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Abstract: Remote sensing technology has become a popular tool for crop classification, but it faces
challenges in accurately identifying crops in areas with fragmented land plots and complex planting
structures. To address this issue, we propose an improved method for crop identification in high-
resolution remote sensing images, achieved by modifying the DeepLab V3+ semantic segmentation
network. In this paper, the typical crop area in the Jianghuai watershed is taken as the experimental
area, and Gaofen-2 satellite images with high spatial resolutions are used as the data source. Based
on the original DeepLab V3+ model, CI and OSAVI vegetation indices are added to the input layers,
and MobileNet V2 is used as the backbone network. Meanwhile, the upper sampling layer of the
network is added, and the attention mechanism is added to the ASPP and the upper sampling layers.
The accuracy verification of the identification results shows that the MIoU and PA of this model in
the test set reach 85.63% and 95.30%, the IoU and F1_Score of wheat are 93.76% and 96.78%, and the
IoU and F1_Score of rape are 74.24% and 85.51%, respectively. The identification accuracy of this
model is significantly better than that of the original DeepLab V3+ model and other related models.
The proposed method in this paper can accurately extract the distribution information of wheat and
rape from high-resolution remote sensing images. This provides a new technical approach for the
application of high-resolution remote sensing images in identifying wheat and rape.

Keywords: crop identification; improved DeepLab V3+ network; GaoFen-2; Jianghuai watershed

1. Introduction

As social and economic development, rapid population growth, and the impact of
global climate change and urban expansion continue, sustainable agricultural develop-
ment faces significant challenges [1,2]. Therefore, obtaining timely, efficient, and accurate
information on the planting area and spatial distribution of crops is crucial for government
management in formulating agricultural food policies, optimizing land resources, adjusting
agricultural planting structures, and ensuring national food security [3,4].

Satellite remote sensing technology, with its advantages of wide coverage and high
timeliness, has become one of the primary approaches for identifying crop types [5–8]. In
recent years, experts and scholars have conducted extensive research on the extraction
of wheat and rape planting areas based on satellite remote sensing data. Most of these
studies have focused on medium- to low-resolution satellite remote sensing data, such
as SPOT/HRV [9], MODIS [10,11], Landsat [12,13], and Sentinel [14–18]. Medium- to
low-resolution remote sensing data provide rich spectral information and high temporal
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resolution. The rich spectral information enhances the separability between different land
covers, while the high temporal resolution enables accurate mapping of crop distribution
by capturing the spectral variations during different phenological stages of crops. However,
wheat and rape are often planted in scattered patterns, and the field areas of rape are
typically small. The limitations of spatial resolution in medium- to low-resolution remote
sensing data restrict the accuracy of identifying wheat and rape [19–21]. The use of high-
resolution satellite imagery significantly enhances the spatial resolution of crop features
in images, reducing the occurrence of mixed pixels. This better meets the requirements
of precision agriculture management [22,23]. However, high-resolution satellite imagery
has weaker spectral information and lower temporal resolution. Weak spectral informa-
tion, especially in areas with fragmented plots and complex planting structures, makes it
difficult to solve the problem of “homologous substances having disparate spectra, and
heterologous substances having the same spectrum” [24,25]. In order to obtain more precise
information about the cultivation areas of crops from high-resolution satellite imagery,
scholars have delved into the research of remote sensing identification of crops using deep
learning methods.

Current research indicates that for remote sensing data sources with weak spectral
information and high spatial resolution, deep learning methods can capture deeper se-
mantic features in images. This effectively improves the problem of low accuracy in land
cover classification caused by the phenomenon of “homologous substances having dis-
parate spectra, and heterologous substances having the same spectrum” [26–30]. This can
mitigate the issue of “homologous substances having disparate spectra, and heterologous
substances having the same spectrum”. Among them, Atrous Spatial Pyramid Pooling
(ASPP) proposed by the DeepLab semantic segmentation model series can enlarge the
receptive field without changing the resolution and fuse features at different levels. It
achieves a good performance in object boundary segmentation. DeepLab V3+ combines
the advantages of the Encoder-Decoder (ED) structure and the ASPP module, making
it currently one of the most outstanding semantic segmentation algorithms in terms
of comprehensive performance [31–35]. However, due to its multiple down-sampling
operations, the DeepLab V3+ network is prone to losing boundary information of land
covers, which reduces the recognition accuracy. Therefore, it is of great significance to
explore how to better protect the edge information of wheat and rape fields and improve
the recognition accuracy while using the DeepLab V3+ network in order to promote the
application of deep learning models in high-resolution remote sensing for wheat and
rape identification.

In summary, to enhance the accuracy of crop identification from high-resolution
remote sensing images, this paper uses Gaofen-2 (GF-2) satellite imagery as the data source
and proposes an improved method for crop identification using the DeepLab V3+ network.
The proposed method modifies the input layer of the traditional DeepLab V3+ network
to better distinguish between wheat, rape, and other land covers; adds upper sampling
layers to alleviate the problem of boundary information loss; and increases an attention
mechanism to highlight the information of crops in the network layers, thereby improving
the recognition accuracy of wheat and rape. Our study extends the application of high-
resolution satellite remote sensing data in precision agriculture management, which could
provide technical support for the agricultural sector in fine management.

2. Materials and Methods
2.1. Study Area

The study area is located in Dingyuan County, Chuzhou City, Anhui Province
(117◦11′~117◦31′, 32◦26′~32◦42′), which belongs to the North subtropical humid mon-
soon climate zone with an annual average temperature of 15 ◦C (Figure 1). Dingyuan
County is located in the Jianghuai Watershed region, which marks the boundary between
northern and southern China. It is a major agricultural planting county in Anhui Province,
where wheat and rape are the main crops in spring, while rice and soybeans are the main
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crops in autumn. The study area is characterized by three types of landforms: hills, un-
dulating plains, and plains. The agricultural planting structure is complex, with both
collective planting in plain areas and scattered distribution in mountainous areas. Due to
the influence of terrain and climate, the remote sensing imaging of crops can easily form
the phenomenon of “homologous substances having disparate spectra”.

Figure 1. Schematic Diagram of Study Area.

2.2. Data Source and Preprocessing
2.2.1. Source and Preprocessing of Remote Sensing Data

In this study, we selected GF-2 PMS2 data acquired on 3 April 2022, which corre-
sponded to the flowering stage of rape and the jointing stage of wheat. The original
GF-2 PMS2 image consisted of a multi-spectral image with a spatial resolution of 4 m
and a panchromatic image with a spatial resolution of 1 m. To eliminate radiation errors
caused by atmospheric scattering, we conducted radiation calibration and atmospheric
correction on the multi-spectral image. Orthographic correction was also employed to
correct the geometric deformation of the multi-spectral images. On the other hand, radio-
metric calibration and orthographic correction were applied to correct the errors caused by
transducers and geometrical deformation of the panchromatic image, respectively. Finally,
the ortho-corrected multi-spectral image and panchromatic image were fused to produce
a multispectral image with a spatial resolution of 1 m.
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2.2.2. Construction of Data Set

The quality and quantity of the sample set are crucial factors that affect the accuracy
of deep learning. In this study, we obtained the sample set through manual pixel-by-pixel
annotation by combining field investigation data, Sentinel-2 time-series data and GF-2
imagery were acquired during the flowering stage of rape. This approach allowed us to
create a robust and diverse sample set that was suitable for effectively training the deep
learning model.

The GF-2 imagery clearly illustrates the spectral and textural discrepancies between
rape and wheat during the rape flowering period. By combining this information with field
sampling data, most of the planting areas can be identified manually. However, certain
rape and wheat areas may exhibit characteristics in the imagery that deviate from those
typical of the normal rape flowering period due to factors such as climate, topography,
and planting time. To address this issue, this study employs time-series Sentinel-2 data
to identify unknown areas using the spectral changes in rape and wheat during various
phenological stages.

In this study, Level-2A Sentinel-2 data are obtained from the Google Earth Engine
(GEE) platform. Figure 2 illustrates the images of wheat and rape acquired on 25 February,
7 March, 6 April, 11 April, 21 April, 6 May, and 15 June, respectively. The figure clearly
shows that the spectral features of the wheat and rape planting areas vary over time. Thus,
incorporating time-series Sentinel-2 data as ancillary information can aid in accurately
identifying the correct planting range of wheat and rape in GF-2 imagery.

Figure 2. Sentinel-2 image of wheat and rape in different periods.

This study selected 10 areas within the study area based on field survey data, as well
as the temporal Sentinel-2 data and GF-2 imagery during the flowering period of rape, to
create the sample set. Using GF-2 images as the base map, we manually annotated each
pixel of the image for wheat, rape, and other land cover types using ArcGIS software, with
all other land cover types uniformly classified as background. After the manual annotation
process, the vector data were converted to raster data with the same resolution as the
GF-2 imagery, and wheat was assigned a pixel value of 3, rape was assigned a pixel value
of 2, and other land cover types were assigned a pixel value of 1. Out of the ten selected
areas, seven were used to create the training and validation sets while the remaining three
were used for the testing set. A Python program was developed to crop the images and
corresponding labels to a size of 128 × 128 pixels and augment the resulting 4242 image-
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label pairs used for training and validation by flipping and rotating them 90 degrees. This
process ultimately generated a dataset of 12,726 image-label pairs, which were divided
into training and validation sets at a 4:1 ratio. The test images and corresponding labeled
samples used in this study are shown in Figure 3.

Figure 3. Corresponding images and actual annotated samples in the test set. (a) Original image
corresponding to the three regions of the test set; (b)Tag image corresponding to the three regions of
the test set.

2.3. Vegetation Feature

The prior studies have demonstrated that incorporating vegetation features into the
extraction of crop distribution information from remote sensing imagery can result in
improved discrimination between vegetation and non-vegetation, as well as different
types of vegetation, compared to relying solely on the original four spectral bands [36–38].
This study employed prior knowledge to extract four additional vegetation indices from
the original four spectral bands, namely the Normalized Difference Vegetation Index
(NDVI), Green Normalized Difference Vegetation Index (GNDVI), Optimal Soil Adjusted
Vegetation Index (OSAVI), and Canola Index (CI) [17,39]. The calculation formulas of the
four vegetation indices are shown in Table 1.
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Table 1. Formula for calculating vegetation index.

Vegetation Index Calculation Formula

NDVI NDVI =
NIR− R
R + NIR

(1)

GNDVI GNDVI =
NIR−G
G + NIR

(2)

OSAVI OSAVI = 1.16 ∗ NIR− R
1.16 + R + NIR

(3)

CI CI = NIR ∗ (G + R) (4)

To evaluate the performance of the four indices in distinguishing different vegetation
types in the study area, this study extracted the values of wheat, rape, and forest corre-
sponding to the sample points in the four index feature maps and compared the differences
in these values. As shown in Figure 4, the frequency distributions of extracted values
from the four vegetation indices for wheat, rape, and forest sample points are presented.
The peaks of wheat, rape, and forest in the NDVI are approximately 0.73, 0.55, and 0.52,
respectively; the peaks in the GNDVI are approximately 0.68, 0.52, and 0.47, respectively;
the peaks in the OSAVI are approximately 0.84, 0.63, and 0.59, respectively; the peaks in
the CI are approximately 0.60 × 107, 1.20 × 107, and 0.45 × 107, respectively. Based on the
overlap of the curves and the distribution of peaks, it can be concluded that NDVI, GNDVI,
and OSAVI can well distinguish between wheat and rape, wheat and forest; CI index can
well distinguish between rape and wheat, rape and forest.
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2.4. Improved DeepLab V3+ Classification Method

DeepLab V3+ is a typical semantic segmentation model which has achieved excellent
results in the remote sensing field. Although the DeepLab V3+ model encodes rich semantic
information, it also has some shortcomings when it is directly applied to wheat and rape
recognition in high spatial resolution remote sensing images [33,40]. In order to make
the model more suitable for wheat and rape identification by remote sensing technology,
this paper makes the following improvements on the basis of DeepLab V3+. Firstly,
vegetation indices were added to the input layer to enhance the differentiation among
ground objects. To reduce computation and memory usage and improve computation
speed, the Xception network in DeepLab V3+ was replaced with the lightweight MobileNet
V2 network. Secondly, the down-sampling multiple was set to 8 and an additional upper
sampling layer was added to mitigate the loss of edge information of wheat and rape
due to multiple down-sampling. To increase sensitivity to the wheat and rape regions,
a Convolutional Block Attention Module (CBAM) was added to the ASPP module and the
upper sampling layer. Finally, the weighted cross-entropy loss function was introduced to
address the issue of sample imbalance among wheat, rape, and other ground objects. The
network architecture is shown in Figure 5.
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2.5. CBAM Module

Attention mechanisms have been shown to be crucial in human perception as they
allow us to focus on the most salient parts of a scene and capture its visual structure
more effectively. In recent years, researchers have added attention mechanisms to network
models to improve their recognition performance [41–48]. One such mechanism is the
CBAM, which combines both channel and spatial attention modules. By incorporating
the CBAM module into a convolutional layer, important features in both the channel and
spatial domains can be highlighted, leading to more accurate recognition results. The
CBAM structure diagram is shown in Figure 6.
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The purpose of the spatial attention module is to highlight the spatial location
distribution that is more important for recognition in the convolutional layer. The
specific operation is as follows: Two pooling methods, global average pooling and
global maximum pooling, were used to compress the channel of input feature graph
F to obtain Fs

avg and Fs
max , respectively. The two feature graphs were combined and

reduced to one channel by a 7∗7 convolution operation. Then, the weight graph of
spatial attention was obtained by Sigmoid function. The spatial attention weighted
graph FSout is obtained by multiplying the obtained weight graph with the original
feature graph F. Figure 7 shows the structure of the spatial attention mechanism, and
its formula is as follows:

FSout = σ
(

f 7∗7(Fs
max ⊕ Fs

avg)
)
⊗ F (5)
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In the formula, σ represents the Sigmoid function, f 7∗7 represents the 7∗7 convolution
operation, ⊕ represents the channel to merge, ⊗ represents elements multiplication.

The purpose of the channel attention module is to highlight the channels of great
value for recognition in the convolutional layer. The specific operations are as follows:
global average pooling and global maximum pooling are used to compress the spatial
dimension of the feature map F to obtain Fc

max and Fc
avg. Then, input Fc

max and Fc
avg into the

multi-layer perceptron MLP, respectively, and add the obtained results. Input the added
results into the Sigmoid function to generate the weight of channel attention. Multiply
the generated weight with the original feature graph F to obtain the channel attention
weighted graph FCout. Figure 8 shows the mechanism structure of channel attention, and
its formula is as follows:

FCout = σ
(

MLP(Fc
max) + MLP(Fc

avg)
)
⊗ F (6)
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2.6. Weighted Cross-Entropy Loss Function

The cross-entropy loss function is used as the semantic segmentation loss, which
measures the similarity between the ground truth and predicted values. The traditional
cross-entropy function assigns the same weight to each class of recognition objects, which
may result in low training efficiency when one class of target samples has a significantly
larger quantity than other classes [40,49]. Due to the small number of rape samples and
the large number of background samples in the dataset used in this study, the network
tends to learn the features of the background. To improve the problem of low segmentation
accuracy caused by imbalanced sample quantities in the dataset, a weighted cross-entropy
loss function is introduced. Based on the original cross-entropy loss function, different
weights are assigned to wheat, rape, and background classes. The specific formula is shown
as follows:

Loss = − 1
N

N−1

∑
n=0

C−1

∑
c=0

wcyn,clog(pn,c) (7)

In the formula, N is the total number of pixels, C is the total number of categories, n
represents the nTH training pixel, c represents the category of training pixel, yn,c is the real
value of the nTH pixel, pn,c is the predicted value of the nTH pixel, wc =

N−Nc
N represents

the weight of category c, and Nc represents the total number of pixels of category c.

2.7. Model Training

This study utilized the NVIDIA GeForce RTX2060 SUPER graphics card to accelerate
the experiments, and the PyTorch framework was employed to construct the model. During
the training process, the Adam optimizer function was selected as the parameter optimizer,
with a batch size of 32 and a total of 200 epochs. To enhance the training efficiency, the
learning rate with dynamic attenuation was adopted, and the initial value was set to 0.01.

To assess the effectiveness of semantic segmentation, researchers typically rely on com-
monly used evaluation metrics. These include Pixel Accuracy (PA), Mean Intersection over
Union (MIoU), Precision, Recall, F1_Score, Intersection over Union (IoU), among others. In
this study, PA and MIoU were utilized to evaluate the overall classification accuracy of the
model. Meanwhile, F1_Score and IoU were chosen to evaluate the recognition accuracy of
wheat and rape.

PA is used to assess the prediction accuracy of each pixel in image classification. The
formula for calculation is as follows:

PA =
∑k

i=0 pii

∑k
i=0 ∑k

j=0 pji
(8)

IoU is used to assess the overlap between each predicted class and the corresponding
ground truth in an image after semantic segmentation. The formula for calculation is
as follows:

IoU =
pii

∑k
j=0 pij + ∑k

j=0 pji − pii
(9)
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MIoU represents the mean IoU of all classes, and the calculation formula is as follows:

MIoU =
1

k + 1

k

∑
i=0

pii

∑k
j=0 pij + ∑k

j=0 pji − pii
(10)

F1 Score is a comprehensive metric for evaluating the precision and recall of each class
in classification results. Precision assesses the accuracy of each class in the classification
results, while recall evaluates the completeness of each class in the classification results.
The formulas for precision, recall, and F1 Score are as follows:

Precision =
pii

∑k
j=0 pji

(11)

Recall =
pii

∑k
j=0 pij

(12)

F1Score =
2 ∗ Recall ∗ Precision

Recall + Precision
(13)

In the formulas for the above evaluation metrics, k represents the number of classes,
pii represents the number of pixels correctly identified as class i, pji represents the predicted
value for class i, pij represents the actual value for class i.

3. Results and Analysis
3.1. Effects of Different Vegetation Indices on Identification Results

To assess the efficacy of various vegetation indices in extracting wheat and rape
from GF-2 images captured during the flowering stage, this study employed an improved
DeepLab V3+ network as the classification model. The four vegetation indices were added
to the input layer of the model separately (the initial input layer only included the original
four bands). The resulting precision performance of the model on the test set after the
addition of each vegetation index is presented in Table 2.

Table 2. Add the identification accuracy of different vegetation features.

MIoU PA
IoU F1_Score

Wheat Rape Wheat Rape

Origin 82.14% 93.69% 91.97% 68.47% 95.82% 81.37%
+NDVI 84.68% 94.67% 92.78% 73.41% 96.28% 84.78%

+GNDVI 84.33% 94.56% 92.71% 72.10% 96.22% 83.74%
+OSAVI 84.95% 94.65% 92.71% 73.75% 96.22% 84.94%

+CI 84.96% 94.64% 92.71% 74.17% 96.25% 84.99%

Based on the experimental results, it is evident that adding various vegetation indices
based on the initial four bands enhances both the overall accuracy and the identification
accuracy of wheat and rape. Notably, the classification accuracy of the model is notably
influenced by different vegetation indices. The MIoU and PA values obtained using CI and
OSAVI are significantly higher than those obtained using NDVI and GNDVI, indicating
that the addition of CI and OSAVI improves the overall classification accuracy of the model
better than NDVI and GNDVI. Furthermore, CI leads to the best classification accuracy of
rape, followed by OSAVI, both of which surpass NDVI and GNDVI. On the other hand, the
effect of vegetation index on the classification accuracy of wheat is negligible. In conclusion,
the experiment establishes that adding CI and OSAVI significantly improves the recognition
accuracy of the model, followed by NDVI, while GNDVI has the smallest impact on the
recognition accuracy of the model.
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To enhance the recognition accuracy of wheat and rape and further improve the
performance of the model, this study added CI, OSAVI, NDVI, and GNDVI to the input
layer in a sequential manner based on their impact on the recognition results, following the
previous experiments. Table 3 presents the recognition accuracy of the model when two,
three, and four vegetation indices were sequentially added to the input layer.

Table 3. The identification accuracy of vegetation index with different quantity is added.

MIoU PA
IoU F1_Score

Wheat Rape Wheat Rape

+CI 84.96% 94.64% 92.71% 74.17% 96.25% 84.99%
+CI+OSAVI 85.63% 95.30% 93.76% 74.24% 96.78% 85.51%

+CI+OSAVI+NDVI 84.27% 94.67% 92.78% 73.41% 96.28% 84.78%
+CI+OSAVI+NDVI+GNDVI 84.33% 94.41% 92.45% 72.67% 96.07% 84.31%

Based on the experimental results, it can be concluded that adding only CI and OSAVI
to the input layer results in the best overall recognition accuracy of the model, as well as
the recognition accuracy of wheat and rape. Specifically, the MIoU and PA reached 85.63%
and 95.30%, respectively, while the IoU and F1_Score for wheat and rape were 93.76% and
96.78%, and 74.24% and 85.51%, respectively. However, adding three or four vegetation
indices did not lead to a further improvement in the recognition accuracy of the model, and
it may increase the computer memory consumption. Therefore, in this study, CI and OSAVI
were selected to be added to the original four bands as the feature set for the experiments
in this paper and were used as the input layer for the model. In the following experiments,
the input layer was always the feature set including CI and OSAVI.

In order to further evaluate the impact of the feature set constructed in this paper on
the model performance, we recorded the changes in Loss and MIoU on the validation set
during each iteration of the model in the training process. As depicted in Figure 9, we
compared the Loss and MIoU curves in the validation set during model training using two
different input layers. The Origin is only using the original four bands as the input layer,
the Origin+VI is adding CI and OSAVI on the basis of the original four bands, with a total
of six bands as the input layer.
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The analysis of the loss and MIoU curves during the model training process indicates
that the convergence rate of the model slows down when the vegetation index features
are added, but convergence can still be reached before 200 iterations, and the loss value
after convergence has only a minor difference between the two input layers. On the other
hand, the MIoU curve clearly shows that adding the vegetation index features leads to
a significant improvement in the model’s accuracy on the verification set. Thus, it can
be concluded that the feature set proposed in this paper has a positive impact on the
performance of the model.

3.2. Ablation Experiment

To further verify the effectiveness of the improved DeepLab V3+ model in this study,
ablation experiments were conducted based on the original DeepLab V3+ model. Following
the improvement method proposed in this paper, five schemes were developed, which are
outlined below:

Scheme 1: DeepLab V3+ model based on Xception as backbone network;
Scheme 2: DeepLab V3+ model based on Mobilenet V2 as backbone network;
Scheme 3: CBAM is added to the upper sampling layers and ASPP layer based on

DeepLab V3+ structure of Scheme 2;
Scheme 4: Add the upper sampling layer based on DeepLab V3+ structure of Scheme 2;
Scheme 5: Based on DeepLab V3+ structure of Scheme 2, add CBAM to the upper

sampling layers and ASPP layer, and add the upper sampling layer (MyDeepLab V3+).
This paper compared the effects of different backbone networks on model performance

in Scheme 1 and Scheme 2. The results, as shown in Table 4, indicate that when the backbone
network was replaced from Xception to lightweight MobileNet V2, the number of model
parameters was reduced from 208.7 MB to 27.91 MB, which is about 7.5 times smaller,
greatly reducing the consumption of computer memory. Training time was also reduced,
with the duration of an epoch of the model decreasing from 265 ms to 100 ms. Comparing
the forecast time of a single image, MobileNet V2 reduced the forecast time of a single
image from 10 ms to 4 ms. Furthermore, the model’s overall accuracy MIoU was improved
by 4.6% by modifying the backbone network. Therefore, MobileNet V2 was selected as the
backbone network in this paper as it not only reduced memory consumption and improved
training speed, but also improved the recognition speed and accuracy of the model.

Table 4. Comparison of model parameters and identification accuracy of different backbone networks.

Backbone
Network MIoU PA Parameter

Size/MB
Training

Times/Epoch
Single Graph

Prediction Time/ms

Xception 84.16% 94.51% 208.7 265 10
Mobilenet V2 84.62% 94.71% 27.91 100 4

In order to compare the effect of adding attention mechanisms and increasing upper
sampling on model accuracy, this paper designed four schemes, namely Scheme 2, Scheme 3,
Scheme 4, and Scheme 5, to conduct comparative tests. Figure 10 shows the convergence of
the MIoU and Loss curves for these schemes on the verification set within 200 epochs. The
proposed method (Scheme 5) achieved the highest average test accuracy and the highest
accuracy under the convergence state. The accuracy of the models with only the CBAM
added (Scheme 3) and only the upper sampling layer added (Scheme 4) were lower than
that of the proposed method but slightly higher than that of the original model (Scheme 2).
The experimental results demonstrate that adding the CBAM module or the upper sampling
layer to the original DeepLab V3+ model can effectively improve the identification accuracy
of the model. Furthermore, adding both the CBAM and the upper sampling layer can
significantly improve the performance of the model for crop type recognition.
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network; Scheme 3: CBAM is added to the upper sampling layers and ASPP layer based on DeepLab
V3+ structure of Scheme 2; Scheme 4: Add the upper sampling layer based on DeepLab V3+ structure
of Scheme 2; Scheme 5: Based on DeepLab V3+ structure of Scheme 2, add CBAM to the upper
sampling layers and ASPP layer, and add the upper sampling layer (MyDeepLab V3+).

3.3. The Influence of Different Semantic Segmentation Models on Recognition Results

To demonstrate that the improved DeepLab V3+ model in this study has certain advan-
tages in using remote sensing technology to identify wheat and rape, its crop identification
performance is compared with that of widely used models in crop identification using
remote sensing technology, including SegNet, U-Net, and original DeepLab V3+. The
performance of different models was evaluated in two aspects: (1) analyzing the accuracy
and convergence of the loss value of each model on the validation set; (2) comparing the
mean intersection over union (mIoU), pixel accuracy, wheat and rapeseed intersection over
union (IoU), and F1 score of each model on the test set.

Figure 11 shows the Loss curve and MIoU curve on the verification set in the training
process of SegNet, U-Net, DeepaLab V3+, and MyDeepLab V3+. It can be observed that
the Loss and MIoU curves of the four models exhibit diverse trends. All four models’ Loss
curves show a generally declining pattern and reach convergence within 200 epochs, indi-
cating satisfactory convergence. Notably, MyDeepLab V3+ shows the fastest convergence
rate, suggesting superior training effectiveness. On the other hand, the MIoU curves of the
four models showed different trends. The variation trend of the MyDeepLab V3+ model
is more stable than that of the SegNet and U-Net models, and the average test accuracy
and convergence accuracy of the MyDeepLab V3+ model are the highest among the four
models. Therefore, through the Loss and MIoU analysis of the validation sets during the
training of the four models, it can be concluded that MyDeepLab V3+ is the best model to
identify wheat and rape among the four models.

To evaluate the generalization ability of four models, the recognition accuracy of wheat
and rape obtained by the four models in the test set was compared, and the MIoU, PA,
IoU, and F1_Score of wheat and rape obtained by the four models on the test set were
also calculated. As shown in Table 5, the overall accuracy (MIoU, PA) and the accuracy of
wheat and rape recognition (IoU, F1_Score) of MyDeepLab V3+ proposed in this paper
were the highest among SegNet, U-Net, DeepLab V3+, and MyDeepLab V3+. Specifically,
compared with SegNet, U-Net, and DeepLab V3+, the proposed method improved the
MIoU by 3.36%, 1.65%, and 1.01%, respectively. In terms of wheat recognition accuracy, the
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proposed method had an IoU improvement of 1%~2% compared to the other three models,
and the F1_Score improvement was less than 1%. In terms of rape recognition accuracy,
the proposed method had an IoU improvement of 7.03%, 4.03%, and 2.10% compared to
SegNet, U-Net, and DeepLab V3+, respectively, and an F1_Score improvement of 5.05%,
3.03%, and 1.64%. Through the comparison of these indicators, it can be concluded that
the MyDeepLab V3+ model proposed in this paper has a higher model generalization
performance and more accurate recognition of the planting range of wheat and rape.
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Table 5. Comparison of recognition accuracy of different semantic segmentation models.

MIoU PA
IoU F1_Score

Wheat Rape Wheat Rape

SegNet 82.27% 94.12% 92.04% 67.21% 95.85% 80.46%
UNet 83.98% 94.69% 92.92% 70.21% 96.33% 82.48%

DeepLab V3+ 84.62% 94.71% 92.81% 72.14% 96.27% 83.87%
MyDeepLab V3+ 85.63% 95.30% 93.76% 74.24% 96.78% 85.51%

3.4. Result Analysis

According to the previous description, the MyDeepLab V3+ model proposed in this
paper achieves high recognition accuracy and extraction performance in identifying the
planting areas of wheat and rape using remote sensing technology. In the three validation
areas, including mountainous regions, planting areas around urban areas, and areas with
a relatively high concentration of wheat and rape planting, the model can accurately
identify the planting areas of wheat and rape, demonstrating good generalization ability
(Figure 12). For the recognition results of wheat, the model is basically consistent with the
actual planting areas, but there is still room for improvement in the detailed recognition of
some small ridges. For the recognition results of rape, the model can accurately identify
the planting areas without excessive errors or omissions, but there is some discrepancy in
the preservation of the boundary information of rape plots compared to actual planting.
Overall, the model shows good recognition performance in practical applications and can
provide important support for agricultural production.



Remote Sens. 2023, 15, 5088 15 of 19

Figure 12. Comparison chart of identification results. (a) Original images of the test set; (b) real labels
for the test set; (c) the results of model recognition in this article. The three areas with concentrated
testing are mountainous regions, planting areas around urban areas, and areas with a relatively high
concentration of wheat and rape planting, respectively.

4. Discussion
4.1. Advantages of the Algorithm in This Paper

This study proposes an improved method for crop identification using high-resolution
satellite imagery from the GF-2 satellite. In contrast to the traditional DeepLab V3+ model,
modifications are made to both the input layer and the network structure. Experimen-
tal results validate the effectiveness of these enhancements, demonstrating a significant
improvement in crop recognition accuracy in the modified model.

Tian [17] and Ashourloo [39] introduced the temporal CI for rape identification and
conducted comparative experiments to validate its superior performance over conventional
vegetation indices such as NDVI. To assess the impact of using only the rape flowering pe-
riod CI index on crop identification accuracy when employing high-resolution remote sens-
ing imagery, a series of comparative experiments were conducted. As shown in Figure 13,
the IoU for rape was obtained when different indices were incorporated. Experimental
results indicate that integrating CI into the input layer of deep learning effectively improves
the accuracy of rape identification. The recognition performance surpasses that achieved
by incorporating only NDVI, GNDVI, and OSAVI.

With the continuous development of deep learning, introducing attention mechanisms
into models has proven effective in improving recognition accuracy. Wang [43] successfully en-
hanced the discriminative capability of the ecological environmental elements in the Yangtze
River source region by incorporating CBAM into the ASPP layer. Cai [50] achieved increased
precision in the segmentation of camphor leaf spots by adding CBAM to the upsampling
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layer. To investigate the impact of CBAM modules in the field of crop recognition, we intro-
duced CBAM separately into the upsampling layer and ASPP layer. Through experimental
comparisons, we found that adding CBAM also improves the accuracy of crop recognition.
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Figure 13. The IoU of rape under different vegetation index was added in the input layer. Origin
represents the model that only uses the original four bands as input layers. +NDVI represents the
model that adds NDVI as an input layer on top of the original four bands. +GNDVI represents the
model that adds GNDVI as an input layer on top of the original four bands. +OSAVI represents the
model that adds OSAVI as an input layer on top of the original four bands. +CI represents the model
that adds CI as an input layer on top of the original four bands.

The traditional DeepLab V3+ model, characterized by multiple downsampling steps,
is susceptible to blurring the boundaries of fine-grained features. Xu [49] addressed this
limitation by introducing an upsampling layer to the DeepLab V3+ model, effectively
boosting the classification accuracy of ground objects in high-resolution remote sensing
images. To assess the impact of increasing upsampling layers on crop recognition, we
augmented the original model with an additional upsampling layer. Experimental results
demonstrate that the inclusion of an upsampling layer significantly improves the accuracy
of crop recognition. Furthermore, we validated that simultaneously introducing CBAM
while increasing the upsampling layer more efficiently enhances the accuracy of crop
recognition. Figure 14 illustrates the recognition accuracy of models improved through
different methodologies on the test set.
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4.2. Deficiency and Prospect

The high spatial resolution of the GF-2 satellite renders it well-suited for crop iden-
tification, thereby catering to the requirements of precision agriculture. Nonetheless, the
constraints of its swath width and revisit cycle led us to employ only one scene image as
the experimental area and prevented us from extending the model to crop identification
at a county or city level. As a future direction, we plan to explore the potential of GF-1
and GF-6 satellite images, which offer a wider swath width, shorter revisit cycle, and 2 m
spatial resolution, as data sources to apply the model to crop identification at a county or
city level.

This study focused exclusively on constructing and applying models during the
specific phenological period of rape flowering. In future work, we consider integrating the
constructed model with the phenological periods of both wheat and rape. This approach
aims to enhance the model’s applicability in practical agricultural production, considering
the challenges associated with acquiring high-quality satellite imagery during the rape
flowering period due to weather and imaging constraints.

5. Conclusions

In order to enhance the precision of crop identification in regions characterized by
fragmented land plots and intricate cropping structures, this study presents an advanced
high-resolution remote sensing crop recognition approach based on the DeepLab V3+
semantic segmentation network, utilizing GF-2 satellite imagery as the primary data source.
To amplify spectral differences between diverse land features, a feature set is constructed by
incorporating the original four bands alongside two vegetation indices, CI and OSAVI. The
original Xception backbone network is replaced with the more lightweight MobileNet V2 to
reduce network parameters and streamline training time. Additional upsampling layers are
integrated into the network, and CBAM modules are introduced in the ASPP module and
upsampling layers. These adjustments enhance the model’s sensitivity to wheat and rape
regions, mitigate the blurring of crop edges due to multiple downsampling, and ultimately
elevate crop recognition accuracy. Experimental findings affirm the efficacy of the proposed
method, achieving MIoU and PA metrics of 85.63% and 95.30%, respectively, on the test set.
Specifically, for wheat, the IoU and F1_Score are 93.76% and 96.78%, while for rape, the
IoU and F1_Score are 74.24% and 85.51%, respectively.
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