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Abstract: Recently, sensors deployed on unpiloted aerial systems (UAS) have provided snow depth
estimates with high spatial resolution over watershed scales. While light detection and ranging
(LiDAR) produces precise snow depth estimates for areas without vegetation cover, there has gener-
ally been poorer precision in forested areas. At a constant flight speed, the poorest precision within
forests is observed beneath tree canopies that retain foliage into or through winter. The precision of
lidar-derived elevation products is improved by increasing the sample size of ground returns but
doing so reduces the spatial coverage of a mission due to limitations of battery power. We address the
influence of flight speed on ground return density for baseline and snow-covered conditions and the
subsequent effect on precision of snow depth estimates across a mixed landscape, while evaluating
trade-offs between precision and bias. Prior to and following a snow event in December 2020, UAS
flights were conducted at four different flight speeds over a region consisting of three contrasting
land types: (1) open field, (2) deciduous forest, (3) conifer forest. For all cover types, we observed
significant improvements in precision as flight speeds were reduced to 2 m s−1, as well as increases
in the area over which a 2 cm snow depth precision was achieved. On the other hand, snow depth
estimate differences were minimized at baseline flight speeds of 2 m s−1 and 4 m s−1 and snow-on
flight speeds of 6 m s−1 over open fields and between 2 and 4 m s−1 over forest areas. Here, with
consideration to precision and estimate bias within each cover type, we make recommendations for
ideal flight speeds based on survey ground conditions and vegetation cover.

Keywords: snow depth; lidar; UAS

1. Introduction

Globally, approximately 37% of the Earth experiences non-persistent snow with forests
compromising 20% of those seasonal snowpacks in the Northern Hemisphere [1,2]. Win-
ter processes in forests, as compared to open areas, are distinguished by interception,
lower albedo, distinct energy balances that enhance or diminish ablation and reduced
wind-driven snow redistribution with unique processes at the forest edges [3–6]. Among
forests, canopy density, forest structure, forest management and climatic region affect
those processes with considerable variability within and across sites [7–12]. This variability
makes it difficult to obtain meaningful snow depth measurements over local watershed
scales. While models have increased their complexity to capture forest snow processes and
demonstrated the value of modeling forest snow at a 1 to 2 m spatial resolution [2,13–17],
it remains challenging to validate model results and to provide realistic distributions of
highly variable snow depth in forests [18]. High-resolution snow depth observations are
required by the snow community to develop and validate distributed snow processes
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modeling frameworks, improve stream flow predictions, and to provide better estimates of
snow water equivalent (SWE) for water resource planning [7,19].

Airborne laser scanning (ALSM) has a history of providing value in mapping large
areas at 1 m resolutions [13,20–22], but has issues with observation gaps in forested
regions due to low point density, which may limit the characterization of snow pro-
cesses [8,13,18,23]. Unpiloted aerial vehicle-lidar (UAV-lidar) can provide opportunistic,
moderate-cost snow depth observations at scales intermediate to in situ observations and
satellite remote sensing, but over smaller areas than ALSM [18]. As compared to ALSM’s
above canopy point cloud density on the order of 0 to 20 points/m2, UAV-lidar routinely
provides a below canopy point cloud density that is 10 to 100 times higher, has fewer forest
grid cells with missing data, and yields snow depth observations on cm scales [24–26].
Observations at these scales allow processes such as snow-vegetation interactions, solar
radiation, and wind redistribution to be discerned [25,27,28].

UAV-lidar has shown that forest grid cells have greater variability as compared to field
cells and require ground return point counts on the order of 50 points/m2 to produce snow
depth estimates with 2 cm confidence intervals [26]. It has been demonstrated that greater
accuracy is achieved through UAS-lidar as compared to photogrammetry, particularly over
dense vegetation and forested regions [29]. This is the result of lidar pulse characteristics
(e.g., beam divergence, scan angle) that allow for penetration through small gaps in the
canopy to the forest floor, whereas the features present in aerial imagery of forested areas
are limited by narrower observation angles, ground sampling distance, and vegetation
characteristics. Nevertheless, in most previous studies lidar snow depth maps contain gaps
due to missing data. Gap filling to create a continuous map has been recommended [15], but
may introduce overestimates of snow depth in dense foliage areas or introduce unrealistic
snow depth values [28,30].

Understanding the effects of snow-cover, or its absence, on lidar return retrieval under
different vegetation canopies can aid in improving snow depth estimation by better defining
optimal acquisition methods. There may be differences in return density under snow-free
and snow-cover conditions that contribute to uncertainty in snow depth measurements. For
example, it was found that point cloud density may be lower for snow-covered surfaces as
compared to bare surfaces [31]. In mixed vegetation landscapes, differences in a vegetated
canopy’s structure result in a differential in returns among vegetation types. Scattering
caused by tree canopies can result in reduced return rates of laser pulses, with ground
surface returns predominantly occurring in canopy gaps [32]. Compensating for lost
returns in forested environments can be accomplished by flying slower, but this will likely
result in excessive returns in open areas. Additionally, it is unclear whether the increased
point cloud density from slow flight speeds will oversample canopy gaps rather than add
new information.

This study investigates the influence of UAS flight speed on the ability to collect
accurate high spatial resolution snow depth data. The purpose of conducting this study
was to determine how to best optimize UAS-lidar flight planning to achieve consistent
and acceptable levels of uncertainty in snow depth products over different land types. We
compare data acquired at four flight speeds for both snow-on and baseline (i.e., snow-off)
conditions over deciduous forests, coniferous forests, and open field land types. UAS lidar
snow depth estimates are compared to in situ observations collected over multiple 1 m
grid cells. The within grid cell distribution of lidar returns are examined to quantify any
systematic sampling biases, and finally, we examine how the presence of snow affects
observed patterns.

Our guiding hypotheses are that lidar pulse loss rate is related to vegetation cover
type and that adjusting the relative flight speed over different cover types can be per-
formed to account for pulse loss rate to produce point clouds with constant or similar
return rates. Resulting from the increased reflectance of a snow surface compared to bare
earth at the operating wavelength of our laser scanner, we also hypothesize that snow
-increases ground return rate and total return rate, with higher relative increases in forest
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settings, where leaf litter and low-lying vegetation contributing to lost pulses are covered
by snow. A definite combination of speeds in snow-free and snow-cover conditions re-
sult in the desired confidence intervals of snow depth estimates over different vegetation
cover. The combination of speeds differs across cover types and with consideration to
speed/density/confidence trade-offs, we can identify speed combinations in different
vegetation types in snow-free and snow-covered conditions that are best for snow depth
mapping in different landcover types.

2. Materials and Methods
2.1. Study Site

This study was conducted at Thompson Farm Research Observatory in Durham,
New Hampshire, United States (43.10892◦N, 70.94853◦W, 35 m above sea level). Repeat
UAV flights were completed over a 1.8 ha subsite of Thompson Farm consisting of mixed
deciduous/conifer forest and an open agricultural field. The primary conifer species within
the forest were white pine (Pinus strobus) and Eastern Hemlock (Tsuga canadensis), and
the most abundant deciduous species present were northern red oak (Quercus rubra), red
maple (Acer rubrum), shagbark hickory (Carya ovata), and white oak (Quercus alba). Gentle
to moderate elevation gradients are found throughout the study site. Over the past 20
(2003–2023) winter seasons (January–March), the mean, maximum, and minimum daily air
temperatures were −2, 3, and −7 ◦C, respectively. Over the same period, the average daily
winter season precipitation was 3.1 mm, with an average of 33 winter season days per year
with recorded precipitation.

2.2. UAS Lidar Acquisition

A series of UAS lidar surveys were conducted over the study site during December
2020. First, with leaf-off conditions, the snow-free lidar data set was acquired on 11 De-
cember 2020 (from here on referred to as the baseline survey). On 18 December 2020, a
lidar survey was conducted following precipitation on 17 December that resulted in a snow
depth of approximately 11 cm at our study site (from here on referred to as the snow-on
survey). The snowpack remained dry between deposition and lidar acquisition as the air
temperature was consistently below 0 ◦C with an average temperature of approximately
−5 ◦C. Survey flights consisted of two parallel 250 m flight lines spaced 40 m apart, flown
at an altitude of 65 m. For each survey, both flight lines were flown at 2, 4, 6, and 8 m s−1 to
yield varying return densities.

Lidar data were acquired over the study area using a VLP-16 sensor (Velodyne Lidar,
San Jose, CA, USA), with direct georeferencing performed by time-synchronizing returns
with GPS and IMU data collected by an APX-15 UAV INS (Trimble Applanix, Richmond
Hill, ON, Canada). Following postprocessing, APX-15 UAV INS data has 2–5 cm posi-
tional, 0.025◦ roll and pitch, and 0.08◦ true heading uncertainties, with a measurement
rate of 200 Hz, allowing for direct georeferencing of lidar returns based on laser pulse
timestamps [26]. Postprocessing in POSPac Mobile Mapping Suite (MMS) UAV (Trimble
Applanix, Richmond Hill, ON, Canada; v. 8.2.1) resulted in approximately 3 cm positional
accuracy for both flights. The VLP-16 sensor is a 16-channel lidar sensor with a 30◦ vertical
field of view and rotating lasers that are spaced evenly between −15 and +15◦. Each
channel rotates to provide a horizontal field of view of 360◦. The VLP-16 collects up to
300,000 points per second with an accuracy of ±3 cm at a range of 100 m. The sensor was
mounted with the vertical field of view parallel to the ground. Lidar data were recorded to
a data storage system, the HyperCube (Headwall Photonics Inc., Bolton, MA, USA). The
payload was mounted in a fixed position on the underside of a DJI Matrice 600 Pro UAV
(Shenzhen, China). Point clouds were filtered in R to remove non-ground returns using
the Progressive Morphological Filter algorithm [33] as implemented in the lidR package.
The resulting point clouds were gridded to develop 1 m spatial resolution digital terrain
models (DTMs) and return density maps.
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2.3. Vegetation Classification

A land classification map was derived from optical red-green-blue (RGB) imagery
that was collected over the study site during the same period as the lidar surveys. The
imagery was collected using a DJI Phantom 4 RTK (Shenzhen, China) during leaf-off
conditions. An orthomosaic of the study site was generated using Agisoft Metashape
(version 1.8.4). Within the extent of forest cover in our study area, the Green Leaf Index
(GLI, Equation (1); [34]) was calculated from the RGB imagery as

GLI = (2BG − BR − BB)/(2BG + BR + BB), (1)

where BX is the digital number of the band, G, R, or B. During leaf-off conditions, GLI was
used to distinguish conifer species from deciduous species.

To account for surrounding vegetation for any given grid cell and in situ sampling
plots, the initial GLI output was coarsened to 10 m spatial resolution using average GLI
per 10 m pixel. We used a threshold of 0.2 to define two classes within the forested area of
our study site; the two classes were assumed to represent an approximate neighborhood
of conifer vegetation (GLI ≥ 0.2) and leaf-off deciduous vegetation (GLI < 0.2). A field
class was added by manual interpretation of the orthomosaic at the field/forest boundary.
Figure 1 shows the RGB orthomosaic and the 10 m GLI map of the study site.
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Figure 1. An optical orthomosaic of the study area (a) was used to produce a Green Leaf Index map
(b) to derive vegetation classification. Any Green Leaf Index values < 0.2 were classified as deciduous
canopy for our analysis, except for the manually classified field cells.

2.4. Snow Depth Estimates and Bias Evaluation

We measured snow depth in situ at 25 sampling locations along three parallel transects
below the UAS flight path [35]. Measurements were completed immediately following UAS
lidar surveys. The sampling locations were distributed across the three cover types defined
by the GLI map: (1) open field (n = 3); (2) deciduous forest (n = 13); and (3) conifer forest
(n = 9). At each sampling location, a square 1 m2 quadrat was situated such that a corner
of the grid fell on the transect with minimal disturbance of the snow surface. A corner
of each grid cell was surveyed in using a Trimble© Geo7X Global Navigation Satellite
System (GNSS) positioning unit with Zephyr™ antenna (Trimble, Westminster, CO, USA).
Following differential correction using a nearby (~5 km) CORS (Continuously Operating
Reference Station), an average estimated horizontal uncertainty of approximately 2, 5,
7 cm was observed for the field, deciduous, and coniferous sampling sites, respectively.
Orientation and position of the quadrat was noted and photographed at each location for
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retrieval of lidar returns within spatially explicit quadrat bounds. Within each quadrat, nine
snow depth measurements were collected using a Federal snow tube sampler. Snow depth
within the quadrat was calculated as the mean of its measurements, and 95% confidence
intervals were also calculated.

From the lidar data, snow depth estimates were calculated for all combinations of
flight speeds across the study site on a 1 m grid by subtracting the mean return elevation of
the baseline survey from the mean return elevation of the snow-on survey. Likewise, at each
sampling site, baseline and snow-on returns within the extent of each quadrat were used to
calculate snow depth for comparison with in situ observations. Confidence intervals were
calculated for each 1 m grid cell over the entire study site and within the quadrat located at
each sampling site using the pooled standard deviation of the two samples, total return
count accumulated between the two samples, and the pooled degrees of freedom [36]. We
then characterized the distribution of confidence intervals by forest cover type and pairwise
flight speed combinations across our study area. Next, based on reported snow depth
errors in the field of 1 cm bias and 1.2 cm RMSD [26], we used a target precision of 2 cm to
produce raster grids for each baseline flight speed, where the grid cell value reported the
fastest snow-on flight speed that could be used to achieve the target snow depth estimate
precision. This precision equates to a 10% error for snow depths of 20 cm. These maps
were used to understand the effects of different flight speed combinations on snow depth
retrieval and precision across different vegetation types.

For the comparison of lidar and in situ snow depths, we evaluated lidar snow depth
retrievals for flight speed combinations using estimates of the aggregated snow depth
mean difference by vegetation type. This error metric was selected because of the limited
range of snow depth measurements for the sample date within and between vegetation
types. Within forest grid cells, limited lidar returns may not be representative of any given
grid cell and the return locations may differ between snow-on and snow-off flights. We
characterized common coverage within grid cell lidar return distributions between the two
datasets by calculating the total area within a plot that had ground retrievals from both
the snow-on and snow-off surveys. This area of overlap was calculated in QGIS (v 3.26.1)
by buffering each lidar return location by 5 cm (~the upper limit of the payload reported
horizontal error), then calculating the area of the intersection of the buffers between the
snow-off and snow-on data sets for each of the sixteen pairs of flight speeds.

3. Results
3.1. Lidar Snow Depth Estimate Precision

Snow depth precision was estimated using confidence intervals for all sixteen combi-
nations of baseline and snow-on speed by land type. Across the study site, the distribution
of snow depth confidence intervals for pairwise flight speed combinations had similar pat-
terns for all land types (Figure 2). Flight speed had little impact on snow depth confidence
intervals within the field, with nearly all grid cells producing snow depth confidence inter-
vals less than 1.5 cm for all flight speed combinations. The narrowest confidence intervals
were produced from flight speeds of 2 m s−1 for both surveys for all three cover types
(Table 1). In general, however, there were disparities between field and forest confidence
intervals of snow depth, with consistently narrower confidence intervals in the field at any
flight speed combination due to higher ground return density in the field compared to
the forest.

Within deciduous and conifer grid cells, there was greater variability in snow depth
confidence intervals among flight speed combinations (Figure 2), with reductions in the
mean and median as flight speeds slowed for both baseline and snow-on flights. Like
the disparities between field and forest confidence intervals, this effect is largely due to
larger sample sizes at slower flight speeds. The narrowest confidence intervals occurred
for the slowest flight speed combination (Table 1). For all flight speed combinations, there
were narrower distributions of confidence intervals in deciduous areas with lower median
values compared to conifer areas.
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3.2. Flight Speeds to Achieve Precision Target

Across the study area, reduced flight speeds for both baseline and snow-on flights
resulted in lower mean confidence intervals. At a baseline flight speed of 2 m s−1, to
achieve a confidence interval of 2 cm or less, flight speeds of 8 m s−1 could be used for a
snow survey for >95% of the field region, >70% of the deciduous region, and <50% of the
conifer region. At a faster baseline flight speed of 8 m s−1 and snow-on flight speeds of
8 m s−1, >95% of the field region still achieved 2 cm precision, while <45% of the deciduous
region and <30% of the conifer region had a 2 cm confidence interval. Within open field
areas, the highest flight speed combination tested resulted in <2 cm confidence intervals
consistently, while deciduous and conifer areas resulted in <2 cm confidence intervals at
progressively higher rates as flight speeds were reduced (Figure 3 and Table 2a).
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Figure 3. Maps of the study area colored by the maximum snow-on flight speed per pixel required
to produce 2 cm estimate precision at baseline speeds of (a) 2 m s−1, (b) 4 m s−1, (c) 6 m s−1, and
(d) 8 m s−1. The areas in white did not produce a 2 cm estimate precision at any flight speed.

Among grid cells in which we did not achieve <2 cm precision at any given flight
speed combination, the majority were due to insufficient sample size needed to calculate
confidence intervals (Table 2b), as opposed to an absence of data (Table 2c) or high vari-
ability. In the forest areas, Table 2b shows that the percentage of grid cells with insufficient
sample sizes changed with both baseline flight speed and snow-on flight speed within a
cover type, when either survey flight speed is held constant.



Remote Sens. 2023, 15, 5091 8 of 17

Table 2. Proportion of study area grid cells which have (a) achieved <2 cm precision, (b) produced
estimate precision > 2 cm, and (c) have no snow depth estimate.

Baseline Flight Speed (m s−1)

2 4 6 8

a.
<2

cm
Pr

ec
is

io
n

Sn
ow

-o
n

fli
gh

ts
pe

ed
(m

s−
1 )

2 0.706 0.645 0.536 0.470

C
on

if
er4 0.658 0.602 0.495 0.434

6 0.600 0.541 0.442 0.381

8 0.494 0.435 0.334 0.282

2 0.851 0.802 0.709 0.631

D
ec

id
uo

us

4 0.820 0.771 0.675 0.597

6 0.780 0.727 0.623 0.538

8 0.708 0.644 0.531 0.443

2 0.987 0.984 0.982 0.975

Fi
el

d4 0.985 0.984 0.977 0.969

6 0.982 0.980 0.971 0.962

8 0.970 0.969 0.961 0.954

b.
>2

cm
Pr

ec
is

io
n

2 0.272 0.331 0.430 0.488

C
on

if
er4 0.320 0.374 0.470 0.525

6 0.377 0.432 0.522 0.575

8 0.479 0.535 0.626 0.672

2 0.141 0.188 0.277 0.350

D
ec

id
uo

us

4 0.172 0.218 0.311 0.383

6 0.211 0.262 0.361 0.441

8 0.284 0.346 0.455 0.538

2 0.013 0.015 0.018 0.025

Fi
el

d4 0.014 0.016 0.022 0.030

6 0.017 0.020 0.028 0.037

8 0.029 0.030 0.038 0.045

c.
N

o
Sn

ow
D

ep
th

Es
ti

m
at

e

2 0.022 0.024 0.035 0.042

C
on

if
er4 0.022 0.024 0.034 0.041

6 0.023 0.026 0.036 0.044

8 0.026 0.030 0.039 0.046

2 0.008 0.010 0.014 0.020

D
ec

id
uo

us

4 0.008 0.011 0.014 0.020

6 0.009 0.011 0.015 0.020

8 0.008 0.010 0.014 0.020

2 0.001 0.000 0.000 0.001

Fi
el

d4 0.001 0.001 0.001 0.001

6 0.001 0.001 0.001 0.001

8 0.001 0.001 0.001 0.001

While achieving high precision snow depth information is important, grid cells with
no lidar returns for either the baseline or snow-off flight result in a gap in the mapped
snow depth that remains as a no-data value or must be gap-filled. At high flight speeds,
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nearly 5% of the coniferous forest is not mapped. The relative change in the percent of
grid cells was not consistent with survey flight speed changes. For both forest cover types,
the snow-on survey speed increase from 6 m s−1 to 8 m s−1 had the greatest reduction
in target precision coverage due to insufficient sample size, with an average change in
coverage of 10.2% for all baseline flight speeds in conifer areas and 8.7% for all baseline
flight speeds in deciduous areas. For baseline surveys, the increase in flight speed from
4 m s−1 to 6 m s−1 was associated with the greatest reduction in target precision coverage
due to insufficient sample size, with an average change in coverage of 9.4% for all baseline
flight speeds in coniferous areas and 9.7% for all baseline flight speeds in deciduous areas.
On the other hand, Table 2c shows that there is little change in the percentage of grid
cells without a snow depth estimate when baseline flight speed is held constant. In other
words, if no snow depth estimate could be made for a grid cell, it was generally due to the
absence of baseline ground returns rather than snow-on ground returns. We hypothesize
that this is a consequence of the different reflectance and surface scattering attributes of
snow and leaf litter and the vegetation canopy leaf area that resulted in an increased point
density over the snow surface as compared to the bare-earth surface (Table A1). Within
the field, the lidar return densities were similar for both snow-on and snow-free surveys.
This observation demonstrates the increase in absorption and scattering caused by forest
debris (Table A2). For conifer areas, the increase in baseline flight speed from 4 m s−1 to
6 m s−1 was associated with the greatest increase in no snow depth estimate grid cells
with an average increase of 1%, while in deciduous areas, the increase in flight speed from
6 m s−1 to 8 m s−1 caused the greatest increase in no snow depth estimate grid cells with
an average increase of 0.5%.

3.3. Lidar vs. In Situ Snow Depth Estimation

Across the study site, in situ snow depth measurements ranged from 9.9 to 15.4 cm
for the three open field, 13 deciduous forest, and nine conifer forest sampling locations. In
general, we observed good agreement between in situ and lidar-derived snow depths across
our study site, with outliers most prevalent and poorer agreement at baseline flight speeds
of 2 m s−1 and 8 m s−1. The mean difference and RMSD do not exhibit organized changes by
baseline and snow-on flight velocity. Within vegetation cover types, we generally observed
a higher mean difference in conifer areas compared to deciduous areas, with a broader
interquartile range (Figure 4). The conifer areas’ interquartile ranges are tighter for lower
baseline speeds, but outliers are still evident. However, for most flight speed combinations
and vegetation cover types, the mean difference was not significantly different from zero
(Table 3), but the 2 m s−1 baseline speeds resulted in differences that were on the order of
one cm higher than differences for the 8 m s−1 speeds.

When lidar returns are sparse and only a portion of the grid is measured, it is possible
that the baseline and snow-on UAS lidar maps capture different areas within a grid. If there
are elevation changes or local surface anomalies (e.g., downed trees or rocks), then these
differences could cause considerable snow depth errors. The baseline and snow-on lidar
return locations were investigated at in situ sampling locations to understand the extent
to which the returns measured elevations at the same location within a single plot (e.g.,
Figure 5). At the plot scale within forest cover types, reducing the flight speed dramatically
increased the overlap of baseline and snow-on point clouds (Figure 6). At the slowest
speeds, the overlap rarely exceeded 60%, and the fastest flights had less than a 20% overlap.
Regardless, there is still a considerable portion of grid cells where the baseline and snow-
on sampling locations are not coincident for all flight speeds. Figure 6 also shows that
reductions to the baseline flight speed have a greater impact on overlap than equivalent
speed changes to the snow-on flights.
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The box height is the interquartile range (IQR). The lower whisker extends to 1.5 times the IQR below
the lower quartile or the minimum value in the dataset. The upper whisker extends to 1.5 times the
IQR above the upper quartile or the maximum value in the dataset. Outliers are also shown.
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Figure 5. Examples of areas of overlap metrics between baseline and snow-off flights by land use.
Each 1 × 1 m grid cell was divided into nine subplots. The total area of overlap was calculated for
the entire grid cell. For consistency, colors used here are for snow-on flight speeds of 2 m s−1 (red),
4 m s−1 (blue), 6 m s−1 (light blue), and 8 m s−1 (gold).
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Figure 6. Snow depth difference between in situ and lidar observations vs. percent overlap for conifer
and deciduous study plots for all baseline flight speeds, colored by snow-on flight speeds of 2 m s−1

(red), 4 m s−1 (blue), 6 m s−1 (light blue), and 8 m s−1 (gold). In each figure, there are four points
for each individual grid cell corresponding to the overlap and bias determined for each of the four
snow-on flight speeds.
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Although the overlap increased with reduced flight speeds for either survey, the
minimum mean difference did not correspond with the greatest mean overlap for either
cover type (refer to Figure 4). Instead, the minimum absolute mean difference corresponded
with a baseline flight speed of 6 m s−1 and a snow-on flight speed of 2 m s−1 for conifer
plots and a baseline flight speed of 8 m s−1 and a snow-on flight speed of 8 m s−1 for
deciduous plots. However, the range of differences tightens with an increase in overlap.

4. Discussion

For flight planning over a mixed landscape, the ideal flight speed combination used
in snow depth estimate surveys is one that results in a point density that can provide a
representative sample of the surface conditions with an acceptable number of low-data
availability pixels [23]. There is clear evidence that reducing speeds increases precision and
decreases low data pixels. It is also clear that the baseline flight speed is more critical than
the snow-on flight speed.

Both the baseline survey and the snow-on survey influence snow depth estimate bias,
which, when compared to observations, should both minimize the RMSD and have a mean
difference that is close to and not significantly different from zero. If the goal is to minimize
the mean difference, the best flight combinations would differ. In this case, a baseline flight
of 6 m s−1 combined with a snow-on flight of 2 m s−1 (−0.16 cm), a baseline flight of 8 m s−1

combined with a snow-on flight of 8 m s−1 (−0.17 cm), and a baseline flight of 8 m s−1

combined with a snow-on of 2 m s−1 (−0.04 cm) for coniferous, deciduous, and fields,
respectively. However, this might not be advisable in study areas where there is potential
for overprobing by the snow tubes [35]. Because the RMSD metric amplifies the differences
among outliers, overall consistency may be achieved when the RMSD is minimized. From
the minimum RMSD, the best flight combinations are: baseline of 4 m s−1 and snow-on
2 m s−1 (2.12 cm); baseline of 2 m s−1 and snow-on 4 m s−1 (2.00 cm); baseline of 2 m s−1

and snow-on of 6 m s−1 (0.65 cm) for coniferous, deciduous, and fields, respectively. These
RMSD-derived baseline flight speeds are better aligned with those with reduced precision.

From this information, the results presented here suggest that there are several variable
flight speed combinations that would promote appropriate difference distributions across
vegetation types, with similar RMSD and absolute mean differences of the same order of
magnitude. However, the mean rank of these two measures in combination provides a
characterization of these metrics together. By mean rank, flight speeds of 4 m s−1 for both
surveys provided the best balance of mean differences and their distribution over conifer
vegetation. On the contrary, over deciduous vegetation, a slower baseline flight speed
of 2 m s−1 with a snow-on flight speed of 4 m s−1 had the lowest mean rank. Although
the field cover type had a low sample size (n = 3) in this study, by mean rank, the results
were consistent with deciduous vegetation cover in that a slower baseline flight speed
of 2 m s−1 combined with a faster snow-on flight speed of 6 m s−1 had the lowest mean
rank and produced appropriate differences in distributions and absolute mean differences.
With these flight speed combinations, we found a mean difference of 0.007 cm with a 95%
confidence interval range of 1.712 cm across all vegetation cover types. With an intercept
forced to zero, lidar and in situ snow depth estimates were strongly correlated with a slope
close to 1 and lower AIC than a free intercept model (RMSE = 2.03 cm, Figure 7).

Intuitively, acquiring the baseline ground survey at a slower flight speed makes sense.
Because of differences in the light scattering characteristics of snow and dead vegetation,
surface reflectance in the near infrared at the wavelength of the sensor used for this study
(905 nm) is relatively low for vegetation litter compared to a smoother snow surface,
which likely influenced an increased number of ground returns for snow-on conditions.
In contrast, Feng et al.’s finding of lower ground returns for snow-on conditions may be
due to surface conditions that result in lower reflectivity, as reflectance is reduced when the
snow surface is wet or old. This represents an important consideration for UAS operators
evaluating snow depth, especially for the purpose of snowpack evolution. As snow ages,
grain size increases [37], and impurities are introduced to the snow surface [38], both



Remote Sens. 2023, 15, 5091 13 of 17

of which decrease reflectance at 905 nm [39–41]. For New Hampshire snowpacks, grain
size largely controls albedo [42]. At warmer temperatures, wetter snowpacks can also
become problematic for lidar measurements because of strong water absorption in the
NIR [43,44], especially at 1550 nm compared to 905 nm, two common wavelengths for lidar
sensors. We hypothesize that any reduction in NIR reflectance caused by aging snow or
ambient air temperatures allowing for surface melt should require slower flight speeds to
accommodate ground retrieval data needs for accurate snow depth maps. Additionally,
laser pulses are lost at a higher rate in forest canopies than open ground [26,32], which
provides one possible explanation for the finding in this study that snow surveys should
be conducted at a higher flight speed in open fields compared to forests, where we would
expect to have a lower ground return density in both surveys at any stable flight speed.
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Our result in conifer types was less than expected. Mean absolute differences in
snow depth estimates may have resulted from imprecise in situ measurements or from
lidar estimates. In situ snow depth measurements in forest environments are subject
to overestimation caused by the measurement tool penetrating into the leaf litter and
soil surface [35]. In this study, we sought to limit this issue by retrieving snow depth
measurements with a Federal snow tube as opposed to a Magnaprobe. Nevertheless, in situ
snow measurements may have been imprecise or overestimated in some cases in our study,
especially for forest plots, which would have contributed to errors. From the standpoint
of lidar measurements, we hypothesize that the result is due to the oversampling of non-
overlapping areas that occurred during a slow 2 m s−1 baseline survey in conifer stands.
Oversampling, combined with the presence of subtle terrain variation, could lead to an
over- or under-estimate of the baseline mean elevation, which would carry through to snow
depth estimation. The relative change from baseline flight speed of 4 m s−1 to 2 m s−1

in Table 3a provides some evidence in support of this concept. Here, a reduction of the
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baseline flight speed was associated with a large increase in the absolute mean difference,
and specifically an increase in the difference by 2–2.5 cm, suggesting that on average,
a 2 m s−1 baseline flight speed results in a lower mean baseline elevation compared to
a 4 m s−1 baseline flight speed in coniferous areas. In this study, we evaluated sample
overlap and distribution between all flight speeds at each survey, and the results were
inconclusive. We did not evaluate non-overlapping samples or assess the effect they had
on mean elevation estimates.

In summary, the value of the mean difference is diminished, and for a baseline survey,
in areas with minimal canopy foliage (e.g., bare deciduous or open fields), we recommend
a flight speed of 2 m s−1 and in areas with more canopy foliage, such as a conifer area, we
recommend a flight speed of 4 m s−1. During a snow-on survey, the best distribution of
snow depth estimates is then achieved with flight speeds of 6 m s−1 over open fields and
between 2 and 4 m s−1 over forest areas.

5. Conclusions

We found that in a mixed landscape, the expected mean and variation in measurement
differences can be reduced by adjusting survey flight speed depending on vegetation
type and ground surface conditions. The outcome of our analysis provided a set of flight
speeds that are convenient in that there are only two different speeds that we recommend
during each survey. Modifying flight speeds to account for patterns of bias in snow depth
estimation had not previously been explored. Our results demonstrate that variable flight
speeds within and between UAS lidar surveys based on vegetation cover and ground
conditions can be used to balance efficiency and data quality. Although this study was
conducted in a mixed forest landscape, the results may be applicable to other forested
regions with shorter stature trees (<30 m). Taller vegetation or higher-density forest types,
especially those with longer leaf longevity, may represent additional challenges for ground
surface detection due to sensor range limitations and signal attenuation in forest canopies.
Generally, consumer-grade UAS-borne lidar sensors have similar capabilities in terms of
detection range but differ in sampling pattern. The sensor used for this study, the VLP-16,
has a moderately higher effective field-of-view compared to other lidar sensors, like the
LiVox Avia. Because of this, rates of ground detection may differ, especially under dense
needleleaf canopies where a high observation angle could be advantageous. During flight
planning, UAS operators should consider environmental conditions, especially vegetation
composition and snow characteristics, to determine optimal lidar sampling strategies for
snow depth estimation.
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Appendix A

Table A1. Average number of lidar ground returns per 1 m2 by land type, flight speed, and snow
conditions.

Baseline Snow-on

Flight Speed (m s−1) 2 4 6 8 2 4 6 8

Conifer 129 88 55 41 350 178 117 88

Deciduous 197 133 85 63 542 272 184 138

Field 918 611 390 273 1194 592 402 304

Table A2. Percent increase in the average number of lidar ground returns per 1 m2 for snow-on
compared to bare-earth conditions by land type, flight speed, and snow conditions.

Percent Increase in Ground Returns

Flight Speed (m s−1) 2 4 6 8

Conifer 170% 103% 112% 113%

Deciduous 176% 105% 117% 120%

Field 30% −3% 3% 11%
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