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Abstract: The interferometric synthetic aperture radar (InSAR) imaging technique computes relative
distances or surface maps by measuring the absolute phase differences of returned radar signals.
The measured phase difference is wrapped in a 2π cycle due to the wave nature of light. Hence, the
proper multiple of 2π must be added back during restoration and this process is known as phase
unwrapping. The noise and discontinuity present in the wrapped signals pose challenges for error-
free unwrapping procedures. Separate denoising and unwrapping algorithms lead to the introduction
of additional errors from excessive filtering and changes in the statistical nature of the signal. This
can be avoided by joint unwrapping and denoising procedures. In recent years, research efforts
have been made using deep-learning-based frameworks, which can learn the complex relationship
between the wrapped phase, coherence, and amplitude images to perform better unwrapping than
traditional signal processing methods. This research falls predominantly into segmentation- and
regression-based unwrapping procedures. The regression-based methods have poor performance
while segmentation-based frameworks, like the conventional U-Net, rely on a wrap count estimation
strategy with very poor noise immunity. In this paper, we present a two-stage phase unwrapping
deep neural network framework based on U-Net, which can jointly unwrap and denoise InSAR
phase images. The experimental results demonstrate that our approach outperforms related work in
the presence of phase noise and discontinuities with a root mean square error (RMSE) of an order of
magnitude lower than the others. Our framework exhibits better noise immunity, with a low average
RMSE of 0.11.

Keywords: interferometric synthetic aperture radar (InSAR); single-look complex (SLC) image;
synthetic aperture radar (SAR); phase unwrapping (PU); noise removing; single baseline (SB);
multi-baseline (MB); U-Net

1. Introduction

With the advancement of satellite remote sensing technology, interferometric synthetic
aperture radar (InSAR) analysis [1] has become an effective way of measuring land surface
deformation [2]. As the satellite receives its electromagnetic waves emitted to and bounced
back from the Earth, high-precision ground deformation measurements can be obtained.
Due to the significant surge in space launch missions over recent decades, abundant and
continuous remote sensing data are available for Earth observation. Wide-area ground
deformation monitoring is important due to natural and man-made hazards such as
earthquakes, landslides, and mine site disruptions. Early detection and warning before
disaster strikes reduces recovery costs and saves lives.

Synthetic aperture radar (SAR) systems [1] capture the Earth’s surface as a two-
dimensional grid of pixel values of complex numbers, with amplitude as the modulus and
phase as the angle. These images are called single-look complex (SLC) images. Two SLCs of
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the same well-registered surface are used for the pixel-wise computation of the difference to
form an interferogram, in which the phase is highly correlated to topography. Many signal
conditioning techniques have been studied to clean these noisy signals and remove the
undesired effects such as atmospheric conditions, distortion due to the imaging system, and
satellite position error [1]. However, due to the light-wave nature of the emitted radar, these
values are wrapped to the 2π range. Hence, finding the absolute phase change from the
wrapped phase (phase unwrapping) is necessary to measure relative ground displacements
in InSAR signal processing [1].

In general, the phase wrapping process is observed in many other fields of optical
interferometry (OI) in a variety of applications, such as 3D object surface measurements
in fringe projection profilometry (FPP) [3] and blood flow measurements in magnetic
resonance imaging (MRI) [4], where physical entities, such as distance and refractive index,
are measured. A true wrapped phase estimation based on a limited [−π, +π] value is
a challenging task. It involves differentiating true phase changes wrapping around the
[−π, +π] due to changes in the actual physical entity in measurements from phase changes
due to noise sources, distortion, and signal under sampling errors.

Spatial and temporal changes with respect to a particular pixel location are used
for unwrapping the interferograms. But, in the presence of noise and discontinuities,
finding the unwrapped solution is a challenging task. As the unwrapping strategies mainly
depend upon the neighborhood pixel values, the noise and discontinuities at a particular
locality tend to affect the unwrap values everywhere. Noise is unavoidable in satellite
image acquisition due to the presence of many sources such as temporary scattering, dust,
and multiple reflections in the atmosphere. The SAR preprocessing can also result in the
addition of highly correlated noise. In addition, in some applications, such as mine and
dam monitoring systems, the ground displacements tend to be very fast, resulting in large
spatial and temporal variations in the pixel values between two data acquisitions. This
leads to unwrapping errors due to insufficient resolution in the captured data. This is called
aliasing [5] and results in phase changes of more than one cycle between samples. The
unavailability of large publicly available datasets and huge computational costs are another
challenge that especially affects deep-learning-based solvers.

Mathematically, Equation (1) describes the phase ambiguity at a pixel location. Esti-
mating the value of k using Equation (1) alone is impossible. The relative wrapped phase
differences between the neighborhood pixel locations are also required to estimate the
relative absolute phase differences and hence the value of k at a pixel location.

Ω = µ− 2 ∗ π ∗ k (1)

where:
Ω = wrapped phase, with range [−π, π];
µ = unwrapped phase;
k = integer.

Early research in this area dates back decades [5]. In general, it can be assumed that
the points whose phase differences are measured lie on a single line. This is called a one-
dimensional phase unwrapping (PU) problem and can be solved by using the continuity
assumption proposed by Itoh et al. [6]. The continuity assumption states that it is possible
to extract the absolute phase differences between all the neighborhood pixels if the phase
difference between any two neighborhood pixels is not more than π. As a consequence,
there is no ambiguity in the absolute phase differences. Equations (2)–(4) show the math-
ematical description of the unwrapping at a pixel location s proposed by Itoh et al. [6].

µ(s) = Ω(s)−Ω(s− 1) where : |Ω(s)−Ω(s− 1)| < π (2)

µ(s) = Ω(s)−Ω(s− 1)− 2 ∗ π where : |Ω(s)−Ω(s− 1)| > π (3)
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µ(s) = Ω(s)−Ω(s− 1) + 2 ∗ π where : |Ω(s)−Ω(s− 1)| < −π (4)

Phase unwrapping in higher dimensions can be performed by dividing the problem
into lower dimensions. Based on the number of phase images used, phase unwrapping can
be divided into single-baseline (SB) and multi-baseline (MB) methods. SBPU methods use a
single interferogram for unwrapping, while MBPU methods use a stack of interferograms.
The various phase unwrapping strategies can be summarized as shown in Figure 1 [7].

Figure 1. Summary of the different procedures for phase unwrapping.

1.1. Phase Unwrapping in Single-Baseline Images

Phase unwrapping in SB images is also called a two-dimensional PU problem, as the
input is a two-dimensional wrapped phase. The continuity condition proposed by Itoh [6]
applies to gradients along two dimensions, which are considered independently using
Equations (2)–(4). Furthermore, phase is a scalar field, and the gradient of a scalar field
is an irrotational vector. These additional constraints are helpful in unwrapping noisy
interferograms. We discuss below some classical signal processing and deep learning
methods proposed to solve this problem.

Classical Methods to Solve SBPU

Ghilia et al. [5] provided a thorough introduction to the theory of unwrapping
and detailed many pre-established mathematical models and two-dimensional phase
unwrapping strategies. According to them, the phase unwrapping integration path along
the gradient field should result in the same value irrespective of the path chosen and it
should have a zero-sum along a closed path. A residue exists in an integration path if the
direction of the traverse results in different absolute phase values or a non-zero value of
the sum in a closed path. In a closed integration path, if the summation value is positive,
then it is called a positive residue, else it is called a negative residue. It is possible to
avoid such noisy paths if the residues are known ahead of time of the traverse. This can
be achieved by first creating paths as simple as 2 × 2 grids. Once the residues have been
calculated, the integration paths should be chosen to avoid such residues. Ghilia et al.
[8] referred to this as phase discontinuity. Huntley [9] proposed a minimum length cut
algorithm to find the paths in the phase image which avoid the noisy pixels. The algorithm
works well in high-quality and low-noise phase maps but may not generate a solution
at all if the phase maps are too noisy. The method proposed by Goldstein [10] tried to
calculate a better solution by choosing unwrapping paths that encircle equal numbers of
positive and negative residues. This can be achieved by connecting opposite residues with
branch cuts [11]. Whenever a phase unwrapping has to be performed, these branches
should never be crossed. Branch-cut could be used to find such connections. This solution
tends to be optimal but is NP-hard. The solution also maintains the integer relationship
that exists between the wrap and unwrap phases. But this method produces good results
only if noise is sparse. Flynn [12], Zhong [13], and Zhao [14], proposed using quality
maps such as the coherence to guide the choice of the integration path with the least
errors. A higher value of coherence indicates a lower probability of noise on that pixel.
This simplifies the process of finding noisy pixels but this requires a large number of SLC
images of the given site to create reliable quality maps. The PU procedure outlined by
Ching et al. [15] involves dividing the image areas which have a variation less than π,
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into segments. Then, at the boundaries, the phase unwrapping is performed in such a
way that there is a minimum error while traversing from one boundary to another. The
same can be achieved using minimum spanning tree algorithms [16]. This procedure
is computationally faster and much more efficient than other procedures as pixels that
are related are grouped and solved together. But this tends to produce artifacts across
boundaries. An et al. [17] proposed a faster minimum spanning tree algorithm for phase
maps, achieving a reduction in the time complexity by changing the way edge weights are
stored and searched. Harrenz et al. [18] proposed a reliability-guided unwrapping strategy,
where the reliability of pixels is calculated first and unwrapping is performed from the most
reliable pixels to the least reliable pixels. Different groups of unwrapped pixels are created
as the unwrapping paths are discreet. These groups are finally merged while keeping phase
jumps across the groups consistent. The unwrapping procedure works well only in the
presence of sparse and random noise.

In optimization-based PU methods, an objective function that minimizes the error
between the estimated phase and the absolute phase gradients is formulated and solved.
These methods tend to be global and will find unwrap values for all pixels simultaneously.
The general form of the Lp norm optimization problem is expressed in Equation (5), where
ψ and ∆ψ are the absolute phase and wrap phase at a pixel location s, and p is the power
of the norm. According to Ghiglia et al. [19], the optimization problem, when solved
considering p = 0, provides the best solution, but it is an NP-hard problem. Constantine et
al. [20] provided a procedure to solve with p = 1 which results in a minimum cost problem.
The solution is smooth but does not maintain the integer count relationship between the
wrap and unwrap phases. According to Ghiglia et al. [21], a solution considering p = 2
results in an L2 norm problem. This method is affected significantly by noise. A lower
value of p provides better results but they are often difficult to solve. Adaptive methods
include the combination of different Lp problems proposed by Yu et al. [22] for better
results, but this increases the computational time and complexity. Yann et al. [23] proposed
using additional constraints of the scalar properties of phase in the temporal domain when
three differential interferograms are available. This improves the result but requires larger
computational resources. Chartrand et al. [24] proposed the use of a sparse optimization
algorithm to solve the phase unwrapping problem. In Equation (5), p = 0 provides an
optimal solution but is NP-hard. As the residues in the noisy wrap image tend to be sparse,
the alternating directions, method of multipliers (ADMM) algorithm was utilized by the
authors to perform faster and more reliable unwrapping. However, the authors provide
only a few qualitative comparisons against SNAPHU [25].

arg minψ(s)|Σ(s,s-1)(ψ(s)− ψ(s− 1)− ∆ψ(s, s− 1))|p (5)

The statistical-based unwrapping techniques solve the PU problems by finding un-
wrapped results that maximize the a posteriori probability for the given wrap input. These
methods can also utilize the probability information and capture the dependency of the
unwrap results with other parameters such as amplitude and coherence, among others.
The methods proposed by Chen [25], and Nico et al. [26] are examples of such procedures.
A generalized mathematical description is presented in Equation (6), where ψ(s) is the un-
wrapped value and φ(s) is the wrap input. These require a large amount of data to develop
probability density functions. They are computationally hard but provide better results.

argmaxψ(s)|Πsg(ψ(s)|φ(s))| (6)

Conventionally, the phase unwrapping step is preceded by a noise filtering step, as
the performance of PU depends on the quality of the input. However, denoising may
lead to the introduction of algorithmic errors and changes in the statistical nature of the
input. As a result, integrated denoising and unwrapping in one step has the potential to
perform better. These methods can handle a large amount of noise and perform well in low-
coherence areas compared to other methods, but they are computationally expensive and
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have low performance in high-coherence regions when compared to traditional methods.
The variations in this research field mainly differ in the type of filtering used in the process.
Xie et al. [27] and Xianming et al. [28] used the Kalman filter. The latter method [28]
uses a better matrix pencil model and a better path-following strategy to achieve a better
result. Zhang et al. [29] further enhanced the method with the use of the adaptive Kalman
filter model. These models were tested against the data with a few simulation images
and found to perform better only in low-coherence regions. Martinez et al. proposed
a particle-filter-based solution [30] and further optimized it in later research [31]. The
improvements in this later research can be mainly attributed to the use of matrix pencils.
The algorithm performs well under high-noise conditions but is tested with only a few real
and simulation data. Chen et al. [32] used Markov models to denoise and unwrap jointly.
This method is not time efficient but can generate good results compared to MAP-based
estimation if the prior distributions have defects. A summary of some of the important
research in classical methods to solve SBPU is provided in Table 1.

Table 1. Summary of the classical methods to solve SBPU.

Reference Methodology Key Highlights Limitation

Huntley [9] Minimum length cut
algorithm to avoid residues

Works well in high-quality
and low-noise phase maps

May not generate output at all
if phase maps are too noisy

Goldstein [10]
Integration paths encircle an
equal number of positive and

negative residues

Branch-cut is used to find a
solution NP-Hard

Flynn [12], Zhong [13], and
Zhao [14]

Quality-maps-guided
unwrapping

Coherence was used as
measure of quality

Requires many SLCs to
generate reliable quality maps

Ching et al. [15] Segmentation-guided
unwrapping

Each segment is unwrapped
independently Boundary errors

An et al. [17] Segmentation-guided
unwrapping

Faster minimum spanning
tree algorithm Boundary errors

Herraez et al. [18] Reliability-guided
unwrapping

Unwraps from most reliable
to least reliable pixel Poor noise immunity

Constantine et al. [20] Lp norm optimization P = 1, minimum cost problem Unwrap solution is smooth
but not best

Ghiglia et al. [21] Lp norm optimization P = 2, results in smooth
unwrap solution Affected by noise

Chartrand et al. [24] Sparse optimization Faster computation Poor noise immunity

SNAPHU [25] MAP estimation Captures dependencies with
factors such as amplitude

The accuracy depends on the
estimates of probability

density functions

In general, these methods tend to be local, algorithmically simple, and computationally
efficient, but they work only when noise is sparse, and the phase images are of high quality.

2. Deep Learning for Phase Unwrapping

With the rise of deep learning models in many signal-processing applications [33],
similar trends are seen in the field of PU as well. Based on the inputs and intermediate
outputs, these models can be categorized into regression methods and wrap count methods,
which are described in Figures 2 and 3, respectively. In the regression methods, the
unwrapped phase is directly predicted from the input wrap phase by the deep learning
network. The major difference in different methods proposed in the literature is the type
of deep learning network trained and the loss function. Zhou et al. [34] proposed a GAN
network with adversarial loss which provides an output that is smooth but does not force
an integer relationship between the input and output. Xu et al. [35] proposed MNet, with
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mean absolute error (MAE) and structural similarity index measure (SSIM) [36] loss, which
performs well at a low concentration of speckle noise. Zhou et al. [37] proposed U-Net
with MAE. Qin et al. [38] proposed ResUNet with MAE. An advantage of these methods is
the better accuracy of the model in the presence of noise and discontinuity. The unwrap
values are smooth but violate the mathematical relationship of Equation (1). Wrap count
methods predict the wrap count (k) from Equation (1). This translates the problem into
a classification or segmentation task. Liu et al. [39] were the first to propose this idea.
Spoorthly et al. [40] proposed the use of Dense-UNet for wrap count estimation with MAE
and cross-entropy and residue loss as the loss function, which performs well with noisy data,
but their method is only validated against a custom simulation dataset. Zhang et al. [41]
employed EESANET, with weighted cross-entropy as the loss function. The advantages
of wrap count methods are the simple network structure and short training time, but the
performance of the PU is bad in the presence of noise and discontinuity. Perera et al. [42]
proposed a spatial quad-directional long short-term memory (LSTM)-based model for
phase unwrapping. To learn the horizontal and vertical phase relationships, four distinct
spatial directional sequencings were used to train the network. The variance error loss was
used as a loss function to learn multiple solutions. The proposed algorithm performed well
in the presence of noise but had incorrect unwrapping boundaries. A summary of some of
the important research in deep learning to solve SBPU is provided in Table 2.

Table 2. Summary of the deep learning methods to solve SBPU.

Reference Network Architecture Loss Function Limitation

Zhou et al. [34] GAN Adversarial loss Dataset has no noise

Xu et al. [37] MNet MAE and SSIM Only works in low
concentration of speckle noise

Qin et al. [38] ResUNet MAE Works only in low noise

Spoorthly et al. [40] Dense-UNet Cross-entropy + Mean
absolute error (MAE)

Incorrect unwrapping
boundaries

Zhang et al. [41] EESANET Cross-entropy + L1 loss +
residue loss Poor noise immunity

Sica et al. [43] U-Net Cross-entropy + Jaccard loss +
Mean absolute error (MAE) Poor noise immunity

Perera et al. [42]
Spatial Quad-Directional

Long Short-Term Memory
(LSTM)

Variance error Incorrect unwrapping
boundaries

Figure 2. Architecture of regression-based phase unwrapping methods.
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Figure 3. Architecture of wrap-count-based phase unwrapping methods.

U-Net for Phase Unwrapping

U-Net is a deep learning architecture proposed by Ronneberger et al. [44] for the
semantic segmentation of medical images. The goal of semantic segmentation is to label
each pixel of the image with the corresponding class label to which it belongs. As a result,
the output is not just a one-class label for the whole image but a high-resolution image
with each pixel individually labeled. This results in generating high-quality segmented
results compared to image-patch-based methods. A lot of complex tasks in computer vision
require the generation of high-quality semantic segmentation labels. Hence, U-Nets are
employed in vehicle detection [45], crack detection in buildings and dams [46,47], medical
image segmentation [44], modern agriculture [46], and geosensing [48].

U-Net is composed of encoder and decoder blocks. The downsampling encoder
blocks extract high-level features but tend to lose the locality information. The upsampling
decoder block reconstructs the output image using the high-level coarse features. The skip
connection from the encoder to the decoder re-injects the details lost during downsampling
and also leads to faster convergence. As a result, U-Net preserves locality information lost
during downsampling. Hence, it is suitable for semantic segmentation tasks. U-Net can
also learn very fast with few training samples.

Deep learning for phase unwrapping using the wrap count method converts the phase
unwrapping problem into a semantic segmentation or pixel-level classification problem. To
minimize the error in unwrapped results, the segmented result should be of high quality
and have good accuracy at the border between the regions. The limited availability of
labeled training samples is another obstacle to the use of deep learning in this research
area. U-Net’s ability to capture both the features of the context as well as the localization to
generate high-quality segmentation maps, and the ability to be trained with few labeled
samples, drove our design decision to use U-Net in our proposed architecture.

In general, deep learning segmentation-based phase estimation methods suffer from
poor noise immunity [42,43]. Hence, these methods should be preceded by noise-filtering
techniques, which affect the statistical distribution of phase and introduce additional errors
in the unwrapping. A single joint phase unwrapping and denoising architecture provides
better noise immunity. Hence, we are proposing a two-stage U-Net network that is capable
of performing denoising and unwrapping jointly.

3. Materials and Methods

The block diagram of our approach is presented in Figure 4. The proposed two-
dimensional phase unwrapping procedure uses phase differences in the range and azimuth
directions to estimate the unwrapped phase. Our method is inspired by the procedure pro-
posed by Sica et al. [43]. However, we modified the architecture to improve the denoising
performance. Our architecture is a two-stage deep neural network (DNN). The first stage
approximates wrap count values and the second stage refines these values. We will present
our improvement on the method of Sica et al. [43] in this section. Equation (7) expresses the
relationship between the wrap phase µ and unwrap phase σ, where k represents the integer
count times the 2π by which the wrapped phase differs from the unwrapped phase at a
given pixel location. The integer count vector k calculated from Equation (7) is referred to
as the wrap count image. These wrap count images are converted to gradient wrap count
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vector images in the range and azimuth directions separately using Equation (8). This is
used as the ground truth in training the first-stage U-Nets in our two-stage network.

k = (µ− σ)/2 ∗ π (7)

k is wrap count, σ is the wrap phase whose range is [−π, π], and µ is the unwrapped phase.

δk(s) =


k(s + 1)− k(s) for elements belonging to the first row/column of k matrix
k(s)− k(s− 1) for elements belonging to the last row/column of k matrix
(k(s + 1)− k(s− 1))/2 for all other elements in k matrix

(8)

Figure 4. The block diagram of the proposed methodology.

Equation (8) can be converted into matrix form so that it is simpler and mathematically
more convenient to solve, as shown in Equations (9) and (10), where δk(r) and δk(a)
represent the gradient wrap count vectors in the range and azimuth directions, respectively.
∆r and ∆a represent the forward gradient transformation matrices in the range and azimuth
directions, respectively.

δk(r) = ∆r ∗ k (9)

δk(a) = ∆a ∗ k (10)

∆r =



−1 −1 0 0 0 0 0 0 0
−0.5 0 0.5 0 0 0 0 0 0

0 −1 1 0 0 0 0 0 0
0 0 0 −1 −1 0 0 0 0
0 0 0 −0.5 0 0.5 0 0 0
0 0 0 0 −1 1 0 0 0
0 0 0 0 0 0 −1 −1 0
0 0 0 0 0 0 −0.5 0 0.5
0 0 0 0 0 0 0 −1 1


(11)
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∆a =



−1 0 0 1 0 0 0 0 0
0 −1 0 0 1 0 0 0 0
0 0 −1 0 0 1 0 0 0
−0.5 0 0 0 0 0 0.5 0 0

0 −0.5 0 0 0 0.0 0 0.5 0
0 0 −0.5 0 0 0 0 0 0.5
0 0 0 −1 0 0 1 0 0
0 0 0 0 −1 0 0 1 0
0 0 0 0 0 −1 0 0 1


(12)

If the two-dimensional interferograms are of N rows and N columns, the transforma-
tion matrices ∆a and ∆r are of (N2, N2) dimensions. The elements in the transformation
matrix are chosen in such a way that matrix multiplication results in the implementation
of Equations (9) and (10). Examples of the gradient transformation matrices in the range
and azimuth directions for N = 3 are shown in Equation (11) and Equation (12), respec-
tively. N-dimensional wrap count square matrices k are converted into (N2, 1) dimension
vectors. The gradient matrices are obtained from Equations (9) and (10). Based on Itoh’s
unwrapping condition [6], the values of the gradient vector matrix are limited to the set of
fixed values of −1, −0.5, 0, 0.5, 1. These pixels are then labeled into segments to convert the
problem into a segmentation task and we employ a U-Net to segment the same. The two-
channel wrapped phase and coherence image are used as input to the U-Net. Semantically
labeled gradient wrap count vectors are used as ground truth to the network. Two U-Nets
are trained to estimate the gradient wrap count vectors in the range direction and azimuth
direction independently. The sum of the cross-entropy loss and Jaccard loss is used as the
loss function. The architecture of each U-Net used in the block diagram is illustrated in
Figure 5.

Figure 5. Architecture of each U-Net used in our framework.

As the U-Nets estimate the gradient wrap count vectors for a given input wrap phase
image and coherence during inference, it is necessary to calculate the unwrapped phase
from the gradient wrap count vectors using the method proposed by Sica et al. [43]. A
single transformation, as shown in Equation (13), can be used to jointly calculate a bigger
(2 ∗ N2, N2) matrix, where the first N2 corresponds to ∆r and the next N2 corresponds to
∆a. The [∆r,∆a] is the resultant matrix obtained by appending ∆r and ∆a row-wise. This
special matrix can be presented as ∆k, as shown in Equation (14). The problem is now
reduced to estimating N2 points from 2 ∗ N2 equations. The unwrapped phase value is
now estimated using Equations (15) and (16).

δk = [∆r, ∆a] ∗ k (13)
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δk = ∆k ∗ k (14)

k = ∆−1
k ∗ δk (15)

µ = σ + 2 ∗ π ∗ k (16)

µ = σ + 2 ∗ π ∗ k + r (17)

where:
r is the refinement factor calculated from the second stage U-Net.

The wrapped phase images in any practical scenario have inherent noise in them. In
Equation (16), the noise is added back into the result due to the addition of the wrapped
phase back to the wrap counts σ. The above-mentioned method developed by Sica et al. [43]
uses the phase wrap count vector instead of just the phase information. Further experiments
with this kind of architecture, using synthetic inputs, revealed that these work reliably
well in no-noise and very low noise conditions, or if the input wrap phase and ground
truth unwrap phase have the same noise. But, if the network is made to learn unwrapping
and denoising jointly by providing noisy wrap phase input and clean ground truth, the
noisy artifact is observed. This is shown in the output image of Figure 6 (middle). Upon
further analysis, it was found that this kind of noisy pattern was created due to the
changing of the wrapping boundary between the wrap phase input and the ground truth
caused by the addition of noise. As a result, segmentation-based unwrapping architectures
such as that presented Sica et al. [43] cannot be directly used for phase unwrapping and
denoising jointly.

Figure 6. Boundary artifacts observed when trained with noisy input. Noisy wrap input (left column);
the output produced by Sica et al. [43] when trained with noisy wrap phase input and noiseless
ground truth (middle column); and ground truth (right column). The x- and y-axes correspond to
the azimuth and range spatial dimensions. The color bars indicate the scale of the wrap input and
unwrap output.

To address this problem, the architecture in Figure 4 is proposed. A second stage U-
Net image restoration network is added which is trained with the noiseless ground truth to
perform denoising. In the second stage, the U-Net network estimates the noise in the unwrap
results. This noise is subtracted from the final result to obtain a denoised output. These two
networks are trained together jointly to perform unwrapping and denoising together. The
two-channel wrapped phase and coherence image are used as input to the second-stage U-Net.
The clean unwrapped images are used as ground truth to the network. The mean square error
between the ground truth and unwrap phase predicted by the first-stage U-Net networks is
used as a loss function to train the second-stage network. The output of this second-stage
U-Net is added back as refinement values, as shown in Equation (17), to unwrap the output
of the first-stage network to obtain denoised unwrap results.



Remote Sens. 2023, 15, 5081 11 of 17

4. Results

The training, validation, and test interferogram datasets were generated using the
simulator proposed by Sun et al. [49]. The simulator provides a controlled environment to
generate the ground truth required for supervised learning. We can objectively demonstrate
the model’s capability to jointly unwrap and denoise using this simulator. Unlike many
other simulators which can only generate a few known patterns [50], Sun [49]’s simulator
provides the capability of generating unlimited geometrical phase patterns. It can also
generate irregular motion signals, ground reflective phenomena, and noise conditions. A
set of control parameters included in the simulator allows the generation of very complex
phase patterns with different motion, noise, and distortion levels. We follow the steps
below to generate the dataset.

1. We generate the SLC images S1 and S2 with random Gaussian bubbles as the synthetic
motion signals. We make sure that the generated SLCs satisfy Itoh’s condition [6]
using a set of control parameters in the simulator.

2. We add random additive white Gaussian noise at a random signal level to both SLC
images to generate noisy SLC images.

3. Using the SLCs, we generate clean and noisy interferometric phases and calculate the
ground truth coherence.

A total of 7000 interferograms were used for training, 3000 for validation, and 3000
for testing. We implemented all experiments on a computer with an Intel Xeon 4210 CPU,
an NVIDIA GeForce RTX 2080 GPU, and 128 GB memory. The network was trained for
100 epochs with a batch size of 32 and the Adam optimizer, with a learning rate set to 0.001,
on the Pytorch platform. The network was initialized with weights and biases for all layers
using a uniform distribution from −1 to 1. No data augmentation technique was used as
the dataset is sufficient to train the model.

We employed the root mean square error (RMSE), structural similarity index measure
(SSIM) [36], and unwrap failure rate (UFR) [51] between the reference ground truth and
the outputs obtained from different unwrapping procedures to measure performance. The
RMSE is a popular metric used to evaluate the accuracy [43] of the unwrapping framework.
We follow the same approach to compare with other published results. A low value of
RMSE indicates better performance. The formulaic expression of the RMSE is presented in
Equation (18).

RMSE =

√√√√ N

∑
y

M

∑
x
(φ′xy − φxy)2/(MN) (18)

where:
M = height of the interferogram;
N = width of the interferogram;
φ
′
xy = recovered absolute phase at pixel location [x, y];

φxy = reference absolute phase at pixel location [x, y].

The formula for the SSIM is given in Equation (19). The SSIM is better at evaluating
the perceptional difference between the images. We employ the SSIM as a quantitative
measure of the visual difference between the unwrapped image and ground truth. A high
value of the SSIM indicates better performance.

SSIM(x, y) = (2µxµy + c1)(2σxy + c2)/((µ2
x + µ2

y + c1)(σ
2
x + σ2

y + c2)) (19)

where:
X = pixels of a window of the reference absolute phase image;
Y = pixels of a window of the recovered absolute phase image;
µ = mean of the pixel values of window;
σ = standard deviation of pixel values of window;
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σxy = cross-correlation of pixels of two windows;
c = stabilizing factor.

The RMSE and SSIM are average scores and fail to capture large inaccuracies con-
centrated in small areas of the phase map. Hence, we also use the UFR as a performance
metric, which only considers pixels that deviate more than π from the ground truth. The
calculation of the UFR is presented in Equation (20).

UFR = (
N

∑
y

M

∑
x

dxy)/MN ∗ 100 (20)

where

dxy =

{
1 i f (φ

′
xy − φxy) > π

0 otherwise
(21)

M = height of the interferogram;
N = width of the interferogram;
φ
′
xy = recovered absolute phase at pixel location [x, y];

φxy = reference absolute phase at pixel location [x, y].

The performance of the proposed algorithm is compared to the traditional, spatial
filtering followed by unwrapping and deep-learning-based frameworks in Table 3. The
deep-learning-based frameworks used for comparison were retrained with the training
dataset for one-to-one comparisons. Column 2 in Table 3 reports the average and worst
(highest) RMSE; column 3 reports the average and worst (lowest) SSIM; and column 4
reports the UFR of the different unwrapping procedures tested on a set of 3000 test wrap
images. The proposed algorithm performs better in all the metrics and RMSE is an order of
magnitude lower than for the other methods.

Table 3. Comparison of our method with other methods: average/worst RMSE, average/worst SSIM,
and UFR. The best-performing method for each metric is highlighted in bold text.

Method RMSE (Average/Worst) SSIM (Average/Worst) UFR (%)

Herraez et al. [18] 1.425/9.36 0.89/0.33 3.52
Chartrand et al. [24] 0.93/14.12 0.93/0.61 1.25

SNAPHU [25] 0.96/12.59 0.91/0.63 1.2
BM3D [52] + SNAPHU [25] 0.87/14.69 0.93/0.65 1.1

Sica et al. [43] 0.54/2.91 0.91/0.64 0.01
Perera et al. [42] 1.01/5.66 0.98/0.92 0.75

Our method 0.11/2.18 0.99/0.95 0.006

5. Discussion

A qualitative comparison of the outputs produced by various unwrapping algorithms
is provided in Figures 7 and 8. Error maps are generated by subtracting outputs from the
expected ground truth. The unwrap images produced by Herraez et al. [18], SNAPHU [25],
and Chartrand et al. [24] suffer from noise. The outputs have incorrect unwrap boundaries
and have artifacts caused by noise accumulation, indicated by dark and white spots in the
error map. Higher values of the UFR for these methods in Table 3 also indicate the poor
noise immunity of these methods.

BM3D [52] is a collaborative filtering technique that exploits the fact that images have
a locally sparse representation in the transformed domain. Filtering the noisy phase images
with BM3D before unwrapping shows minimal improvement in the performance metrics
in Table 3. The presence of noise in the unwrapped outputs is evident from row 1 and
row 2 of Figure 8. In some scenarios, filtering introduces new noise artifacts in the output.
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Sample 1 (column 1) in Figure 8 is an example of that. Filtering while preprocessing has a
tendency to introduce errors due to over/under-filtered patches.

Perera et al. [42] produce visually noise-free output (corroborated by a high SSIM
in Table 3) but have incorrect unwrap boundaries, as shown in Figure 9 and the error
map (row 8) in Figure 7. The unwrap values produced by Perera et al. [42] have a higher
dynamic range (also indicated by the error map), which results in a higher UFR, resulting
in incorrect measurements in the InSAR process pipeline. The method of Sica et al. [43]
produces noisy output and a noisy error map, which indicates its poor immunity to noise.

The consistently low values of the RMSE and UFR, and the high value of the SSIM for
the proposed method in Table 3 demonstrate that the proposed method performs better
than the other methods. A low worst RMSE value shows the generalization of our trained
model on the test dataset and the model’s ability to handle all edge cases. The qualitative
comparison of the unwrapped outputs in Figure 7 shows relatively less noise and distortion
in the proposed method (indicated by a smoother error map row 2 in Figure 7). The
proposed method generates better phase boundaries as U-Net-based models can generate
high-quality semantic labels with fewer boundary errors. It achieves better denoising from
the second-stage network by refining the coarse unwrap values from the prior stage.

Figure 7. Qualitative comparison of unwrapped outputs of various deep learning algorithms (starting
from row 3), with our proposed method in row 3. Each column shows one sample example. Row 1 is
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the wrapped phase interferogram. Row 2 is the ground truth. Rows 4, 6, and 8 are the error maps for
rows 3, 5, and 7 unwrap outputs. [a] and [b] refer to outputs of Sica et al. [43] and Perera et al. [42]
respectively. (i), (ii) and (iii) indicate the color bar for the scale of wrap input, unwrap output, and
error map respectively.

Figure 8. Qualitative comparison of unwrapped outputs of various traditional algorithms (starting
from row 1). Each column shows one sample example and has the same wrap phase interferogram
and ground truth (row 1 and row 2 respectively) as Figure 7. Rows 2, 4, 6, and 8 are the error maps
for 1, 3, 5, and 7 unwrap outputs. [c], [d], [e], and [f] refer to outputs of BM3D [52] + SNAPHU [25],
SNAPHU [25], Chartrand et al. [24] and, Herraez et al. [18] respectively. (i), (ii) and (iii) indicate the
color bar for the scale of wrap input, unwrap output, and error map respectively.
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Figure 9. Comparison of the unwrapped output of algorithms: Perera et al. [42] (column (a)) and the
proposed method. Row 1 and row 2 show two samples. The rectangular boxes highlight the errors in
boundaries in Perera et al. [42] not observed in the proposed method. The color bar indicates the
scale of the unwrap outputs.

6. Conclusions and Future Work

In this article, we have introduced a novel two-stage deep learning architecture in-
spired by U-Net that shows better anti-noise behavior than many state-of-the-art algorithms.
The first stage estimates the closest unwrapped value by wrap count estimation and the
second stage performs refinement to obtain a better estimation of the unwrapped values.
This two-stage process shows state-of-the-art performance in a noisy input phase condition
by learning the noise behavior correctly and then removing it. In future work, training
the network with more complex noise models to simulate the behavior of more complex
InSAR phase maps can be explored. The speckled noise from random scatters and highly
correlated noise due to the InSAR preprocessing affects the quality of the real-world InSAR
images. An unwrapping algorithm robust to these different types of noise would be of great
value in the field of InSAR processing. In addition, the amplitude images could be used as
part of the input to the network to exploit the correlation of amplitude images with unwrap
phase values. The lack of real-world InSAR images and the lack of a perfect simulator to
model real-world InSAR images may direct future research on phrase unwrapping in the
direction of unsupervised learning.
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