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Abstract: Land-use scene classification (LUSC) is a key technique in the field of remote sensing
imagery (RSI) interpretation. A convolutional neural network (CNN) is widely used for its ability
to autonomously and efficiently extract deep semantic feature maps (DSFMs) from large-scale RSI
data. However, CNNs cannot accurately extract the rich spatial structure information of RSI, and
the key information of RSI is easily lost due to many pooling layers, so it is difficult to ensure the
information integrity of the spatial structure feature maps (SSFMs) and DSFMs of RSI with CNNs
only for LUSC, which can easily affect the classification performance. To fully utilize the SSFMs and
make up for the insufficiency of CNN in capturing the relationship information between the land-use
objects of RSI, while reducing the loss of important information, we propose an effective dual-branch
hybrid framework, HFCC-Net, for the LUSC task. The CNN in the upper branch extracts multi-scale
DSFMs of the same scene using transfer learning techniques; the graph routing-based CapsNet in
the lower branch is used to obtain SSFMs from DSFMs in different scales, and element-by-element
summation achieves enhanced representations of SSFMs; a newly designed function is used to fuse
the top-level DSFMs with SSFMs to generate discriminant feature maps (DFMs); and, finally, the
DFMs are fed into classifier. We conducted sufficient experiments using HFCC-Net on four public
datasets. The results show that our method has better classification performance compared to some
existing CNN-based state-of-the-art methods.

Keywords: remote sensing; scene classification; image interpretation

1. Introduction

As remote sensing technology continues to develop, LUSC plays an increasingly
important role in the field of remote sensing [1]. For instance, the support of LUSC is
needed in the fields of ecological environment construction, urban construction planning,
disaster analysis, and disaster relief resource dispatching [2,3]. Most importantly, with the
continuous improvement of the decision-making system and management level in various
fields of the country, people’s needs and requirements for surface target information are
becoming higher and higher, and the technology of LUSC has inevitably become a key
technical subject of wide concern in the field of remote sensing [4,5].

In land-use scene images (LUSIs), there is a large difference between images of the
same category and a high degree of similarity between images of different categories. As
shown in Figure 1, the semantic expressions of images in the categories of “Resident” and
“Parking” in the RSSCN7 dataset have a high degree of similarity, and those of “Forest” and
“Mountain” in the UCM dataset do; moreover, the semantic expressions of images in the
categories of “Medium Residential” in the OPTIMAL dataset and “Park” in the SIRI dataset
have a high degree of difference. In addition, affected by the diversity, multi-resolution,
and complex spatial content distribution of LUSIs, the LUSC task of automation and high
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accuracy is, subsequently, full of uncertainties. Therefore, it has become a challenging
task to adequately express the detailed features of different land-use category images and
achieve high accuracy classification results.
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Figure 1. Schematic of land-use scene confusion.

The traditional technique is to use manual design of features [6]. One class is pixel-
based classification: each pixel is considered as the smallest classification unit, and the
spectral, morphological, textural, and spatial information of the pixel is first extracted, from
which the features that can represent the different classes are then selected and classified
using different classifiers. This type of approach is susceptible to image local heterogeneity
and noise in high-resolution images [7]. The other category is object-based classification:
segmentation based on a specific target in the image and its spatial structural relationship,
combining multiple pixel points into an object with similar features, so as to achieve the
purpose of feature extraction, analysis, and classification. In such methods, the classification
results are limited by the goodness of the segmentation results [8]. Moreover, traditional
techniques need to rely on experts’ empirical analyses and a lot of manually designed
features, which are not only time-consuming and labor-intensive, but also easy to fall into
local extremes [9]. These characteristics lead to the fact that when using traditional methods
to deal with the task of classifying a large number of LUSIs based on RSI data, not only
is the efficiency of the classification is not high, but also the accuracy of the classification
cannot be stable all the time.

The latest techniques for LUSC are based on deep learning methods, which automat-
ically learn image features with multiple characteristics through the network, and use a
large number of labeled samples to quickly fit an image classification model [10]. Owing to
the ability to automatically learn image features and the high classification accuracy, CNN-
based methods have become the most popular methods for LUSC. First, a convolutional
layer is used to filter the input image with multiple channels to capture information such
as different textures, shapes, and colors in the image; second, the pooling layer is used
to reduce the size and computation of the feature map and improve the computational
efficiency; and last, the fully connected layer is used to map the features output from the
pooling layer to the corresponding category labels to achieve the goal of LUSC. To prevent
overfitting and improve the generalization ability of the model, the method often employs
some regularization techniques such as dropout and batch normalization, which can help
reduce the number of parameters in the network, improve the robustness of the model, and
make the network easier to train and optimize. However, during the process of pooling
RSIs, not only is a lot of effective information lost, but also the spatial resolution of the
image is reduced; moreover, the noise on the image and the effect of image rotation and
scaling due to the change of viewpoints have a relatively large impact on the accuracy
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of target category interpretation. All these are also major issues that affect the further
development of CNN-based techniques in LUSC [11].

CapsNet was proposed by Hinton et al. in 2017 [12], and was mainly proposed to
address the limitations of traditional CNNs in tasks such as pose estimation, and its core
idea is to replace neurons in traditional neural networks with capsules, and to capture
spatial relationships and hierarchical structures between objects by introducing dynamic
routing algorithms, so as to improve the robustness and generalization ability of the
model. In recent years, it has been successfully applied to tasks such as brain tumor image
classification [13], gait recognition [14], iris recognition [15], and LUSC [16], with good
results. Compared with CNN-based classification methods, CapsNet-based methods are
more expressive in feature extraction and representation of images, which is manifested
in three aspects: 1. Pose invariance: it can better learn and express the pose information
in the input data, which enables it to have a significant advantage in recognizing objects
with different poses; 2. Hierarchical representation: features are represented as vectors
in the capsule through a dynamic routing algorithm, and this hierarchical representation
can better capture the spatial relationship and contextual information between features;
3. Robustness: with a certain degree of robustness, it can better cope with the problems
of noise, deformation, and interference in the input data [17]. Although CapsNets have
shown potential advantages in a number of tasks, some shortcomings still exist at present.
For example, the introduction of a large number of dynamic routing operations has led
to an increase in the complexity of the network and slower training and inference, and
the current architecture is still relatively simple, which needs to be further optimized and
improved to accommodate larger image data [18].

For the purpose of further improving the classification accuracy of LUSIs, especially
for RSIs with relatively high image resolution, large heterogeneity of image content, and
certain noise, features extraction and interpretation ability of commonly used network
models on LUSIs need to be further improved, which requires the use of the spatial structure
information of RSIs in the meantime, and, thus, reduces the loss of important feature maps
in the process of DSFM extraction and the issue of category misclassification during scene
classification. Therefore, we propose to design a novel scene classification model, called
HFCC-Net, which combines the strengths of image object location and pose perception
based on the CapsNet approach together with the advantages of DSFM extraction capability
of the CNN-based method, to provide richer feature representations and more accurate
scene category determination results for the LUSC task. The main contributions are as
follows:

1. We designed a novel LUSC method named HFCC-Net with hybrid CapsNet and CNN,
which could fully utilize the global semantic information and local spatial structure
information of RSIs to effectively represent global and local feature maps, and obtained
competitive level of classification compared with the advanced ones;

2. We propose an algorithm for generating discriminative feature maps, which could fuse
the global DSFMs obtained through CNN and the local SSFMs obtained by the graph
routing-based CapsNet, and not only achieves the maximization of the information
content for feature representation, but also improves the classification accuracy;

3. We conducted full experiments on four typical LUSI datasets, and not only successfully
verified the advancement of HFCC-Net, but also analyzed in detail the main factors
affecting the classification accuracy.

The rest of the paper is organized as follows: in Section 2, a description of the relevant
studies is given; Section 3 presents the data and evaluation indicators; Section 4 discusses
the proposed methodology; Section 5 conducts experiments and discusses the factors
influencing; and finally, conclusions are drawn in Section 6.



Remote Sens. 2023, 15, 5044 4 of 26

2. Related Work
2.1. CapsNet-Based for Classification

In recent years, researchers have conducted extensive research and in-depth explo-
ration of CapsNet-based image classification techniques, and the related results are mainly
reflected in three aspects. First, the routing algorithm is improved. Sabour et al. [12]
proposed an adaptive routing algorithm, which regards the number of routing times as
the hyper-parameters of the model and dynamically adjusts the number of routing times
according to the performance in the training process, so that the model can better learn the
distributional characteristics of the data and improve the classification accuracy. Hinton
et al. [19] use a 4 × 4 matrix to express the pose parameters of the object and switch to an
expectation–maximization routing algorithm, which reduces the transformation matrix and
reduces the training parameters and computational effort. Li et al. [20] treat the capsules in
each layer as nodes of a graph and use bidirectional graph routing to learn the internal rela-
tionships between capsules in the same layer. Second, the architectural design of capsule
network is improved. Tao et al. [21] propose using an adaptive capsule layer instead of the
main capsule layer of CapsNet, thus, effectively utilizing the potential spatial relationships
between capsule vectors and, thus, improving the classification accuracy. Phaye et al. [22]
designed a dense CapsNet using dense layers instead of convolutional layers, and a diverse
CapsNet using a hierarchical architecture to learn capsules, both with improved model per-
formance. Xiong et al. [23] added a convolutional capsule layer and a capsule pooling layer
to the original network, which reduced the number of model parameters and improved the
experimental efficiency. Jia et al. [24] constructed multi-scale master capsules using residual
convolutional layers and positional dot products, and used a sigmoid function to determine
the weight coefficients between capsules, achieving better recognition performance. Zhou
et al. [25] utilize twin capsule networks to solve the problem of information loss in the
processing of remote sensing images by convolutional networks. Third, capsule attention
mechanism is introduced. Hoogi et al. [26] added a capsule attention mechanism, which
can adaptively focus on the important features in the image, enhance the important capsule
at the same time, can inhibit the influence of irrelevant capsule, and improve the accuracy
of the model. Gu et al. [27] replace the original dynamic routing method with an image
pooling approach using multiple heads of attention, which not only makes the model
computationally smaller, but also has better classification performance and adversarial
robustness. Yu et al. [28] add an attention module for channel and spatial feature calibration,
which results in higher quality target features learned by the network, sharper semantic
information, and further improvement in the final classification accuracy. Although the
above methods are able to achieve an improvement in image classification efficiency and
accuracy, these methods are basically applied to image datasets with small samples, and
have not been attempted in LUSI datasets. Furthermore, the architecture of CapsNet is still
relatively simple, which makes it difficult to achieve better results in the classification of
higher resolution and larger size RSIs for the time being.

2.2. CNN-Based for Classification

Among the latest scene classification approaches, CNN has become a classical neural
network for processing image structured data. According to the means of classification
feature map extraction, CNN-based classification methods can be classified into two cat-
egories: pure convolutional classification methods and classification methods in which
convolution is fused with other different networks. For example, Xia et al. [29] processed
RSI data using VGG network, GoogLeNet network, and AlexNet network, and achieved
a high classification accuracy with the participation of pre-trained models. Sun et al. [30]
fuse the DSFMs extracted from different convolutional layers of VGG-16 and select the best
combination, which realizes the full utilization of complementary information between
multi-layer DSFMs. Yu et al. [31] utilize two CNN networks to extract the original image
and significantly enhanced image, respectively, and finally the two feature maps are fused
for classification. Zhang et al. [32] enhance the model classification rate by adding channels
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and spatial attention to MobileNet V2. Yang et al. [33] propose the use of twinned CNNs
for scene classification. Anwer et al. [34] propose using the ResNet network to extract the
RGB features and texture encoding features of the model, and realize feature fusion by
constructing a two-branch feature extraction architecture, and then achieve the effect of
classification. Gao et al. [35] augmented the DSFMs extracted by CNN using the attention
mechanism in the channel and spatial branches, and used the augmented fused features for
scene classification. Liu et al. [36] improve classification performance by fusing different
layers of feature maps from a single CNN. Wu et al. [37] build on the research of CNNs
and propose stacking multiple columns of encoders for classification. Although methods
such as combining different DSFMs or increasing the attention mechanism can reach a
high scene classification accuracy, they do not solve the loss of information problem in the
process of RSI feature map learning. In addition, researchers have proposed fusing CNN
with other different networks in the hope of achieving complementary use of the strengths
of different networks. For instance, Wang et al. [38] combine CNN and LSTM and add the
attention mechanism, which speeds up the convergence and improves the accuracy. Zhang
et al. [16] utilize VGG-16 and Inception-v3 in tandem with CapsNet to form a new network
for classification, and achieve some results, but the convolutional network at the front
of the whole network is still lossy, resulting in insufficient classification accuracy. Peng
et al. [39] combine GNN and CNN to construct the spatial and topological relations of RSIs,
and the classification accuracy reaches an advanced level. Obviously, this type of method
can achieve higher classification accuracy, but it also increases the computational amount
of feature learning, and in addition to the complexity of the combined model being higher,
more importantly, it does not solve the loss messages of the feature maps and classification
errors existing in the CNN itself.

2.3. Fusions for Classification

Along with the continuous in-depth study of the LUSC task, researchers began to
try to use CapsNet to make up for the shortcomings of CNN-based techniques in the
image classification task, and gradually achieved better classification results. Divided
according to the manner in which these two network frameworks are combined, this
fusion scene classification method can be divided into two types: one is fusion in the form
of a sequence. The CNN first performs feature extraction on the input image and then
feeds the extracted features into CapsNet for further processing. This approach allows the
model to capture more complex patterns with CapsNet on top of the CNN. For example,
Xu et al. [14] implement a network framework for gait image recognition by connecting
convolutional and capsule modules in series. Phaye et al. [40] combine DenseNet and
CapsNets to formulate better master capsules, creating an efficient recognition framework.
Xiang et al. [41] use CFMs of different scales as inputs to the CapsNet to learn features and
obtain a rich representation to achieve high recognition accuracy. Jampour et al. [42] use
the deep features extracted from the second residual block of ResNet as the input data to
CapsNet to obtain recognition results. Wang et al. [43] use ResNet to extract LiDAR data
features and then use CapsNet for recognition, which solves the problem of information
loss in ResNet network to some extent. Yousra et al. [44] extract features from the VGG19
model trained on the ImageNet dataset and input them into the newly designed CapsNet
to obtain recognition results. In contrast to the above approach, Zhang et al. [45] input the
features acquired through the CapsNet into MobileNetV2, which achieves the lightweight
and accurate recognition requirements. This method is still based on CapsNet in essence,
the difference is that the original input image data are replaced by the DSFM after the
convolution operation; although it achieves certain image classification requirements, in the
process of convolution of the image, part of the information is also lost. Another is fusion
in a parallel form. The CNN and CapsNet are connected in parallel and each processes
the input image and then the respective outputs are merged and classified. This approach
can simultaneously utilize the excellent feature extraction capabilities of CNN and the
powerful structure-aware capabilities of CapsNet. For example, Wang et al. [46] design a
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dual-channel network framework that fuses CNN and CapsNet, extracts convolutional
and capsule features simultaneously and separately for the input data, then fuses the two
features to form new classification features with more discriminative information, and
finally inputs the fused features into a classifier to achieve classification. This type of
method utilizes only single-scale DSFMs of the input image for the feature learning process
in the CapsNet branch, and the two-branch feature fusion approach is simple and prone to
produce redundant features and, furthermore, there is no improvement to CapsNet and
CNN.

3. Materials
3.1. LUSI Datasets for LUSC

We used four typical LUSI datasets to conduct experiments and validate our proposed
algorithm about scene classification. The specific parameters of the datasets are shown in
Table 1, and Figure 2 illustrates the samples for each land-use category.

Table 1. Relevant parameters of the LUSI datasets.

Land Use Datasets RSSCN SIRI UCM OPTIMAL

Category number 7 12 21 31
Number per category 400 200 100 60

Total number 2800 2400 2100 1860
Image size 256 × 256 200 × 200 256 × 256 256 × 256

Source Google Earth GF-1 et al. USGS Google Earth

(1) RSSCN [47]: The dataset contains images from seven different scenes with high
spatial resolution, and the images of each scene come from different viewpoints, lighting
conditions, and seasonal variations, which not only provide more detailed information
about the features, but also simulate the real RSI scenes;

(2) SIRI [48]: The dataset is organized from data acquired by satellite sensors such as
GF-1 and GF-2, as well as a number of global and domestic open datasets. These images
cover images from different geographic locations, light conditions and seasons, including
farmland, forests, cities, etc., which can provide diversity and richness of scene types and
help to carry out refined RSI processing and analysis;

(3) UCM [49]: The dataset provides images with high spatial resolution, which can
provide more detailed and clear RSI information, which is very important for conducting
refined RSI processing and analysis. Moreover, both the categories of geographic scenes
and the size of the dataset satisfy the need to utilize experiments to validate the algorithms;

(4) OPTIMAL [38]: The dataset is a multimodal RSI dataset that contains many types
of remote sensing data, such as optical, radar and infrared images. This enables the dataset
to reflect the diversity and richness of RSI data more comprehensively. In addition, the
images in it not only cover rich geographic scenes, but also have a high data scale.

3.2. Evaluation Metrics for LUSC

(1) Scene classification accuracy (SCA): It is an intuitive evaluation metric, which
is a benchmark for comparing the performance of different classification algorithms or
different datasets, and can directly tell us how well the algorithms classify the whole
dataset. Assuming that land-use category of scenei in the categorized dataset is predicitoni,
land-use category kind is (0, 1, 2, · · ·, j), and the function to predict the category of LUSI is
f , the SCA is calculated as follows:

SCA =

j+1
∑

i=0
( f (scenei) = predictioni)

j + 1
(1)
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(2) Confusion matrix (CM): It can reflect the mutual misclassification probability
between images of various categories. Formally, it is a two-dimensional matrix, with rows
and columns representing the true and predicted labels of the images, respectively, and
the values of the elements on the diagonal lines indicate the probability that the samples
of the corresponding categories are correctly classified, while the values of the elements
on the off-diagonal lines indicate the probability that the samples with the true labels are
misclassified.

Shown in Table 2, for a scene classification task containing j categories, the CM is a
j × j matrix, where the i-th row and j-th column denote the probability that a target of
category i is classified into category j. We show the CM obtained by the best classifier, and,
as can be seen, the probability values on the diagonal line are the largest.

Table 2. Schematic representation of the CM.

Probability Value
True Category Labels

scene0 scene1 . . . scenej scenej+1

Pr
ed

ic
te

d
C

at
eg

or
y

La
be

ls scene0 1 0 0 0 0

scene1 0 1 0 0 0

. . . 0 0 1 0 0

scenej 0 0 0 1 0

scenej+1 0 0 0 0 1

4. Methodology
4.1. Overall Framework of HFCC-Net

HFCC-Net is a novel scene classifier with a two-branch network architecture (see
Figure 3), which can classify the deep semantic and spatial structure features extracted by
CNN and CapsNet at the same time after fusion, and has an outstanding performance in
dealing with LUSC with complex background contents. The overall structure of HFCC-Net
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consists of three parts: the DSFM extraction branch built by the transfer-learning-based
CNN, the SSFM extraction branch built by the graph routing-based CapsNet, and the DFM
and prediction module generated by fusing the two branches.
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Before inputting the RSI data into the network, the data are first processed to be
classified by the model. That is, it mainly consists of three steps: the first step is to crop the
image to match the input size of the model (we set the size of the image as 224 × 224); the
second step is to decode the image data into tensor data; and the third step is to convert the
pixel values into floating point data type and perform normalization.

In HFCC-Net, considering that the training cost of utilizing CapsNet is higher than
utilizing CNN, for example, utilizing CapsNet requires more computational resources and
training time when dealing with a large number of high-resolution RSIs, in order to achieve
the task of model training faster and more accurately, instead of choosing to utilize the
original image data directly for the computation, we chose to use the DSFMs extracted by
CNNs in the upper branch as the input data to the lower branch of the CapsNet. Inspired
by the literature [27], we integrated the graph structure into the CapsNet in the lower
branch, and utilized the multi-head attention graph-based pooling operation to replace the
routing operation of the traditional method, which further reduced the training volume
of HFCC-Net. Meanwhile, we utilized a transfer learning technique in computing DSFM,
using pre-trained models from the ImageNet dataset.

In addition, we designed a new feature fusion algorithm to generate the DFM for
improving the utilization efficiency of DSFM and SSFM. Finally, the DFM was fed into the
classifier consisting of the SoftMax function to obtain the predicted probabilities.

4.2. Deep Semantic Feature Map Extraction

The deep semantic feature extraction module of the upper branch is based on CNN. To
extract the rich semantic information of the LUSI data, a deep CNN, which is Xception [50],
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was used. As is known, CNN is used to extract semantic information by performing convo-
lutional operations on the data obtained from the input layer. The traditional convolution
is that the convolution kernel traverses the input data according to the step size, and each
traversal multiplies the input value with the corresponding position of the convolution
kernel and then adds the operation, and the feature matrix is obtained after traversal in turn.
However, Xception is different. As shown in Figure 4, it designs the traditional convolution
as a deeply separable convolution, i.e., point-by-point convolution and deep convolution.
First, a convolution kernel of size 1 × 1 is used for point-by-point convolution to reduce
the computational complexity; then, a 3 × 3 deep convolution is applied to disassemble
and reorganize the feature map; simultaneously, ReLUs are not added to ensure that data
are not corrupted. The whole network structure is stacked by multiple deep separable
convolutions.
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Figure 4. Examples of deeply separable convolution.

Compared to the traditional structure, Xception has four advantages: first, it uses
cross-layer connections in the deep network to avoid the problem of degradation of the
deep network, to make the network easier to train, and to improve the accuracy of the
network; second, it uses the maximum pooling layer, which reduces the loss of information
and improves the accuracy of the network; third, it uses the depth-separable convolutional
layer, which reduces the number of parameters and improves the computational efficiency;
and fourth, different sized images are used for training during the training process, which
improves the robustness of the network.

Figure 5 shows a schematic of the flow of Xception to extract deep semantic features
from the input data. The size of each DSFM is set to h × w × d, where h denotes the height,
w donates the width of the DSFM, and d denotes the channel dimension of the DSFM.
Furthermore, we modified the last two layers of the Xception to use the new global average
pooling (GAP) and fully connected layer (FCL).
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Figure 5. DSFMs, modified from Xception.

In the structure of Xception, the convolutional layer and the pooling layer generally
appear at the same time. There are two main approaches to pooling: maximum pooling and
average pooling. Maximum pooling retains the maximum value of each region as the result
of the calculation, while average pooling is calculated by calculating the average value of
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each region as the result of the calculation. As shown in Figure 6, the 4 × 4 convolutional
feature traversal is computed using the 2 × 2 filter according to the size of the step size of 2.
Retaining the maximum value gives the maximum pooled feature map, and retaining the
average value gives the average pooled feature map. Xception usually chooses a filter of
size 3 × 3, traversed in 2 steps, to achieve maximum pooling.
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The last DSFM processed by GAP is converted into an n-dimensional vector for easy
classification by FCL. Its calculation is:

yout(xin) = f (wTxin + b) (2)

where yout is the output vector, f is the activation function, xin is the input data with
flattening the pooled DSFM to one-dimensional form, w is the weight vector, and b is the
offset vector.

4.3. Spatial Structural Feature Map Extraction

As is known, CapsNet consists of an encoder and a decoder. The encoder consists
of three layers, which serves to perform feature extraction on the input data; in addition,
a routing process for computation between capsule layers and an activation function for
capsule feature classification are included. The decoder is mainly composed of three FCLs
and is used to ensure that the encoded information is reduced to the original input features.
For the LUSC task, we mainly utilized the encoder part with adaptations.

For the rapid extraction of the rich structural information of the LUSI data while
reducing the network parameters, inspired by the literature [27], the SSFM extraction
module of the lower branch was built by using the graph routing-based CapsNet.

Specifically, it includes three important parts. The first part is to modify the original
input layer to process the DSFMs of the upper branch. As shown in Figure 7, the shallow
semantic feature map F(i)

cnn extracted by CNN are fine-tuned in size with convolutional
operations to fit the input requirements of the CapsNet. The specific method is to use
256 convolution kernels of size 3 × 3 to perform convolution operations on the shallow
semantic feature map in a traversal manner by step size 1. The ReLU function is also
utilized to retain the values of the elements in the output features that are greater than 0,
and the values of the other elements are set to 0. Finally, the 256 feature maps are stitched
together by the cat function to form the input feature map F(i)

cap of the next layer.
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The second part is to compute the primary capsule feature F(i)
pc f using the output

feature map F(i)
cap of the previous layer. First, N f ilter convolution kernels of size 3 × 3 are

utilized to carry out convolution operations in a traversal manner with a step size of 2 to
obtain feature maps F(i1)

cap , where N f ilter = 512/dincap; then, the output feature maps F(i1)
cap

are converted into a feature matrix F(i2)
cap of the shape of (b, p, dincap), where dincap denotes

the number of primary capsules, the value of p is the product of the square of the size of
the feature after the convolution and the value of N f ilter. Finally, the squash function is

utilized to perform normalization on the new form of feature map F(i2)
cap to obtain the main

capsule feature map F(i)
pc f , which is calculated as follows:

F(i)
pc f =

∥∥∥F(i2)
cap

∥∥∥2

1 +
∥∥∥F(i2)

cap

∥∥∥2

F(i2)
cap∥∥∥F(i2)
cap

∥∥∥ (3)

When the modulus length of F(i2)
cap tends to positive infinity, F(i)

pc f tends to 1; when

the modulus length of F(i2)
cap tends to 0, F(i)

pc f tends to 0. F(i2)
cap /

∥∥∥F(i2)
cap

∥∥∥ denotes the unit

vector, which compresses the range of values of the modulus length of F(i)
pc f between [0, 1],

keeping the feature direction unchanged, i.e., keeping the attributes of the image features
represented by the feature unchanged.

The third part is the calculation of advanced capsule feature maps F(i)
ac f using pri-

mary capsule feature maps F(i)
pc f . After adding a dimension to the third dimension of

feature map F(i)
pc f , we obtain F(i1)

pc f = (b, p, 1, dincap), then we perform matrix multiplica-

tion operation with randomly initialized weight parameters w(i1)
pc f = (b, p, doutcap) to get

F(i2)
pc f = (b, p, 1, doutcap), where doutcap = 2 × dincap, and then, we convert the feature map

F(i2)
pc f to F(di)

pc f = (b, p, doutcap), and finally input F(di)
pc f into the multiple graphs pooling module

to obtain F(i)
ac f .

The multiple graphs pooling module serves to transform the primary capsule feature
map F(i)

pc f into advanced capsule feature map F(i)
ac f , and the key technique is to calculate

the weight coefficients w(i)
ac f of each primary capsule feature map. Figure 8 shows a simple

relationship between a two-dimensional array and an image.
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The first step is to compute the nodes and edges of feature map F(di)
pc f . Consider feature

map F(di)
pc f = (b, p, doutcap) as doutcap graphs, where each single graph consists of p nodes,

and the vector p can be seen as the feature map of the corresponding node.
The second step is to calculate the attention coefficients of the doutcap unigraph. Matrix

multiplication of the adjacency matrix of the d(i)outcap unigram is performed with the node

features of the d(i)outcap unigram, and then multiplied with the random initialization weight
parameter w, and then the calculation result is inputted into the softmax function to obtain
the attention coefficient w(di)

ac f of the feature F(di)
pc f .

w(di)
ac f = so f tmax(e−

∥∥∥∥F
(dix)
pc f

∥∥∥∥−
∥∥∥∥∥F
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where F(di)
pc f denotes the feature map of the d(i)outcap dimension, and dix and diy denote the

index of the feature map F(di)
pc f node, respectively.

The third step is to use multiply the attention coefficient with the node feature to
obtain the attention feature, then the squash function is used to perform the normalization
disposal to obtain the advanced capsule feature map F(i)

ac f .

F(i)
ac f = squash

(
1
p∑

(
(w(di)

ac f )
T
· F(di)

pc f

))
(5)

4.4. Feature Map Fusion and Scene Prediction

To obtain both DSFMs and SSFMs of the LUSIs, we designed a simple two-branch
fusion module with different characteristics, where the feature maps extracted from the
upper-branch CNN and the lower-branch CapsNet are integrated and inputted to the
recognizer. The computational formulae used in this fusion module are as follows:

Zj = fw(F(1)
cnn)⊕

(
λ ·
(

j

∑
i=1

fcap(F(i)
cnn)

))
(6)

where Zj denotes the fused feature, called DFM, F(1)
cnn denotes the last layer of semantic

feature map extracted by the CNN, fw denotes the mean GAP and FCL, ⊕ denotes the
use of summing according to the values of the corresponding elements one by one, λ is
the control coefficient, which denotes the key parameter controlling the deep fusion of

the two-branch feature maps, and
j

∑
i=1

fcap(F(i)
cnn) denotes the new spatial structure feature

map formed by the CNN extracted feature maps input to the CapsNet after summing the
corresponding elements.
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After obtaining the DFM Zj, it is first fed into the softmax function to calculate the
probability of the image belonging to each class, and then the obtained probability values
are used to calculate the predicted loss together with the probability values of the data
labels after the image has been encoded by one-hot coding. While training the model using
the HFCC-Net method, we used the cross-entropy loss function to obtain the minimum loss
in both the training and validation datasets, achieving the task of optimizing the weight
parameters of the model. Equation (7) lists the loss values obtained for a batch size of
land-use data after softmax function and cross-entropy loss calculation.

loss(b, c) = −1
b

b

∑
i=1

c

∑
j=1

yij log

(
ezi

/
c

∑
j=1

ezij

)
(7)

where b denotes the number of the LUSI, c denotes the number of categories of land-use
scenes, j denotes the true probability value of the i-th scene data label (if the true category
of the i-th scene data label is equal to j then, yij is equal to 1, otherwise 0), and yij denotes
the predicted probability that the i-th scene image data belongs to category j-th.

5. Results
5.1. Experimental Conditions
5.1.1. Platform Settings

To verify the outstanding performance of our proposed method in the LUSC task,
we used Python3.7 language to build the HFCC-Net network framework under Pytorch
framework, and fully trained on a Windows 10 operating system using each of the four
classification datasets talked about in Section 3 to verify the advancement of HFCC-Net.
Specifically, we use NVIDIA GPU acceleration during the training process to increase the
speed of model training and inference. The specific environment configuration is shown in
Table 3 below:

Table 3. Parameters for the platforms.

Platforms Parameters

Hardware

Processor Intel(R) Xeon(R) W-2245 CPU
RAM 128 GB

Graphics card NVIDIA RTX A6000
Memory 48 GB

Software
Operating system Windows 10

Operational environment Python 3.7
Deep learning framework Pytorch

5.1.2. Training Details

To facilitate the comparison and analysis of the classification performance of HFCC-
Net, we randomly selected 20%, 50%, and 80% of the four datasets as the training data,
and the corresponding 80%, 50%, and 20% of the data as the test data, respectively. When
inputting the data into the HFCC-Net model, we set the size of the images to 224 × 224, and
the number of images inputted in each batch was set to 64, and each dataset was trained
five times, with 200 rounds each time, and the mean and standard deviation of SCA were
counted.

In the training process, we choose the cross-entropy loss function to describe the
difference between the image category results predicted by HFCC-Net and the real image
categories; in order to effectively deal with the gradient noise and non-smoothness in the
learning process, we used Adam’s algorithm to update the parameters of the HFCC-Net
network. In addition, for speeding up the convergence speed while avoiding overfitting,
the learning rate takes the value of 0.0001 and the weight decay coefficient takes the value
of 0.0005.
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5.2. Experimental Results
5.2.1. Results on the RSSCN

Table 4 shows the SCA obtained by 10 different algorithms trained on the RSSCN
dataset. In order to achieve the best classification results, we set the structural parameters of
HFCC-Net, i.e., j takes the value of 2, λ takes the value of 1, dincaps takes the value of 32, and
doutcaps takes the value of 64. The experimental data obtained show that when 50% of the
training data are used for learning, HFCC-Net can achieve 95.30% of the average accuracy
for 50% of the test data; when 20% of the training data are used for learning, HFCC-Net
can achieve 93.61% of the average accuracy for 80% of the test data. Comparing the SCA
values under similar experimental conditions, it can be seen that the SCAs obtained by
HFCC-Net with different training data are all significantly competitive. Specifically, the
average accuracy using HFCC-Net is improved by 0.66 compared with the method [51]
that only fuses different DSFMs, and the SCA of HFCC-Net is relatively high when LUSI is
used for training with relatively less data compared to the method that enhances DSFMs
with attentional mechanisms [52].

Table 4. SCA on the RSSCN.

Practical Method
Classification Results (SCA, %)

50% for Training 20% for Training

GoogleNet [29] 85.84 ± 0.92 82.55 ± 1.11
Two-stage fusion [36] 92.37 ± 0.72 -

VGG-VD-16 [29] 87.18 ± 0.94 83.98 ± 0.87
TEX-Net-LF [34] 94.00 ± 0.55 92.45 ± 0.45

Dual-attention [35] 93.25 ± 0.28 91.07 ± 0.65
CaffeNet [29] 88.25 ± 0.62 85.57 ± 0.95

Deep filter banks [37] 90.40 ± 0.60 -
LCNN-BFF [51] 94.64 ± 0.21 -

EfficientNetB3-Attn-2 [52] 96.17 ± 0.23 93.30 ± 0.19
EfficientNetB3-Basic [52] 94.39 ± 0.10 92.06 ± 0.39

HFCC-Net 95.30 ± 0.24 93.61 ± 0.47

To further analyze the ability of HFCC-Net to classify images of each category, we
utilize the best model obtained from training data of the RSSCN to classify the test data
and view the misclassification between images of each category.

Figure 9a shows the image category misclassification obtained by classifying the test
data with a 50% share of the data using the best model obtained after training in the
data with a 50% share of the data. Among the seven image categories of the RSSCN, the
most accurately classified category is ‘Forest’, which has a classification probability of
0.96; ‘Industry’ and ‘parking’ because of their similar structure. ‘Industry’ is classified
with a probability of 0.88 because of its similar structure; however, the average probability
of the overall classification accuracy of the images in the other categories is greater than
0.90; Figure 9b illustrates the best model obtained by using the model trained on 20% of
the test data, and the best model obtained by using the model trained on 80% of the test
data. The most accurately classified category is ‘Forest’, with a probability of accuracy
of 1. ‘Grass’ and ‘Field’ have similar structure, which causes the model to classify ‘Grass’
as grass, however, the average probability of other categories of images being classified
accurately is greater than 0.95, which also proves the sophistication of our method.
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5.2.2. Results on the SIRI

Table 5 shows the SCA obtained by 11 different algorithms trained on the SIRI dataset.
In order to achieve the best classification results, we set the structural parameters of HFCC-
Net, i.e., j takes the value of 2, λ takes the value of 1, dincaps takes the value of 32, and doutcaps
takes the value of 64. While using 50% of the training data for learning, HFCC-Net can
achieve an average accuracy of 96.72% with 50% of the testing data; comparing the values
of SCA, it can be seen that our method has higher accuracy under similar experimental
conditions. e.g., 0.97 improvement over the average accuracy obtained by using the Siamese
ResNet-50 [33], 2.35 improvement over the average accuracy obtained with the Siamese
CapsNet [25], etc. When learning with 80% of the training data, HFCC-Net can achieve
an average accuracy of 97.78% with 20% of the test data. Similarly, our method achieves
better classification results, e.g., 0.28 improvement in average accuracy over the Siamese
ResNet-50 [33], 0.79 improvement in average accuracy over the Siamese CapsNet [25], and
better SCA for HFCC-Net compared to the state-of-the-art methods [53,54].

Table 5. SCA on the SIRI.

Practical Method
Classification Results (SCA, %)

50% for Training 80% for Training

ResNet-50 [25] 94.67 95.63
AlexNet [25] 82.50 88.33
VGG-16 [25] 94.42 96.25

Fine-tuning MobileNetV2 [32] 95.77 ± 0.16 96.21 ± 0.31
Siamese ResNet-50 [33] 95.75 97.50
Siamese AlexNet [33] 83.25 88.96
Siamese VGG-16 [33] 94.50 97.30
Siamese CapsNet [25] 94.37 96.99

DenseNet + DenseNet [54] - 96.37
DenseNet + VGG-16 [54] - 94.16

MSAA-Net [53] - 95.21 ± 0.65

HFCC-Net 96.72 ± 0.43 97.78 ± 0.41

Figure 10a shows the misclassification of image categories obtained by classifying the
test data with a 50% share of the data using the best model obtained after training in the
data with a 50% share of the data. Among the 12 image categories of the SIRI, the most
accurately classified are “Overpass” and “residential”, whose classification probability is 1;
the average probability of overall classification accuracy for all categories of images is not
less than 0.92; Figure 9b shows the average probability of overall classification accuracy
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for all categories, 0.92; Figure 10b shows the image category misclassification obtained by
classifying 20% of the test data using the best model obtained after training on 80% of the
data. The most accurately classified categories are “idle_land”, “industrial”, “overpass”,
“park”, “pond”, “residential” and “water”, the probability of accuracy is 1; the average
probability of an image being accurately classified for all categories is not less than 0.93.
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5.2.3. Results on the UCM

Table 6 shows the SCA obtained by 12 different algorithms trained on the UCM dataset.
To achieve the best classification results, we set the structural parameters of HFCC-Net, i.e.,
j takes the value of 2, λ takes the value of 1, dincaps takes the value of 32, and doutcaps takes
the value of 64. The experimental data obtained show that when using 50% of the training
data for learning, HFCC-Net in 50% of the test data can achieve an average accuracy
of 98.38%; a comparison of the values of SCA shows that under similar experimental
conditions, our method has a higher SCA, e.g., an increase of 0.79 over the average accuracy
obtained using Inception-v3-CapsNet [16] and the average accuracy improvement over
the average accuracy obtained using VGG-16-CapsNet [16] is 3.05. When learning with
80% of the training data, HFCC-Net achieves 99.20% with 20% of the test data; similarly,
our method improves the average accuracy over Inception-v3-CapsNet [16] by 0.15, and
over VGG-16-CapsNet [16] by average accuracy by 0.39. In addition, HFCC-Net is more
competitive compared to state-of-the-art methods [51,52] in classification.

Table 6. SCA on the UCM.

Practical Method
Classification Results (SCA, %)

50% for Training 80% for Training

VGG-VD-16 [29] 94.14 ± 0.69 95.21 ± 1.20
GoogLeNet [29] 92.70 ± 0.60 94.31 ± 0.89

GBNET [30] 95.71 ± 0.19 96.90 ± 0.23
GBNET+Global feature [30] 97.05 ± 0.19 98.57 ± 0.48

CaffeNet [29] 93.98 ± 0.67 95.02 ± 0.81
Two-stream fusion [31] 96.97 ± 0.75 98.02 ± 1.03
ARCNET-VGG16 [38] 96.81 ± 0.14 99.12 ± 0.40

Inception-v3-CapsNet [16] 97.59 ± 0.16 99.05 ± 0.24
LCNN-BFF [51] - 99.29 ± 0.24

EfficientNetB3-Attn-2 [52] 97.90 ± 0.36 99.21 ± 0.22
EfficientNetB3-Basic [52] 97.63 ± 0.06 98.73 ± 0.20

VGG-16-CapsNet [16] 95.33 ± 0.18 98.81 ± 0.22

HFCC-Net 98.38 ± 0.18 99.20 ± 0.46
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The best model obtained using the training data of the UCM was utilized to classify
the test data and to see the misclassification between each category of images. Figure 11a
shows the misclassification of image categories obtained by classifying the test data with a
50% share of the data using the best model obtained after training in the data with a 50%
share of the data. Among the 21 image categories of the UCM, “baseball diamond”, “build-
ings”, “dense residential”, “golf course”, “intersection”, “medium residential”, “sparse
residential”, and “storage tanks” are accurately classified with a probability close to 1,
while the other categories are classified with a probability of 1. Figure 11b shows the best
model obtained using the data trained on 80% of the data. Figure 11b shows the image
category misclassification obtained by classifying the test data with 20% of the data using
the best model obtained after training on 80% of the data. The probability of accurately
classifying “buildings” and “intersection” is close to 1, while the probability of classifying
the other categories is 1.
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5.2.4. Results on the OPTIMAL

Table 7 shows the SCA obtained by 13 different algorithms trained on the OPTIMAL
dataset. To achieve the best classification results, we set the structural parameters of HFCC-
Net, i.e., j takes the value of 2, λ takes the value of 0.2, dincaps takes the value of 32, and
doutcaps takes the value of 64. The obtained experimental data show that HFCC-Net can
achieve an average accuracy of 94.80% with 20% of the test data when learning with 80% of
the training data. Comparing the values of SCA, it can be seen that under similar experi-
mental conditions, our method has a higher SCA, e.g., HFCC-Net improves the average
accuracy by 1.43 over the average accuracy obtained by SopNet-GCN-ResNet50 [39], and
1.25 over the average accuracy obtained by using SopNet-GCN-ResNet50 [39], and even
reaches the level of a CNN-based state-of-the-art method [52].

Using the best model obtained from the training data of the OPTIMAL, we classify
the test data and see the misclassification between each category of images. Figure 12
shows the misclassification of image categories obtained by using the best model obtained
after training in the data with a share of 80% to classify the test data with a share of 20%.
Among the 31 image categories of the OPTIMAL, “intersection” and “commercial area”
have a similar structure, resulting in some “intersection” being classified as “commercial
area”; “mountain” and “desert” have similar structures, resulting in some “mountain”
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being classified as “desert”; “railway” and “runway” have similar structures, resulting
in some “railway” being classified as “runway”. Surprisingly enough, the probability of
classification for the other 28 categories is close to 1.

Table 7. SCA on the OPTIMAL.

Practical Method
Classification Results (SCA, %)

80% for Training

Fine-tuning VGGNet16 [29] 87.45 ± 0.45
Fine-tuning GoogLeNet [29] 82.57 ± 0.12

GBNET [30] 91.40 ± 0.27
GBNET+Global feature [30] 93.28 ± 0.27

Fine-tuning AlexNet [38] 81.22 ± 0.19
VGG-VD-16 [29] 87.45 ± 0.45

ARCNET-ResNet34 [38] 91.28 ± 0.45
ARCNET-VGGNet16 [38] 92.70 ± 0.35
ARCNET-AlEXNET [38] 85.75 ± 0.35

SopNet-GCN-ResNet50 [39] 93.37 ± 0.68
SopNet-GAT-ResNet50 [39] 93.55 ± 0.74
EfficientNetB3-Attn-2 [52] 95.86 ± 0.22
EfficientNetB3-Basic [52] 94.76 ± 0.26

HFCC-Net 94.80 ± 0.89
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5.3. Discussion
5.3.1. Combinatorial Patterns of DSFMs

As can be seen from Figure 2, the SSFMs of the lower branch of HFCC-Net are obtained
by inputting the deep semantic features of the upper branch into the graph routing-based
CapsNet. In order to further verify the outstanding contribution of our selected DSFMs
to the classification performance of HFCC-Net, we conducted an ablation study on the
inputs of the lower-branch CapsNet. The specific idea is to select one, two, three, and four
feature maps as the input feature maps of the lower branch. Considering that the increasing
number of convolutional layers tends to cause layer-by-layer loss of image information and
that the current CapsNet is more suitable for small-size image features, we focus on the
middle- and high-level features of the upper branch when selecting semantic feature maps.
The specific input feature maps are shown in Table 8.

Table 8. Input feature maps for the lower branch.

Total DSFMs Discriminative Feature Maps

1 F(4)
cnn

Z1 = fw(F(1)
cnn)⊕ (λ · fcap(F(4)

cnn))

2 F(4)
cnn,F(3)

cnn
Z2 = fw(F(1)

cnn)⊕ (λ · fcap(F(4)
cnn, F(3)

cnn))

3 F(4)
cnn, F(3)

cnn, F(2)
cnn

Z3 = fw(F(1)
cnn)⊕ (λ · fcap(F(4)

cnn, F(3)
cnn, F(2)

cnn))

4 F(4)
cnn, F(3)

cnn, F(2)
cnn, F(1)

cnn Z4 = fw(F(1)
cnn)⊕ (λ · fcap(F(4)

cnn, F(3)
cnn, F(2)

cnn, F(1)
cnn))

Under the premise that other experimental conditions remain unchanged, we utilized
four kinds of the LUSI to start training separately. Based on the experience, the value of
λ is tentatively set to 1. By selecting the best training model under the four inputs, we
performed classification prediction on the test data, and obtained the accuracy of HFCC-Net
for the four datasets under four different inputs of DSFMs. As shown in Figure 13, when
the input method of j = 2, better classification results can be obtained.
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5.3.2. Control Coefficient for Dual-Branch Feature Fusion

There are three main fusion methods for DSFMs: one is to splice different convolutional
feature maps in channel dimension; one is to add different convolutional feature maps
element-by-element; and one is to multiply two convolutional feature maps element-by-
element. After extensive experiments using HFCC-Net in different fusion ways, we find
that the element-by-element summation has an important contribution to the classification
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of the model. In addition, in order to speed up the network convergence and maximize the
advantages of the DSFM and SSFM, we discuss the performance of the HFCC-Net model
with different fusion control coefficients.

When performing the fusion of the corresponding elements of discriminative feature
maps, considering that the SSFMs are special and the values of the elements are large
relative to the DSFMs, we discuss how the different control coefficients λ of all the elements
of the SSFMs affect the fusion effect. Specifically, the discussion process is divided into
two steps: first the order of magnitude of λ is determined, in accordance with the multiples
of 10 to deflate, and we found that when the control coefficient takes 1, a higher classification
accuracy can be obtained; and then we determined more specific control coefficients, and
following with the law of the equivariant series, we chose to carry out experiments on the
three special values of 0.8, 0.5, and 0.2.

The optimal fusion control coefficients for HFCC-Net differ across the four datasets
because of the variability in the image content of the land-use scenes and because of
the differences in the amount of data in the categories of the scene images. Under the
premise that other experimental conditions remain unchanged, the SCA we obtained on the
predicted datasets of the four datasets are shown in Figure 14, which shows that when λ
takes the value of 1, the effect of feature map fusion can promote HFCC-Net to achieve the
better classification performance on the RSSCN, SIRI, and UCM datasets; when the value is
taken as 0.2, the effect of feature map fusion is more suitable for the OPTIMAL dataset.
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5.3.3. Input and Output Dimensions of Capsules

A capsule is the basic unit of CapsNet, similar to a neuron, which is able to extract
richer feature representation. Specifically, each capsule represents a feature map, and
increasing the number of capsules increases the expressive power of the network, allowing
it to capture more details and complex feature maps. However, the increase also increases
the computational and storage overhead of the network. Too many capsules may cause
the network to overfit the training data, reducing its ability to generalize to new data. In
addition, if the number of capsules is not set properly, it may lead to training difficulties
such as gradient vanishing or gradient explosion.
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We have designed four different combinations of capsule sizes in HFCC-Net based
on the characteristics of the down-branch network and the input data. Specifically, the
dimensions of the input capsules dincaps are sequentially designed as 8, 16, 32, and 64, and
the dimensions of the output capsules doutcaps are correspondingly designed as 16, 32, 64,
and 128. Other conditions are kept unchanged, and the SCA of the HFCC-Net model is
obtained after training on four LUSI datasets as shown in Figure 15. It can be seen that
HFCC-Net can achieve a better classification performance when the dimension of the input
capsules dincaps is set to 32 and the dimension of the output capsules doutcaps is set to 64.

Remote Sens. 2023, 15, x FOR PEER REVIEW 24 of 28 
 

 

 

Figure 15. Results of SCA with various dimensions. 

5.3.4. Different Backbone Network Architecture 

The backbone network can capture local information such as spatial structure, 

texture, and edges of the input data, as well as higher-level semantic and contextual 

information, and the goodness of the backbone network is directly related to the 

performance and performance of the whole deep learning system. 

To analyze the goodness of the HFCC-Net backbone network, we conducted a 

comparative experiment. Specifically, we first selected two powerful feature extraction 

CNNs as the upper-branch backbone networks. The first time, we extracted the semantic 

features of the conv2_x and conv3_x layers using ResNet-50 [55], and used the two 

features as the input information of the HFCC-Net under-branch network; the second 

time, we extracted the semantic features of the conv3_256 and conv4_512 layers using 

VGG-16 [56], and used them as the HFCC-Net under-branch network’s inputs; other 

experimental conditions are kept constant, and our obtained SCAs on the four datasets 

are shown in Figure 16. It can be seen that compared with the two typical backbones, the 

upper branching network of HFCC-Net has a more obvious promotion effect on SCA. 

Similarly, we selected the most popular CapsNet as the lower-branch backbone network 

to compare and verify the feature extraction ability of the lower branch of HFCC-Net. 

Different from the method adopted by HFCC-Net, CapsNet [12] uses a dynamic routing 

mechanism as the information transfer method. We take (3)
cnnF  and 4

cnnF  of the Xception 

network as the input of CapsNet, and obtain the spatial structure features of the image 

through the dynamic routing mechanism. After the experiments, it can be seen that 

compared with CapsNet, the lower branch network of HFCC-Net promotes SCA more 

obviously in the LUSI datasets. 

Figure 15. Results of SCA with various dimensions.

5.3.4. Different Backbone Network Architecture

The backbone network can capture local information such as spatial structure, texture,
and edges of the input data, as well as higher-level semantic and contextual information,
and the goodness of the backbone network is directly related to the performance and
performance of the whole deep learning system.

To analyze the goodness of the HFCC-Net backbone network, we conducted a com-
parative experiment. Specifically, we first selected two powerful feature extraction CNNs
as the upper-branch backbone networks. The first time, we extracted the semantic features
of the conv2_x and conv3_x layers using ResNet-50 [55], and used the two features as the
input information of the HFCC-Net under-branch network; the second time, we extracted
the semantic features of the conv3_256 and conv4_512 layers using VGG-16 [56], and used
them as the HFCC-Net under-branch network’s inputs; other experimental conditions are
kept constant, and our obtained SCAs on the four datasets are shown in Figure 16. It can
be seen that compared with the two typical backbones, the upper branching network of
HFCC-Net has a more obvious promotion effect on SCA. Similarly, we selected the most
popular CapsNet as the lower-branch backbone network to compare and verify the feature
extraction ability of the lower branch of HFCC-Net. Different from the method adopted by
HFCC-Net, CapsNet [12] uses a dynamic routing mechanism as the information transfer
method. We take F(3)

cnn and F4
cnn of the Xception network as the input of CapsNet, and obtain

the spatial structure features of the image through the dynamic routing mechanism. After
the experiments, it can be seen that compared with CapsNet, the lower branch network of
HFCC-Net promotes SCA more obviously in the LUSI datasets.
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6. Conclusions

CNN-based techniques for the LUSC are techniques that have emerged in recent years,
which could autonomously learn information-rich features from the original pixels of RSI,
and automatically complete the classification with high accuracy. However, the pooling
layer of CNN leads to more data loss the more convolutional layers it has. Moreover,
CNN does not utilize the spatial structure features between individual objects in the image
content. Therefore, it is extremely challenging to improve the classification accuracy of CNN
for complex LUSI. CapsNet is a novel neural network that better captures the structural
relationships between the contents in an image through capsule units. To improve the
SCA of the LUSC and make up for the shortcomings of CNN methods, we propose a
dual-branch hybrid framework, HFCC-Net, which makes more complete use of the LUSI’s
global semantic and local structural information. DSFM of RSI is extracted by using the
transfer learning technique, SSFM is obtained by using the shallow DSFM as the input
of CapsNet, and the DFMs of the two branches are fused in turn by using the newly
designed fusion function and finally the DFMs are input into the classifier to obtain the
predictive probability of the LUSI. The experimental results on four public datasets prove
the effectiveness of HFCC-Net, and in future work, we plan to improve the CNN, such
as adding the attention mechanism, to further improve the classification accuracy of the
model.
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Abbreviations
The following abbreviations are used in this manuscript:

LUSC Land-use scene classification
RSI Remote sensing image
LUSI Land-use scene image
CNN Convolutional neural network
CapsNet Capsule network
DSFM Deep semantic feature map
SSFM Spatial structure feature map
DFM Discriminative feature map
GAP Global average pooling
FCL Fully connected layer
SCA Sence classification accuracy
CM Confusion matrix
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