised counterparts. There-
fore, it is desirable to investigate semi-supervised learning. The goal of semi-supervised
learning is to incorporate unlabeled data—alongside labeled data—into network train-
ing to improve performance in supervised networks [39]. Considering the plethora of
satellite data acquired by S1 and S2, this idea holds great potential for remote sensing
applications. The state-of-the-art for semi-supervised learning can be broadly grouped into
two techniques [40]. First, consistency regularization, following the underlying idea that
perturbations of a sample should not significantly change the model output [41,42]; and,
second, entropy minimization, which encourages more confident predictions on unlabeled
data. Several recent papers applied the former technique, consistency regularization, to
urban change detection problems using multi-task Siamese networks [43–45]. In particu-
lar, Bandara and Patel [43] first used an encoder with shared weights to extract features
from unlabeled bitemporal VHR images. Then, consistency was enforced between the
change prediction obtained from decoding the subtracted features, i.e., deep feature dif-
ference maps, and change predictions obtained from decoding the deep feature maps
with small random perturbations using perturbation-specific decoders. Another study
proposed a Siamese dual-task network to exploit unlabeled bitemporal Planet image pairs
by encouraging consistency between change predictions and changes derived from the
semantic segmentation of the images [44]. On the other hand, a more recent work aimed
to improve change detection by incorporating additional building labels into network
training since building labels are less costly to obtain than change labels. To leverage
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additional building labels, Shu et al. [45] proposed a network that encourages consistency
between the semantic segmentation of the pre-change image and a building prediction
for the pre-change image derived from the change decoder features and the features of
the post-change image produced by the semantic decoder. However, despite the fact that
these works address the limited availability of labels for urban change detection, up to now,
research on semi-supervised change detection has been limited to unimodal EO data from
optical sensors.

In this study, we propose a semi-supervised urban change detection method using multi-
modal S1 SAR and S2 MSI data. Specifically, a multi-modal Siamese network is modified
to perform not only change detection between multi-modal image pairs but also semantic
segmentation for both timestamps and sensor modalities. The network is trained in a semi-
supervised fashion using consistency regularization to learn more robust features by penalizing
inconsistent semantic outputs across sensor modalities. Therefore, we hypothesize that the
capability of extracting more robust features for semantic segmentation also improves the
change detection ability of the network. The effectiveness of this hypothesis is experimentally
tested on the urban change detection problem posed by the SpaceNet 7 dataset [46] using
satellite images from the S1 SAR and S2 MSI missions. The testing includes investigating model
performance under varying limited labeled conditions, where only a fraction of the training
data is used for supervised training and the remaining training data are used for unsupervised
training via multi-modal consistency regularization.

2. Methods

This section introduces the methods of this paper in detail. First, a formal description
of the problem is presented in Section 2.1. Second, the dataset preparation is described in
Section 2.2. Thereafter, the proposed method is described in two parts: (1) the network
architecture (Section 2.3.1) and (2) the training process (Section 2.3.2). Finally, a description
of the experimental setup is presented in Section 2.4.

2.1. Problem Formulation

We consider a multi-modal image pair with timestamp t that consists of an S1 SAR
image and an S2 MSI image referred to as xt

S1 and xt
S2, respectively. We denote a multi-

modal dataset by D. This dataset consists of multiple bitemporal image pair instances
(xt1

S1, xt2
S1, xt1

S2, xt2
S2), where t1 and t2 correspond to the pre-change and post-change timestamp,

respectively. A limited fraction of these instances also contains building labels ys for t1
(yt1

s ) and t2 (yt2
s ), as well as change labels yc derived from the semantic labels using a basic

arithmetic operator (yt2
s − yt1

s ). We partition the labeled fraction of the dataset into training,
validation, and test sets, denoted by Dtrain

l , Dval
l , and Dtest

l , respectively. All unlabeled
instances, on the other hand, constitute the unlabeled training set Dtrain

u . The goal is to
incorporate unlabeled data into model training to train a model that predicts urban changes
with higher accuracy than a model trained exclusively on labeled data. A model’s ability to
predict urban change is evaluated on the test set.

2.2. Dataset Preparation

The proposed method requires building labels for the pre-change and the post-change
image due to the dual-task nature of the underlying network. While popular change detec-
tion datasets such as LEVIR-CD [28] and WHU [47] fulfill this requirement, the pre-change
images in these datasets were mainly acquired before the launch of the S1 and S2 missions
(i.e., prior to 2014), rendering them unusable to test the proposed method. On the other
hand, urban change detection datasets containing S2 images such as the Onera Satellite
Change Detection (OSCD) dataset [16], provide change labels but lack building labels.
Therefore, we chose to use the SpaceNet 7 multi-temporal urban development dataset as
it not only provides multi-temporal building labels but also uses satellite imagery from
2017 onward. Specifically, the SpaceNet 7 dataset contains temporal stacks (approximately
24 images) of the VHR (i.e., ∼4 m) monthly planet composites, including corresponding
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manually annotated building footprints (vector format) [46]. It should, however, be noted
that not all planet composites are cloud-free and, consequently, not all building annotations
are complete. The dataset covers 80 unique geographic sites split into 60 training sites and
20 test sites, where building labels are only available for the 60 training sites. We split the
labeled SpaceNet 7 sites into training (n = 30), validation (n = 15), and test sites (n = 15),
while the unlabeled sites are used for unsupervised learning (Table 1). Figure 1 shows the
locations of the study sites, colored according to the set the sites belong to.

Figure 1. Locations of the study sites. The labeled SpaceNet 7 sites represent our labeled training, val-
idation, and test sites, whereas the unlabeled SpaceNet 7 sites represent our unlabeled training sites.

Table 1. Number of sites per dataset split.

Train Validation Test

Labeled Unlabeled

Number of sites 30 20 15 15

In order to replace the monthly planet composites, S1 SAR and S2 MSI images are
generated using the cloud-based platform Google Earth Engine (GEE) [48]. An overview
of the data preparation workflow is illustrated in Figure 2. One of the advantages of
GEE is that S1 SAR data and S2 optical data are directly available as analysis-ready data
cubes. Specifically, S1 interferometric wide swath SAR scenes with dual polarization
(VV+VH band) are available as ground range detected (GRD) products, processed using
the S1 Toolbox. Processing includes thermal noise removal, radiometric calibration, terrain
correction, and the conversion of backscatter coefficients (σ) to decibels via log scaling
(10 log10 x). Furthermore, S1 SAR scenes were resampled to a spatial resolution of 10 m
from their native resolution of 20 m. On the other hand, S2 MSI scenes are available in GEE
as ortho-corrected top-of-atmosphere reflectance (Level-1A) scenes scaled by a factor of
10,000. Although S2 scenes contain 13 spectral bands with various spatial resolutions, only
the bands acquired at a 10 m spatial resolution, i.e., B2 (blue), B3 (green), B4 (red), and B8
(near-infrared), are considered. To produce an S1 and S2 image for a given timestamp of
a site, all acquisitions within that month are obtained. For S1, ascending and descending
scenes are separated due to the strong influence of the incidence angle on the backscatter
coefficients of buildings. Consequently, scenes from the pass with better data availability
in terms of absolute image count are selected. After masking backscatter coefficients
lower than −25 dB in each scene, the per-pixel temporal mean is computed for both
polarization bands to remove speckle noise without reducing the spatial resolution [49].
This workflow is consistent with the one in [50] used to prepare S1 images for the OSCD
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dataset. For S2 scenes, on the other hand, temporal aggregation is not applied to preserve
the information that was actually measured by S2, as recommended in [51]. Instead,
the least cloudy scene among all scenes acquired within a month is selected based on
the cloud probabilities layer, retrieved via the Sentinel Hub’s cloud detector (https://
github.com/sentinel-hub/sentinel2-cloud-detector) and available in GEE as a precomputed
dataset. Specifically, the goodness of a scene is defined as the sum of per-pixel cloud
probability values. Finally, pixel values are normalized to the range [0, 1] from the range
[−25, 0] and [0, 10, 000] for S1 and S2, respectively. The EO data are publicly available on
Zenodo (https://doi.org/10.5281/zenodo.7794693), including corresponding, rasterized
building footprints.

Figure 2. Overview of the data preparation workflow, implemented in GEE [48], to generate S1
SAR and S2 MSI images for all sites of the SpaceNet 7 dataset [46]. Additionally, building labels
are derived from the SpaceNet 7 training sites for which manually annotated building footprints
are available.

2.3. Proposed Method

We propose a novel semi-supervised change detection method that combines multi-
modal data fusion, multi-task learning, and consistency regularization. To that end, we
design a multi-modal network architecture that performs two tasks, namely urban change
detection and semantic segmentation of buildings. Furthermore, a loss function consisting
of a supervised term and an unsupervised term to train the model in a semi-supervised
fashion via consistency regularization is introduced. The components of the proposed
methods are described in the following two sections.

2.3.1. Network Architecture

The underlying architecture for the proposed method is a Siam-diff architecture extended
with the dual-task concept [17,26] (Figure 3). The basic units of the Siam-diff dual-task architecture
are encoder and decoder blocks based on the U-Net architecture [18]. Several change detection
studies using S1 and/or S2 data have proposed CNN network architectures that employ U-Net-
based encoders and decoders as building blocks [17,32,33,44]. The Siam-diff dual-task network
processes images separately using two encoders with shared weights (red arrows) to extract
corresponding features ( f1– f5) from images t1 and t2. The temporal features are then forwarded
via skip connections (black arrows) to the respective level of the change decoder, where they are
subtracted from one another before being passed through subsequent layers of the network. Finally,
a change prediction pc (∈ [0, 1]) is obtained from the extracted feature map via a 1× 1 convolution
operation followed by the sigmoid activation function. In addition, two decoders with shared
weights are used to generate building predictions for image t1 (pt1

s ∈ [0, 1]) and image t2
(pt2

s ∈ [0, 1]), using the features extracted by the respective encoder.

https://github.com/sentinel-hub/sentinel2-cloud-detector
https://github.com/sentinel-hub/sentinel2-cloud-detector
https://doi.org/10.5281/zenodo.7794693
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Figure 3. Diagram of the Siam-diff dual-task network for urban change detection. The diagram style
was adopted from [17], where blue, yellow, red, and purple blocks denote the operations convolution,
max pooling, concatenation, and transpose convolution, respectively. Red arrows illustrate shared
weights. The number of input channels is denoted by n.

The proposed network architecture for urban change detection and building seg-
mentation, using multi-modal S1 SAR and S2 MSI data, is visualized in Figure 4. It is a
multi-modal version of the Siam-diff dual-task architecture (i.e., multi-modal Siam-diff
dual-task network) consisting of two pairs of encoders with shared weights to separately
extract feature maps from the S1 and S2 images for t1 and t2. Two decoders, one for each
modality, are converting the subtracted multi-temporal feature maps into a multi-modal
feature map, containing the change information extracted from the S1 change decoder and
the S2 change decoder. Change predictions are obtained from the multi-modal feature
map via a 1 × 1 convolution followed by the sigmoid activation function. Similar to the
Siam-diff dual-task network, building predictions are obtained from the S1 image pair and
the S2 image pair, using the respective semantic decoders with shared weights. Two addi-
tional building predictions are obtained from the concatenated S1S2 features extracted with
the respective semantic decoders. Consequently, the proposed network produces three
building predictions (S1, S2, and S1S2) for both timestamps (t1 and t2), in addition to the
change prediction.

Figure 4. Diagram of the proposed network architecture. Green and orange blocks correspond
to the encoder and decoder, respectively. For brevity, the skip connections showing the flow of
feature maps from the encoder to the decoder for different network depths are summarized into a
single connection.
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2.3.2. Training Process

The network is trained in a semi-supervised fashion using a loss function composed of
two supervised terms for labeled samples, namely for the urban change detection task (Lc)
and the building segmentation task (Ls), and an unsupervised term for unlabeled samples
(Lcons). For all loss terms, the power Jaccard loss [52], denoted by J(, ), is used. The power
Jaccard loss is defined as follows:

J(p, y) = 1− (p · y) + ε

(p2 + y2 − p · y) + ε
, (1)

where y and p denote label and network prediction, respectively, and ε is a very small
number (i.e., 1 · 10−6 ) to prevent a division by zero.

In the supervised case, the training objective for multi-modal instances (xt1
S1, xt2

S1, xt1
S2,

xt2
S2) with labels (yt1

s , yt2
s ) is to minimize the two loss terms, defined as follows:

Lc =J(pc, yc)

Ls =J(pt1
s−S1, yt1

s ) + J(pt2
s−S1, yt2

s ) + J(pt1
s−S2, yt1

s ) + J(pt2
s−S2, yt2

s ) + J(pt1
s−S1S2, yt1

s )+

J(pt2
s−S1S2, yt2

s ),

(2)

where change and semantic variables are sub-scripted with c and s, respectively. The
first supervised loss term, Lc, measures the similarity between the urban change label
(yc) and the change prediction (pc). On the other hand, the second supervised loss term,
Ls, measures the similarities between the building labels at t1 (yt1

s ) and t2 (yt2
s ) with the

corresponding semantic predictions obtained from the S1 SAR inputs (pt1
s−S1 and pt2

s−S1)
and the S2 MSI inputs (pt1

s−S2 and pt2
s−S2), as well as the semantic predictions obtained from

the multi-modal features (pt1
s−S1S2 and pt2

s−S1S2).
The unsupervised term exploits unlabeled data via consistency regularization [41,42].

Consistency regularization has the goal of learning more robust features by training networks
to produce similar outputs for realistic perturbations of the same sample [40]. Since different
data modalities can be exploited as natural perturbations [53,54], we apply a consistency
loss (Lcons) across predictions obtained from different sensor modalities, i.e., multi-modal
consistency regularization. Consequently, inconsistencies between the building predictions
obtained from the S1 and S2 semantic decoders for t1 and t2 are penalized during training
using the unsupervised loss term below:

Lcons = J(pt1
s−S1, pt1

s−S2) + J(pt2
s−S1, pt2

s−S2) (3)

During training, mini-batch gradient descent is used, where a mini-batch can consist
of labeled and unlabeled data. Consequently, the cost for a mini-batch is computed by
determining the loss for each sample in the mini-batch separately according to Equation (4),
before adding them together. Hyperparameter λ was added as a weight factor to regulate
the impact of the consistency term on the final loss.

Lsample =

{
Lc + Ls, if y exists
λ · Lcons, otherwise

(4)

2.4. Experimental Setup

The following sections describe the experimental setup of this study. The experiments are
implemented in Python using Facebook’s deep learning framework PyTorch [55], and code is
available at https://github.com/SebastianHafner/SemiSupervisedMultiModalCD.git .

2.4.1. Comparison Experiments

The proposed method was compared to several change detection methods. Specifi-
cally, for unimodal change detection, the three commonly used supervised methods U-Net

https://github.com/SebastianHafner/SemiSupervisedMultiModalCD.git
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early fusion [17], Siam-diff [17], and Siam-diff dual-task [25,26] were considered, along-
side the semi-supervised methods, Siamese SSL [44] and SemiCD [43]. All supervised
unimodal methods were separately tested with S1 data and S2 data. On the other hand,
the unimodal semi-supervised methods were only tested with S2 data since they employ
perturbations that were designed specifically for optical data [43,44]. For multi-modal
data, the two supervised methods, dual-stream U-Net [33] and multi-modal Siam-diff [32],
were considered. This resulted in a total of ten input data-method combinations (S1 U-Net,
S1 Siam-diff, S1 Siam-diff dual-task, S2 U-Net, S2 Siam-diff, S2 Siam-diff dual-task, S2
Siamese SSL, S2 SemiCD, S1S2 dual-stream U-Net, and S1S2 multi-modal Siam-diff) that
were considered for the comparison with the proposed method. The benchmark methods
are described below:

1. U-Net early fusion [17], a classical U-Net that concatenates bitemporal image pairs
along the channel axis, also referred to as early fusion.

2. Siam-diff [17], which uses two U-Net encoders with shared weights to extract features
from the images separately. The extracted bitemporal feature pair is subtracted and
subsequently fed to a U-Net decoder via skip connections.

3. Siam-diff dual-task [25,26], which adds a second decoder to the Siam-diff network for
the semantic segmentation of buildings. The Siam-diff dual-task network (Figure 3) is
trained using a supervised loss for change, as well as two supervised losses for the
semantics at t1 and t2.

4. Siamese SSL [44], which also uses the Siam-diff dual-task network but an unsuper-
vised loss is employed to enforce consistency between the outputs of the change
decoder and change predictions derived from the bitemporal buildings predictions
obtained from the semantic decoder.

5. SemiCD [43], which employs an encoder with shared weights to extract features from
bitemporal image pairs. Then, consistency is enforced between the change prediction
obtained from decoding the subtracted features and a change prediction obtained from
adding small perturbations to the subtracted features by using a separate decoder. It
should be noted that while the original paper used several different perturbations, we
only considered random feature noise since the ablation study in [43] showed that
adding additional perturbations had little effect on the performance of the model.

6. Dual0stream U-Net [33], which processes the S1 and S2 image pairs in separate U-Nets
using early fusion, before fusing the extracted change features at the decision level.

7. Multi-modal Siam-diff [32], which is a multi-modal version of the Siam-diff network,
consisting of two encoders to separately extract features from the the S1 and S2
image pair. A single decoder is used to detect changes by concatenating the multi-
modal features.

2.4.2. Training Setup

Training samples from the prepared dataset were generated on the fly by randomly
selecting two timestamps from the time series of a site. The building labels for these times-
tamps, obtained from rasterizing the building footprints (10 m spatial resolution), were
used to compute the change label. To account for the fact that the occurrence of change is
usually considerably less frequent than no change [56], change areas were oversampled
during network training. For a given site, twenty patches of size 128 × 128 pixels were
randomly cropped from the change label, before assigning each patch a probability accord-
ing to its change pixel percentage, including a base probability for patches with no change
pixels. A single patch was chosen based on those probabilities. In order to enhance the
training dataset, we applied two common data augmentation operations, namely rotations
and flips, which can improve model performance in remote sensing scene classification [57].
During model training, images and labels were randomly rotated by an angle of k · 90◦,
where k ∈ {0, 1, 2, 3} and randomly horizontally or vertically flipped with a probability
of 50%. For validation and testing, on the other hand, only the first and the last image of
a time series were selected and no data augmentation was applied. For each model, hy-
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perparameters were tuned empirically on the validation set using grid search. Specifically,
an exhaustive search with three learning rates (1 · 10−5, 5 · 10−5, 1 · 10−5) and two batch
sizes (8, 16) was performed to determine the optimum values of hyperparameters. For
the proposed method, two values for hyperparameter λ (1 · 10−2, 1 · 10−1), controlling
the impact of the consistency loss term, were added to the grid search. By drawing one
hundred samples from each site per epoch, models were trained for 100 epochs on NVIDIA
GeForce RTX 3090 graphics cards. Early stopping with patience 10 was added to prevent
models from overfitting to the training set. AdamW was used as the optimizer [58].

2.4.3. Accuracy Metrics

Two accuracy metrics were used for the quantitative assessment of predicted changes:
F1 score and intersection over union (IoU). The combination of the F1 score and IoU
is commonly used for performance assessments in change detection studies, e.g., [45].
Formulas for the metrics are given in Equations 5 and 6, where TP, FP, and FN represent
the number of true positive, false positive, and false negative pixels, respectively.

F1 score =
TP

TP + 1
2 (FP + FN)

(5)

IoU =
TP

TP + FP + FN
(6)

3. Results
3.1. Change Detection Results

Table 2 lists the quantitative change detection results obtained on the test set from
training the models on limited fractions of the labeled training set, i.e., 40% (n = 12),
20 % (n = 6), and 10% (n = 3). The last column of Table 2 lists the results obtained from
training the models on the entire labeled training set (i.e., 100%), even though it is generally
assumed in semi-supervised learning that the size of the unlabeled dataset is considerably
larger than that of the labeled dataset (e.g., [43,45]). However, this column was added to
test whether the proposed method manages to perform on par with the supervised method
under no label scarcity. It is apparent that under this condition, all models achieved their
best performance in terms of both accuracy metrics. The multi-modal models achieved
similar F1 scores (0.554–0.559) and IoU values (0.384–0.388) when having access to all
labeled data. In comparison, the accuracy values of the unimodal models trained on S2 MSI
data are slightly worse; nevertheless, they all exceed 0.520 (F1 score) and 0.350 (IoU). The
lowest values under the 100% labeled condition were obtained by the unimodal models
trained on S1 SAR data (F1 scores < 0.420 and IoU values < 0.270). In both unimodal
cases, the Siam-diff dual-task network outperformed the Siam-diff and U-Net early fusion
networks. However, if supervised models are only given access to a limited amount of
labeled data during training, their performance decreases greatly. This is particularly well
apparent in Table 2 for the multi-modal networks. For example, the dual-stream U-Net
network trained on 10% of the labeled data suffered a performance decrease of 0.250 and
0.205 in terms of the F1 score and IoU, respectively, compared to the 100% case. In contrast,
the performance of the proposed semi-supervised change detection method decreased by
only 0.064 (F1 score) and 0.059 (IoU). Although the unimodal semi-supervised methods also
outperformed all supervised methods (unimodal and multi-modal) under the condition
of very limited access to labeled data (i.e., 10% and 20%), the proposed method achieved
considerable performance gains across all tested label fraction conditions. Therefore, the
proposed method surpassed not only uni and multi-modal supervised learning methods
under label-scarce conditions but also semi-supervised learning using optical data.
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Table 2. Quantitative change detection results under different label fraction conditions. Values were
obtained on the test set. The best and second-best performances are highlighted in red and blue,
respectively. Semi-supervised methods are denoted by †.

Fraction of the Labeled Training Set Used

Input Network 10% 20% 40% 100%

F1 IoU F1 IoU F1 IoU F1 IoU

S1
U-Net EF 0.291 0.170 0.339 0.204 0.357 0.217 0.363 0.222
Siam-diff 0.182 0.100 0.368 0.226 0.359 0.219 0.410 0.246
Siam-diff DT 0.267 0.154 0.341 0.206 0.363 0.222 0.414 0.261

S2

U-Net EF 0.266 0.153 0.429 0.273 0.466 0.303 0.520 0.351
Siam-diff 0.347 0.210 0.447 0.288 0.522 0.353 0.522 0.353
Siam-diff DT 0.350 0.212 0.459 0.298 0.484 0.319 0.551 0.380
Siamese SSL † 0.387 0.240 0.478 0.314 0.496 0.330 0.515 0.347
SemiCD † 0.402 0.252 0.467 0.305 0.506 0.338 0.513 0.345

S1S2
DS U-Net 0.309 0.183 0.397 0.248 0.522 0.354 0.559 0.388
MM Siam-diff 0.383 0.237 0.458 0.297 0.500 0.333 0.554 0.383
Proposed † 0.491 0.325 0.501 0.335 0.537 0.367 0.555 0.384

Qualitative results comparing our change predictions with those obtained from a
unimodal semi-supervised method (SemiCD S2) and the supervised multi-modal methods
(dual-stream U-Net S1S2 and multi-modal Siam-diff S1S2) are visualized in Figures 5–7
for a selection of sites located in the United States, India, and Australia (in order). Cor-
rectly detected changes (TP) and no changes (true negatives) are colored white and black,
respectively. On the other hand, incorrectly detected changes (FP) are colored green, and
undetected changes (FN) are colored magenta. In addition to the predictions, S2 images
in true color (red: B4, green: B3, blue: B2) for t1 (pre-change) and t2 (post-change) are
shown. In general, all multi-modal methods accurately detect urban changes when the
entire labeled training set is utilized for supervision (i.e., 100%); consequently, the FP and
FN pixel appearances are mainly limited to the borders of urban change areas. However,
reducing the amount of labeled data to a fraction of 40% of the training set resulted in an
increase in undetected urban changes (FN) for both supervised methods for the United
States site (Figure 5), as well as for the India site for the multi-modal Siam-diff network
(Figure 6). In contrast, the quality of the results obtained with the proposed method de-
creased for neither site. Further reducing the fraction of the labeled data used for training
to 20% and 10% resulted in even more undetected urban change areas for the supervised
methods. Notably, these methods completely failed to detect new built-up areas on the left
side of the Australia site (Figure 7) at 20% and 10%, while both methods still achieved good
performance in these areas at 40%. In comparison, SemiCD retained more of its change
detection accuracy when lowering the fraction of the labeled training set for the sites in the
United States and Australia. However, across all sites, the best change detection results
under label-scarce conditions were achieved by the proposed method.
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Figure 5. Qualitative change detection results for a test site located in the United States. Pre and post-
change Sentinel-2 images visualized in true color (B4, B3, B2) are shown in the outermost left column.
The following columns show network predictions under varying label fraction conditions. The colors
white, green, magenta, and black represent TP, FP, FN, and true negative pixels, respectively.

Figure 6. Qualitative change detection results for a test site located in India. Pre and post-change
Sentinel-2 images visualized in true color (B4, B3, B2) are shown in the outermost left column. The
following columns show network predictions under varying label fraction conditions. The colors
white, green, magenta, and black represent TP, FP, FN, and true negative pixels, respectively.
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Figure 7. Qualitative change detection results for a test site located in Australia. Pre and post-change
Sentinel-2 images visualized in true color (B4, B3, B2) are shown in the outermost left column. The
following columns show network predictions under varying label fraction conditions. The colors
white, green, magenta, and black represent TP, FP, FN, and true negative pixels, respectively.

3.2. Semantic Segmentation Results

In addition to urban change prediction, the proposed method produces building
predictions for t1 and t2. The quantitative building semantic segmentation results are
presented in Table 3. Specifically, Table 3 compares the building predictions obtained from
the Siam-diff dual-task networks for both data modalities to those obtained by our network
as part of the S1 semantic decoder, the S2 semantic decoder, and the concatenated features
extracted by the two semantic decoders. The individual semantic decoder predictions of the
proposed method outperform the respective unimodal methods in all limited labeled data
scenarios, except for the 10% scenario where the Siamese SSL trained on S2 data achieved
marginally better results (+0.002 for F1 score and IoU). However, the fusion prediction of the
proposed method showed the best performance in all scenarios, including when all labeled
training data were used. Another observation is that S2-based predictions are consistently
better than S1-based predictions. Furthermore, F1 scores and IoU values generally decrease
when using a lower fraction of the labeled training set. However, accuracy values for the
proposed method only dropped considerably when using less than 20% of the labeled
training data, while the Siam-diff dual-task network suffered large performance drops
below 40%.

3.3. Ablation Study

Since the proposed method combines a new network architecture with a new loss func-
tion, we ran an ablation study to investigate the contribution of multi-modal consistency
regularization to model performance in terms of change detection, as well as semantic
segmentation of buildings. To that end, we trained the multi-modal Siam-diff dual-task
network in a fully supervised fashion (i.e., without consistency loss) and compared its
performance with the proposed method that trains the same network in a semi-supervised
fashion (i.e., with consistency loss). The results of the ablation study are visualized in
Figure 8. Adding multi-modal consistency regularization improves performances over
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fully supervised training for both tasks and under all limited label conditions. It is also note-
worthy that multi-modal consistency regularization is particularly effective when only very
few labeled samples are available. On the other hand, when all labeled data are included
in model training, semi-supervised learning does not greatly improve change detection
performance, and it even has a slightly negative effect on the semantic task. However, the
effectiveness of semi-supervised methods is typically only demonstrated under severe label
scarcity, since it is assumed that the size of the labeled training set is considerably smaller
than that of the unlabeled training set [43,45]. That being noted, it is also possible that
enforcing consistency between S1 and S2 data during training can have negative effects
on the building segmentation performance of the network due to the difference in spatial
resolution between the sensors or the fact that the contextual information in SAR data is
lower than in optical data [54].

Table 3. Quantitative test results for semantic segmentation. The best and second-best performances
are highlighted in red and blue, respectively. Semi-supervised methods are denoted by †.

Fraction of the Labeled Training Set Used

Input Network 10% 20% 40% 100%

F1 IoU F1 IoU F1 IoU F1 IoU

S1 Siam-diff DT 0.302 0.178 0.399 0.249 0.504 0.337 0.480 0.316
Proposed † 0.361 0.221 0.475 0.312 0.492 0.327 0.486 0.321

S2
Siam-diff DT 0.356 0.216 0.488 0.323 0.524 0.355 0.589 0.417
Siamese SSL † 0.416 0.263 0.473 0.310 0.515 0.346 0.524 0.355
Proposed † 0.414 0.261 0.559 0.388 0.578 0.406 0.591 0.420

S1S2 Proposed † 0.526 0.356 0.590 0.418 0.586 0.415 0.612 0.441

Figure 8. Ablation study showing how adding multi-modal consistency regularization to the training
of the multi-modal Siam-diff dual-task network contributes to urban change detection and building
segmentation in terms of the F1 score (left) and IoU (right).

4. Discussion
4.1. Fusion of SAR and Optical Data

The underlying idea of fusing S1 and S2 data is to exploit the complementary informa-
tion in SAR and optical data to improve urban change detection results upon unimodal
methods. In our supervised experiments, SAR-optical data fusion improved network per-
formance compared to unimodal methods in the 100% labeled training data case (Table 2).
These findings are in line with other works using supervised deep learning and S1S2
data fusion for urban change detection [32–34]. However, Table 2 also reveals that when
labeled training data are limited, supervised networks trained on S2 data perform simi-
larly to supervised networks trained on multi-modal data. In the 20% case, the Siam-diff
dual-task network trained on S2 data even achieved the best performance apart from the
semi-supervised methods. These findings indicate that deep learning methods using multi-
modal data require a substantial amount of labeled training data in order to outperform
unimodal methods in a fully supervised setting. On the other hand, S1-based networks
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seem to require little training data. We attribute this to the fact that vertical construction
generally results in increased backscatter values due to the steady increase of backscatter
values with building height [59]. Furthermore, learned representations of built-up areas
from SAR data are generally more robust than their optical counterparts, meaning that
SAR-based models generalize better across regions; in contrast, models trained on optical
models are prone to suffer from distribution shifts due to geographical changes [54]. How-
ever, it should be noted that S1-based predictions may lack spatial details due to the 20 m
spatial resolution of S1 SAR data, whereas optical predictions are based on input data with
a finer, 10 m, spatial resolution (i.e., the blue, green, red, and near-infrared S2 MSI bands).

4.2. Multi-Modal Consistency Regularization

Urban change detection with SAR-optical data fusion is commonly investigated in the
context of supervised deep learning [32–34]. Although label scarcity has recently led to the
development of deep data fusion frameworks based on either semi-supervised learning [54]
or self-supervised learning (i.e., contrastive learning) [53,60], research studies addressing label
scarcity in change detection predominantly focus on unimodal data [43–45]. Here, we propose
S1S2 data fusion using semi-supervised learning, more specifically multi-modal consistency
regularization, to perform not only urban land cover mapping but also urban change detection
with limited availability of labeled training data. The presented results demonstrate that
consistency regularization performed across data modalities is an effective semi-supervised
method to improve building segmentation over supervised methods, especially when labels
are scarce (Table 3). Moreover, we empirically prove that the improved building segmentation
is linked to the consistency loss imposed on unlabeled data (Figure 8). These results are in
line with the findings of Hafner et al. [54] where multi-modal consistency regularization was
proposed to overcome domain shifts in urban mapping. However, the main aim of this work
is to improve change detection performance by combining data fusion and semi-supervised
learning. Our experiments show that the addition of an unsupervised loss not only improved
building segmentation but also urban change detection performance (Table 3). Therefore, we
consider multi-modal consistency regularization effective for urban change detection.

4.3. Limitations and Perspective

An apparent limitation of the proposed semi-supervised urban change detection
method is that it does not outperform multi-modal architectures that are trained using
full supervision when labeled training data are not limited (see 100% case in Table 2).
However, as previously mentioned, semi-supervised methods generally assume that the
unlabeled dataset is considerably larger than the labeled one [43,45]. Consequently, it is
unsurprising that all semi-supervised methods fail to achieve performance gains over their
supervised counterparts when a large part of the training dataset is labeled. On the other
hand, our ablation experiment shows that consistency loss also improves change detection
performance in the 100% case, even though the improvement is smaller than when labeled
training data are scarce and limited to the change detection task (Figure 8). We infer from
these findings that, if trained in a fully supervised manner, the multi-modal Siam-diff
dual-task architecture may be slightly less powerful than the multi-modal Siam-diff and
dual-stream U-Net networks. However, one should also take into consideration that these
networks only perform a single task, i.e., change detection, whereas the proposed network
performs built-up area segmentation in addition to change detection.

The F1 scores and IoU values obtained in this study highlight that detecting urban changes
from bitemporal S2 MSI images is a challenging task, especially in rapidly urbanizing regions
where the SpaceNet 7 sites are located. In particular, the detection of newly constructed built-up
areas with small extents may be difficult due to the limited spatial resolution of S1 and S2 imagery
(i.e., 20 and 10 m, respectively). Other urban change detection studies using Sentinel imagery
confirm the challenging nature of the task. For example, F1 scores achieved by supervised deep
learning methods on the OSCD dataset (bitemporal S2 image pairs) typically do not exceed
0.600 [17], even if additional S2 scenes are added [27,61], or data fusion is considered by adding
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S1 data [32,33]. Moreover, it should be taken into account that the urban change detection labels
in the OSCD dataset were manually annotated based on S2 MSI imagery [16], whereas the
urban change detection labels in this study were derived from building footprint annotations
based on Planet imagery [46]. The urban change detection task posed by the SpaceNet 7 dataset
may, therefore, be more challenging due to the presence of more detailed changes than in the
OSCD dataset.

Finally, a limitation of the proposed method is that it was designed for change detec-
tion from bitemporal image pairs, while the high temporal frequency of image acquisitions
provided by the S1 and S2 missions offer the potential to use dense time series of obser-
vations. For example, time series information can help to reduce negative effects due to
cloud cover for urban change detection from S2 data [61]. Therefore, future work will
explore the integration of S1 and S2 time series into existing urban mapping and change
detection methods (i.e., multi-temporal change detection with multi-modal data). However,
a particular challenge will be the fact that acquisition times may not correspond between
SAR and optical data, and the optical modality may not always be available due to clouds,
e.g., [34,62].

5. Conclusions

This research presents a novel semi-supervised urban change detection method that
exploits S1 SAR and S2 MSI data via multi-modal consistency regularization. To demon-
strate the effectiveness of the proposed method, we enrich the multi-temporal urban
mapping dataset SpaceNet 7 with monthly mean S1 SAR images and cloud-free S2 MSI
images and train the proposed network on different fractions of the labeled training set.
While supervised multi-modal methods, as well as the proposed semi-supervised method,
achieved good change detection performance when all labeled data were used for training
(F1 scores > 0.550), the supervised methods performed poorly (F1 scores < 0.400) when the
labeled data fraction was reduced to 10%. In contrast, the proposed method achieved an
F1 score of 0.491. This is also a performance increase of more than 22.1% compared to the
best semi-supervised method using optical data. Although performance differences were
smaller under less severe label-scarce conditions (i.e., 20 and 40%), with F1 scores of 0.501
and 0.537, the proposed method also achieved performance gains of 4.8 and 2.9% compared
to the second-best method for the 20 and 40% cases, respectively. Therefore, our exper-
iments demonstrate that the proposed method improves change detection performance
upon several supervised and semi-supervised methods in scenarios where labeled training
data are limited. We successfully link these improvements to the consistency loss imposed
upon the multi-modal built-up area outputs. Since the proposed method achieves good
performance even when labeled training data are scarce, this research has the potential to
contribute to the monitoring of urbanization in the Global South where labeled training
data are lacking. Finally, since our findings highlight the challenging aspects of urban
change detection from S1 SAR and S2 MSI data, our future work will aim to improve urban
change detection performance by developing novel deep learning methods that incorporate
dense time series of S1 and S2 observations.
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