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Abstract: Geohazards pose significant risks to communities and infrastructure, emphasizing the
need for accurate susceptibility assessments to guide land-use planning and hazard management.
This study presents a comprehensive method that combines Variable Weight Theory (VWT) with
Analytic Hierarchy Process (AHP) to assess geo-environment vulnerability based on susceptibility
to various geohazards. The method was applied to the Pearl River Delta in China, resulting in the
classification of areas into high vulnerability (5961.85 km2), medium vulnerability (19,227.93 km2),
low vulnerability (14,892.02 km2), and stable areas (1616.19 km2). The findings demonstrate improved
accuracy and reliability compared to using AHP alone. ROC curve analysis confirms the enhanced
performance of the integrated method, highlighting its effectiveness in discerning susceptibility levels
and making informed decisions in hazard preparedness and risk reduction. Additionally, this study
assessed the risks posed by geohazards to critical infrastructures, roads, and artificial surfaces, while
discussing prevention strategies. However, this study acknowledges certain limitations, including
the subjective determination of its judgment matrix and data constraints. Future research could
explore the integration of alternative methods to enhance the objectivity of factor weighting. In
practical applications, this study contributes to the understanding of geo-environment vulnerability
assessments, providing insight into the intricate interplay among geological processes, human
activities, and disaster resilience.
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1. Introduction

Geohazards encompass a range of geological processes occurring on the Earth’s sur-
face influenced by interactions among the atmosphere, hydrosphere, and biosphere [1].
Geohazards, notably landslides and debris flows, have caused significant human casualties
and property losses, reaching billions of dollars [2,3]. Improving geohazard risk manage-
ment is a crucial global effort aimed at mitigating the consequences of geohazards [4].
Geo-environment vulnerability assessment is an effective tool for enhancing disaster man-
agement. It can assess susceptibility to various geohazards, offering proactive strategies for
disaster reduction. Consequently, it can contribute significantly to promoting symbiosis
and sustainable development between humanity and the natural environment.

Vulnerability stands as a metric extensively harnessed in the fields of climate change,
resource environments, and ecosystems [5–11]. Due to variations in research subjects and
disciplinary perspectives, the definition of vulnerability can vary significantly among disci-
plines [12]. Initially introduced by Margat (1968) [13] in a study on groundwater pollution
susceptibility, vulnerability is defined as the ability of groundwater to resist contamina-
tion based on hydrogeological conditions. Timmerman (1981) [14] defined vulnerability
from the perspective of climate change as the degree to which a system responds unfa-
vorably when subjected to damage. Smit et al. (1999) [15], at the scale of global change,
described vulnerability as the extent to which a system is susceptible to harm or injury.

Remote Sens. 2023, 15, 5007. https://doi.org/10.3390/rs15205007 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs15205007
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://doi.org/10.3390/rs15205007
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs15205007?type=check_update&version=2


Remote Sens. 2023, 15, 5007 2 of 34

Research in the field of geo-environment vulnerability remains limited, leading to a lack of
a universal definition for geo-environment vulnerability. In this study, geo-environment
vulnerability is considered the capacity of a geo-environmental system to autonomously
regulate and reinstate its structure and functionality amid external disruptions [16]. The
magnitude of geo-environment vulnerability depends on the components and configu-
ration of the system, intertwined with the nature and intensity of external perturbations.
When the intensity of external disturbances surpasses the system’s self-regulatory capac-
ities, latent geo-environment vulnerability transforms into geo-environmental issues or
geohazards [17]. Consequently, the susceptibility status of geohazards can characterize
geo-environment vulnerability [17]. The impact and duration of geohazards vary, occurring
in isolation or conjunction. Thus, conducting vulnerability assessments based on a range
of geohazards is essential, rather than relying on the susceptibility to a single type of
geohazard [18,19].

Advancements in remote sensing (RS) technology and geographic information sys-
tems (GIS) have contributed to the maturity of geo-environment vulnerability assess-
ment techniques. Ma et al. (2019) [17] assessed the geo-environment vulnerability of Bei-
hai, China, based on the susceptibility to landslides, collapses, and sea water intrusion.
Ma et al. (2020) [20] assessed the geo-environmental risk in Zhengzhou, China, considering
regional crustal stability and 11 types of geohazards and progressive geo-environmental
issues. Chang et al. (2022) [21] researched the susceptibility of landslides, collapses, ground
subsidence, and debris flows, proposing a multi-hazard vulnerability assessment method.
Li et al. (2023) [22] developed an assessment framework for the ecological geo-environment
vulnerability of arid and semi-arid cities, focusing on land desertification, soil erosion, and
landslides. While these studies have made progress, there is currently no unified quantita-
tive scoring standard, and research on geo-environment vulnerability assessment in large
urban clusters is limited [23]. These limitations hinder the ability to balance socio-economic
development and effective decision-making for geohazard prevention and control.

Multiple methods exist for assessing susceptibility to geohazards, classified into the
following four primary categories: process-based modeling methods, statistical methods,
machine learning methods, and knowledge-driven methods [24]. Process-based model-
ing methods simulate the occurrence processes of geohazards, grounded in physical or
mathematical principles and capable of delivering precise susceptibility predictions [25].
However, their applicability to regional-scale studies is limited due to the substantial re-
quirements of detailed field data and extensive computational simulations [26]. Statistical
methods, such as Frequency Ratio (FR) [27], Logistic Regression (LR) [28], and Weight of
Evidence (WoE) [29], rely on extensive data and statistical analysis, with result accuracy
closely associated with statistical assumptions [26]. Machine learning methods, such as
Support Vector Machine (SVM) [30], Random Forest (RF) [31], and Artificial Neural Net-
work (ANN) [32], manage multidimensional data and complex linear relationships but
may face challenges related to interpretability and data quality [26,33]. Knowledge-driven
methods are flexible approaches relying on the judgment of decision-makers or experts
based on their knowledge and experience, offering high decision-making efficiency and
effectiveness [34]. These methods are adaptable to various spatial and temporal scales
and suitable for a wide range of applications. They are particularly valuable when data is
limited or unavailable, allowing for assessments even in data-scarce scenarios [35].

Multi-Criteria Decision Analysis (MCDA) is a fundamental knowledge-driven method,
recognized as an essential tool for environmental decision-making, enabling the visualiza-
tion and resolution of competitive decision problems [36–39]. By integrating qualitative
and quantitative criteria, MCDA has become a cornerstone in integrated problem-solving
solutions [40]. Among the suite of MCDA techniques, the Analytic Hierarchy Process
(AHP) emerges as a fitting choice for grappling with intricate issues [41]. AHP is a frame-
work that ascertains the relative significance of factors through pairwise comparisons and
expert assessments, harmonizing subjective and objective criteria [42,43]. This method
deconstructs complex problems into distinct factors, systematically arranging them in a
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hierarchical manner according to their interrelationships, yielding a multi-level analytical
structural model [44].

While AHP furnishes unchanging factor weights across varying conditions, the values
of these factors exhibit diversity amidst different circumstances. Consequently, AHP falls
short in capturing the dynamic fluctuations of factor weights within distinct contexts [45].
The core concept of the Variable Weight Theory (VWT) involves introducing a state-variable
weight vector while retaining the stability of factor weights. This theoretical framework
comprises three distinctive modes: penalization-based, incentive-based, and a hybrid form
combining both penalization and incentive elements [46]. This method guarantees the flexi-
bility of weight adjustments in alignment with varying factor values and specific contextual
circumstances, thereby presenting an effective resolution to these complexities [47].

China is significantly impacted by global geohazards, evident from the mounting in-
tensity and frequency of such incidents [48]. In recent times, driven by rapid socio-economic
growth and urbanization, the Pearl River Delta, as one of the largest urban clusters in China,
has experienced an expansion in geological environmental development and utilization.
Characterized by intricate tectonics, extensive karst landscapes, and widespread Quater-
nary deposits, the area faces natural catastrophes including landslides, collapses, and debris
flows, resulting in substantial economic losses [49–52]. Data from the Guangdong Province
Disaster Prevention and Reduction Yearbook [53] show that between 1994 and 2009, geo-
hazards caused 276 fatalities, 534 injuries, and economic losses totaling 256.48 million US
dollars. Research on the geo-environment vulnerability in the Pearl River Delta primarily
focuses on two aspects: geological environmental status assessments and single geohazard
susceptibility assessments. Zeng and Liu (2015) [54] conducted an investigation into key
geo-environmental issues in the Pearl River Delta, including ground subsidence, sea water
intrusion, and waste pollution. The study identified rising sea levels, human activities, and
extreme weather events as the primary triggering factors for geohazards. In a separate
study, Zhang et al. (2019) [55] employed the AHP method to assess landslide susceptibility.
Dou et al. (2008) [56] introduced an innovative automated detection method for karst
collapse based on image analysis. Liu et al. (2023) [57] conducted ground subsidence mod-
eling and assessment using remote sensing imagery and geological data. Furthermore, Lin
et al. (2019) [58] employed an integrated Bayesian model for modeling sea water intrusion.
Presently, there exists a notable dearth of comprehensive assessments regarding geological
environmental vulnerability. Given the presence of geohazards, such as landslides, debris
flows, ground subsidence, and karst collapses, the assessment of geo-environment vulnera-
bility based on susceptibility to multiple geohazards is crucial for effective prevention and
mitigation, ensuring human safety and protecting valuable assets.

Using the AHP method, this study partitioned geo-environment vulnerability into
discrete dimensions: landslide and collapse susceptibility, debris flow susceptibility, karst
collapse susceptibility, ground subsidence susceptibility, soil erosion susceptibility, and
sea water intrusion susceptibility. Comprehensive assessment indicators and classifica-
tion criteria were delineated for each dimension. Judgment matrices were formulated to
establish constant weights of individual indicators. Moreover, a “penalization-incentive”
variant of the VWT was adeptly utilized to dynamically adjust the weights of these indica-
tors. By assessing the susceptibility to distinct geohazards, the methodology subsequently
defined distinct zones of geo-environment vulnerability. Based on the assessment results
and in conjunction with the distribution of land use/land cover (LULC), road, and critical
infrastructure, the impact of geohazard susceptibility and geo-environment vulnerability
on urban development was discussed. The specific research objectives are as follows:

1. Propose a multi-hazard geological disaster susceptibility assessment system using the
VWT-AHP method.

2. Analyze the geo-environment vulnerability in the Pearl River Delta.
3. Provide recommendations for LULC, road, and critical infrastructure planning.
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The implications of the findings from this assessment hold substantial pertinence
for local governing bodies, providing invaluable insights for the formulation of land use
planning and strategies for industrial development.

2. Study Area

Situated in the central-southern expanse of Guangdong Province, China, the Pearl
River Delta shares its borders with the South China Sea. Geographically, it spans longitudi-
nally from approximately 112◦0′E to 115◦24′E and latitudinally from 21◦43′N to 23◦56′N,
encompassing a land area of 41,698 km2. The region’s topography features a central lowland
and elevations that ascend in the northwest and east (Figure 1b). A dominant landform is
the alluvial plain, with low mountains, hills, and tablelands distributed across the western,
northern, and eastern sectors (Figure 1a). The region’s hydrology is extensive, characterized
by river systems such as the Xi River and Dong River, which emanate from mountainous
terrains and discharge into the South China Sea. The climatic conditions prevailing in
this study area are warm and humid, with an average annual temperature of 21.9 ◦C.
Monsoonal influences lead to pronounced temporal and spatial variations in precipitation,
with a concentrated peak during the summer months. The yearly average precipitation
amounts to approximately 1600 mm, with certain mountainous locales experiencing levels
ranging from 2000 mm to 2600 mm (Figure 1c).
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The study area exhibits a comprehensive and diverse development of geological
strata, with extensive distribution patterns. Encompassing a broad spectrum, geological
formations range from the ancient, highly metamorphosed rocks of the Mesoproterozoic era
to the more recent loose clastic sediments of the Quaternary period. Geological dynamics in
this region are primarily characterized by significant, episodic fluctuations in elevation and
subsidence, accompanied by differential block movements. The demarcation of boundaries
is predominantly dictated by fault lines, while the internal structure is further influenced
by the intersection of secondary faults oriented in various directions. Drawing from the
attributes, origins, and structural traits of lithological entities, the geological compositions
in the study area are classified into six primary categories: unconsolidated soil, intrusive
rocks, volcanic rocks, metamorphic rocks, clastic rocks and carbonate rocks (Figure 2).
Groundwater predominantly exists within the interstices of loose sediments, fractures
within carbonate rocks, and fissures in bedrock.
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3. Methods and Materials
3.1. Technical Route

In this study, the assessment of landslide and collapse susceptibility, debris flow
susceptibility, karst collapse susceptibility, ground subsidence susceptibility, soil erosion
susceptibility, and sea water intrusion susceptibility was carried out utilizing the VWT-AHP
method. Furthermore, the assessment of geo-environment vulnerability was conducted by
drawing parallels with the principle of the “barrel effect”. Based on the assessment results
and considering the distribution of LULC, road construction, and critical infrastructure,
recommendations for geohazard prevention and mitigation were provided. The flowchart
for this study is depicted in Figure 3.
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3.2. Database
3.2.1. Geo-Hazard Inventory

The geological environmental challenges in the study area are predominantly char-
acterized by occurrences of collapses, landslides, debris flows, karst collapses, ground
subsidence, and soil erosion, showcasing a widespread distribution (Figure 4). As of 2020,
there are 83 locations with landslides and collapses posing a threat to over 100 people,
23 locations with debris flows endangering more than 100 people, and 97 locations expe-
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riencing karst collapses. Ground subsidence exceeding 10 cm has been documented in
65 locations. Soil erosion takes the form of a fragmented distribution within the research
zone, covering 1.76% of the total study area. Employing a criterion of Total Dissolved Solids
(TDS) exceeding 1 g/L, the Pearl River Estuary region experiences a discernible degree of
seawater intrusion, affecting approximately 10.87% of the total area. The distribution map
of geohazards was provided by the Guangdong Geological Survey Institute.
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3.2.2. Assessment Indicators

In this study, a total of 34 factors were selected for assessing the susceptibility to six
types of geohazards. Details regarding the data types, resolutions, temporal coverages, and
sources of these factors are detailed in Table 1.

Table 1. Data types, resolutions, temporal coverages, and sources of all indicators.

Geohazard
Susceptibility Assessment Indicator Data Type Resolution Temporal

Coverage Source

Landslide and
collapse (A1)

Elevation (B11) TIFF 30 m × 30 m / Geospatial Data Cloud [59]
Slope (B12) TIFF 30 m × 30 m / /

Lithology (B13) Shapefile (Polygon) / / Guangdong Geological
Survey Institute

Topography (B14) Shapefile (Polygon) / / Guangdong Geological
Survey Institute

Distance to fault (B15) Shapefile (Polygon) / / Guangdong Geological
Survey Institute

Distance to river (B16) Shapefile (Polygon) / 2020 Google Earth

Precipitation (B17) Shapefile (Polygon) / 2020 Guangdong Geological
Survey Institute



Remote Sens. 2023, 15, 5007 8 of 34

Table 1. Cont.

Geohazard
Susceptibility Assessment Indicator Data Type Resolution Temporal

Coverage Source

Debris flow (A2)

Elevation (B21) TIFF 30 m × 30 m / Geospatial Data Cloud [59]
Slope (B22) TIFF 30 m × 30 m / /

Lithology (B23) Shapefile (Polygon) / / Guangdong Geological
Survey Institute

Topography (B24) Shapefile (Polygon) / / Guangdong Geological
Survey Institute

Distance to fault (B25) Shapefile (Polygon) / / Guangdong Geological
Survey Institute

Distance to river (B26) Shapefile (Polygon) / 2020 Google Earth
Distance to landslide and

collapse (B27) Shapefile (Polygon) / / Guangdong Geological
Survey Institute

Precipitation(B28) Shapefile (Polygon) / 2020 Guangdong Geological
Survey Institute

Karst collapse (A3)

Lithology (B31) Shapefile (Polygon) / / Guangdong Geological
Survey Institute

Degree of karst
development (B32) Shapefile (Polygon) / / Guangdong Geological

Survey Institute
Thickness of overlying

layer (B33) Shapefile (Polygon) / / Guangdong Geological
Survey Institute

Water yield property (B34) Shapefile (Polygon) / 2020 Guangdong Geological
Survey Institute

Distance to fault (B35) Shapefile (Polygon) / / Guangdong Geological
Survey Institute

Ground
subsidence (A4)

Thickness of soft soil
layer (B41) Shapefile (Polygon) / / Guangdong Geological

Survey Institute

Age of soft soil layer (B42) Shapefile (Polygon) / / Guangdong Geological
Survey Institute

Water yield property (B43) Shapefile (Polygon) / 2020 Guangdong Geological
Survey Institute

Distance to fault (B44) Shapefile (Polygon) / / Guangdong Geological
Survey Institute

Soil erosion (A5)

Slope (B51) TIFF 30 m × 30 m / /

Topography (B52) Shapefile (Polygon) / / Guangdong Geological
Survey Institute

Type of vegetation (B53) Shapefile (Polygon) / 2020 Guangdong Geological
Survey Institute

Type of soil (B54) Shapefile (Polygon) / 2020 Soil Science Database [60]
Distance to river (B55) Shapefile (Polygon) / 2020 Google Earth

Precipitation (B56) Shapefile (Polygon) / 2020 Guangdong Geological
Survey Institute

Sea water
intrusion (A6)

Topography (B61) Shapefile (Polygon) / / Guangdong Geological
Survey Institute

Type of Quaternary
sedimentary rock (B62) Shapefile (Polygon) / / Guangdong Geological

Survey Institute

Groundwater level (B63) TIFF 30 m × 30 m 2020 Guangdong Geological
Survey Institute

Precipitation (B64) Shapefile (Polygon) / 2020 Guangdong Geological
Survey Institute

Landslide and collapse susceptibility. Landslides refer to the downward movement of
rock and soil masses along weak surfaces under the influence of gravity, whereas collapses
involve the abrupt detachment of soil or rock masses from their parent materials, resulting in
vertical descent and potential rolling and accumulation along slopes. Numerous factors trigger
landslides and collapses, including heavy precipitation, lithology, seismic activity, geomorphic
processes, and human activities [61,62]. These events predominantly occur in mountainous
and valley regions, characterized by steep topography and significant elevation differences.
Steeper slopes with intense terrain incision are more prone to landslides and collapses due
to concentrated stress at steeper angles. Geological factors such as lithology and geological
structures play pivotal roles in landslides and collapses. Lithology serves as the fundamental
condition determining the possibility of these events, while geological structures influence the
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development of fractures within rocks. In regions marked by fault zones and the presence
of weak rocks, fissures within rocks lead to structural looseness, reduced shear strength, and
diminished resistance to weathering. Greater fissure development and rock fragmentation
heighten the likelihood of landslides and collapses. Precipitation is a critical triggering factor,
as water infiltrates through rock fractures, eroding and softening the material, promoting
further fissure expansion, weakening the mechanical strength of rocks, and simultaneously
eroding slope angles, thus forming precipitous faces. In this study, the selected assessment
indicators encompassed elevation, slope, lithology, topography, distance to fault, distance to
river, and precipitation [63–67]. Slope data was computed using ArcGIS 10.6 based on the
elevation data. River data was extracted from remote sensing images and the distance to river
was calculated using ArcGIS 10.6 with the Euclidean distance method.

Debris flow susceptibility. Debris flow entails the rapid surging of a mixture compris-
ing water, sediment, rocks, and soil on steep slopes, often triggered by heavy precipitation.
They exhibit high speeds, extended propagation distances, and significant destructive po-
tential [68–70]. In regions characterized by intense fissure development, active faulting, and
abundant landslides, fragmented rocks constitute the material basis for debris flow occurrence.
Precipitation plays a pivotal role as a triggering factor for mudflows, as intense precipita-
tion generates temporary surface runoff that provides the dynamic conditions for mudflow
initiation. Debris flows predominantly occur in steep mountainous terrain, where unstable
slopes are prone to landslides and collapses, facilitating the rapid accumulation of fragmented
rock masses. Debris flows frequently follow river valleys and ravines, which facilitate the
convergence of water flow and the transportation of eroded rock–soil material. For this
study, the chosen assessment indicators encompassed elevation, slope, lithology, topography,
distance to fault, distance to river, distance to landslide and collapse, and precipitation [71–74].
The distance to landslide and collapse was calculated using ArcGIS 10.6 with the Euclidean
distance method.

Karst collapse susceptibility. Karst collapse refers to the abrupt sinking and deformation
of loose rock–soil material overlaying soluble rock layers with well-developed karst cavities,
resulting from the collapse of the terrain. The presence of karst caves is a prerequisite for karst
collapse occurrences. The concentration of stress induced by surrounding rock dynamics on
the roofs and sidewalls of karst caves impairs their stability. The extent of karst formation,
the quantity, and dimensions of karst caves all contribute to heightened susceptibility to karst
collapses. Groundwater inflow augments the weight of the cave roof rock mass, coursing
through fractures to diminish shear resistance between adjacent rock segments and exacerbate
the erosion of soluble rock, thereby intensifying karst development. Greater fragmentation
of the soluble rock mass corresponds to more advanced fissuring, rendering it increasingly
susceptible to groundwater erosion. This study incorporated a range of assessment indicators
for karst collapse susceptibility, including lithology, degree of karst development, thickness of
overlying layer, water yield property, and distance to fault [31,75–77].

Ground subsidence susceptibility. Ground subsidence refers to the abrupt or gradual
downward movement of the Earth’s surface, primarily in the vertical dimension, with
minimal lateral shifts [78]. Ground subsidence is frequently instigated by excessive ground-
water extraction [79]. A fundamental prerequisite for ground subsidence is the presence
of an overlaying stratum of soft soil. The drainage of water from the soft soil results in
diminished pore water pressure and amplification of effective stress, leading to the consoli-
dation and densification of the soft soil layer. Crustal movements can also trigger ground
subsidence, typically manifesting at a comparably sluggish pace. In this study, the chosen
assessment indicators encompassed thickness of soft soil layer, age of soft soil layer, water
yield property, and distance to fault [80–83].

Soil erosion susceptibility. Soil erosion is the phenomenon in which soil particles
disperse, transport, and submerge under the influence of hydraulic processes and human
activities. Climate, topography, land cover, and land use conditions are pivotal factors
shaping soil erosion dynamics [84,85]. The physical structure of soil serves as the substrate
for soil erosion, with loosely compacted soil structures and reduced viscosity rendering
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it more susceptible to erosion caused by water and human actions. Precipitation-induced
surface runoff acts as a fundamental driving force behind soil erosion, with higher precipi-
tation intensities leading to increased runoff volumes and escalated erosion potential. Slope
gradient stands as a critical determinant in soil erosion resistance, as steeper slopes elevate
the propensity of soil mass movement due to gravitational forces, thereby intensifying
surface runoff and augmenting erosion risks. Vegetation plays a crucial role in intercepting
precipitation, thus mitigating surface runoff intensity. Root systems contribute to water
retention and soil compaction, thereby ameliorating the impact of soil erosion. In this
study, the selected assessment indicators for soil erosion susceptibility encompassed slope,
topography, type of vegetation, type of soil, distance to river, and precipitation [86–88].

Sea water intrusion susceptibility. Sea water intrusion pertains to the process whereby
freshwater aquifers undergo salinization due to both natural and human-induced fac-
tors [89]. The manifestation of sea water intrusion necessitates the fulfillment of two
conditions: the existence of hydraulic conduits and a disparity in hydraulic pressure within
the aquifer. In coastal aquifers characterized by porous or fractured substrates, as well
as those shaped by karst formations, sea water gains access to the groundwater system
through these pathways. As the hydraulic head of sea water surpasses that of the coastal
aquifer, driven by this hydraulic gradient, sea water infiltrates the groundwater reservoir
via hydraulic connections. The replenishment of groundwater, which potentially leads to
an increase in groundwater levels within coastal aquifers, can occur through mechanisms
like precipitation-induced infiltration. In this study, the chosen indicators for assessing sea
water intrusion susceptibility encompassed topography, type of Quaternary sedimentary
rock, groundwater level, and precipitation [90–93].

Each indicator has been assigned ratings of 0.1, 0.3, 0.7, and 0.9 across four ranges. In
cases where an indicator is categorized into three ranges, its ratings were adjusted to 0.1,
0.3, and 0.7. The delineation of factor ranges and assignment of ratings are derived from
previous studies [94–98]. The ranges and ratings of all indicators are presented in Table 2.
The distribution maps of all indicators are available in Figures 5–10.

Table 2. Ranges and ratings of all indicators.

Geohazard
Susceptibility

Assessment
Indicator

Rating

0.9 0.7 0.3 0.1

Landslide and
collapse (A1)

Elevation (B11) >400 m 200–400 m 80–200 m <80 m
Slope (B12) >20◦ 10◦–20◦ 5◦–10◦ <5◦

Lithology (B13)
Metamorphic rock;

clastic rock;
sand shale

Carbonate rock;
carbonate mudstone

Massive rock;
massive lava

Mucky soil;
cohesive soil

Topography (B14) Mountainous area;
hilly area (>200 m)

Hilly area (<200 m);
volcanic hilly area;
tableland (>20 m)

Tableland (10–20 m);
lacustrine plain

Tableland (<10 m);
beach; fluvial plain;
marine depositional

plain; delta plain
Distance to fault (B15) <2 km 2–4 km 4–6 km >6 km
Distance to river (B16) <0.5 km 0.5–1 km 1–1.5 km >1.5 km

Precipitation (B17) >2400 mm 2000–2400 mm 1600–2000 mm <1600 mm

Debris flow (A2)

Elevation (B21) >600 m 300–600 m 100–300 m <100 m
Slope (B22) >20◦ 10◦–20◦ 5◦–10◦ <5◦

Lithology (B23) Mucky soil;
cohesive soil

Metamorphic rock;
clastic rock;
sand shale

Carbonate rock;
carbonate mudstone

Massive rock;
massive lava

Topography (B24) Mountainous area;
hilly area (>200 m)

Hilly area (<200 m);
volcanic hilly area;
tableland (>20 m)

Tableland (10–20 m);
lacustrine plain

Tableland (<10 m);
beach; fluvial plain;
marine depositional

plain; delta plain
Distance to fault (B25) <2 km 2–4 km 4–6 km >6 km
Distance to river (B26) <0.5 km 0.5–1 km 1–1.5 km >1.5 km
Distance to landslide

and collapse (B27) <2 km 2–4 km 4–6 km >6 km

Precipitation(B28) >2400 mm 2000–2400 mm 1600–2000 mm <1600 mm
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Table 2. Cont.

Geohazard
Susceptibility

Assessment
Indicator

Rating

0.9 0.7 0.3 0.1

Karst collapse (A3)

Lithology (B31) / Carbonate rock
Argillaceous

limestone;
sandstone; basalt

Mudstone; shale;
silly slate

Degree of karst
development (B32) / Strong Moderate Poor

Thickness of
overlying layer (B33) / <10 m 10–20 m >20 m

Water yield
property (B34) / >1000 m3/d 100–1000 m3/d <100 m3/d

Distance to fault (B35) / <2 km 2–4 km >4 km

Ground
subsidence (A4)

Thickness of soft soil
layer (B41) / >20 m 10–20 m <10 m

Age of soft soil
layer (B42) /

Holocene alluvial
deposits; Holocene
residual deposits

Holocene
Dawanzhen

Formation; Holocene
Mugao Formation

Holocene Guizhou
Formation; Upper

Pleistocene deposits

Water yield
property (B43) / >1000 m3/d 100–1000 m3/d <100 m3/d

Distance to fault (B44) / <2 km 2–4 km >4 km

Soil erosion (A5)

Slope (B51) >20◦ 10◦–20◦ 5◦–10◦ <5◦

Topography (B52) Mountainous area;
hilly area (>200 m)

Hilly area (<200 m);
volcanic hilly area;
tableland (>20 m)

Tableland (10–20 m);
lacustrine plain

Tableland (<10 m);
beach; fluvial plain;
marine depositional

plain; delta plain

Type of
vegetation (B53)

Sandy land;
urban land Arable land

Grassland; economic
forest land;

protective forest land

Arbor land;
shrub land

Type of soil (B54) Latosolic red soil Alluvial soil Red soil Paddy soil
Distance to river (B55) <0.5 km 0.5–1 km 1–1.5 km >1.5 km

Precipitation (B56) >2400 mm 2000–2400 mm 1600–2000 mm <1600 mm

Sea water
intrusion (A6)

Topography (B61)

Tableland (<10 m);
beach; fluvial plain;
marine depositional

plain; delta plain

Tableland (10–20 m);
lacustrine plain

Hilly area (<200 m);
volcanic hilly area;
tableland (>20 m)

Mountainous area;
hilly area (>200 m)

Type of Quaternary
sedimentary

rock (B62)
Alluvial sandy clay Marine clay Proluvial clay Bedrock

Groundwater
level (B63) <−2 m −2–0 m 0–2 m >2 m

Precipitation (B64) <1600 mm 1600–2000 mm 2000–2400 mm >2400 mm

3.2.3. LULC, Road, and Critical Infrastructure

In the study area, there are 13 LULC types (Figure 11). Artificial surfaces are predom-
inantly found in urban areas, particularly in Guangzhou and Shenzhen. The area also
includes both paddy fields and dryland and economic crops mainly include banana, citrus,
and sugarcane. The mountainous areas exhibit significant variation in vegetation cover,
ranging from less than 30% to over 90%. The LULC data for the year 2020 was provided by
the Guangdong Geological Survey Institute.

The road network encompasses national highways, provincial roads, and railways,
while critical infrastructure comprises facilities related to education, energy, healthcare,
and water resources. All data was sourced from OSM (2023) [99].

3.3. Methods
3.3.1. Analytic Hierarchy Process

The AHP, introduced by Saaty (1980) [42], is known for its simplicity in principle
and dependable theoretical foundation. Abundant practical cases have demonstrated the
significant applicability of AHP in effectively addressing complex multi-objective com-
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petitive decision-making problems [100–104]. The AHP generally involves the following
three steps:

Step 1: Develop a multi-level hierarchical structure model.

The multi-level hierarchical structure elucidates the interplays among various con-
stituents within complex challenges [105]. Factors are categorized into distinct strata based
on their attributes, with each stratum subordinate to higher-level factors and capable of
influencing lower-level factors. The identification of factors primarily relies on existing
knowledge and expertise.
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Step 2: Conduct pairwise comparisons of factors and formulate judgment matrices.

Based on the assessments of decision-makers or experts, the relative importance of
factors is determined through pairwise comparisons. For these comparisons, a scale from 1
to 9 is used (Table 3). The judgment matrix A, derived from these pairwise comparisons, is
used to calculate the weights of each factor. Matrix A is represented in Equation (1). The
dimension n of the matrix corresponds to the number of factors.

A =

a11 · · · a1n
...

. . .
...

an1 · · · ann

 (1)
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Table 3. Pairwise comparison scale for AHP.

Scale 1 3 5 7 9

Importance Equal Moderate Strong Very strong Extreme

To reduce significant variations among the elements within the judgment matrix A,
a normalization procedure is applied to the matrix elements. The calculation method for
normalizing the elements within the matrix is outlined in Equation (2).

bij =
aij

∑n
i=1 aij

(2)

To calculate the eigenvector corresponding to the maximum eigenvalue, the average
of the row elements of the normalized matrix is calculated as described in Equation (3).

wi =
∑n

j=1 bij

n
(3)

The method for calculating the maximum eigenvalue is outlined in Equation (4).

λmax =
1
n∑n

i=1
(Aw)i

wi
(4)

Step 3: Determine factor weights and perform consistency checks.

The coherence of pairwise comparisons plays a pivotal role in influencing the pre-
cision of decisions made by evaluators. Improved coherence corresponds to more ac-
curate outcomes in these pairwise assessments. When coherence is found to be lacking,
a re-examination of the pairwise comparisons among factors becomes imperative. The
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procedure for computing the Consistency Index (CI), an indicator used to quantify the
consistency of the judgment matrix, is explained in Equation (5).

CI =
λmax − n

n− 1
(5)

To calculate the Consistency Ratio (CR), the first step involves establishing the Average
Random Consistency Index (RI), as guided by the values provided in Table 4.

Table 4. Average Random Consistency Index.

n 1 2 3 4 5 6 7 8 9 10

RI 0 0 0.52 0.89 1.11 1.24 1.35 1.40 1.45 1.49

The equation to calculate the CR, used for addressing inconsistencies, is provided by
Equation (6). A CR value less than or equal to 0.10 is considered acceptable for maintaining
a reasonable level of consistency.

CR =
CI
RI

(6)

3.3.2. Variable Weight Theory

In the context of the AHP, the conventional assumption assumes the constancy of
factor weights. However, in practical scenarios, factors with exceptionally high or low
values can significantly impact assessment outcomes. To address this issue, this study
introduces the VWT, a mechanism that dynamically adjusts the weights of factors based on
their values. This adaptation enhances the fidelity of assessment results in representing
complex real-world contexts.

The VWT, initially introduced by Wang (1985) [106], has garnered significant attention
and application across diverse fields [107–110]. This theory presents a framework that
establishes a linkage between weight vectors and state vectors, enabling the adaptation of
factor weights by shifts in decision states.

To better reflect the impact of extreme values on indicator weights, this study intro-
duces a “penalization-incentive” variant of the VWT. The definitions of the state variable
weight vector and the variable weight vector are provided, along with their corresponding
calculation methods presented in Equations (7) and (8), respectively.

si =



a−b
α−λ λln λ

xi
+ a xj ∈ (0, λ]

b−a
α−β xi +

aα−bλ
α−λ xj ∈ (λ, α]

a−b
2(α−λ)(β−α) (β− xi)

2 + c xj ∈ (α, β]

c xj ∈ (β, µ]

k(1− µ)ln 1−µ
1−xi

+ c xj ∈ (µ, 1)

(7)

w′i =
wisi

∑n
i=1 wisi

(8)

In Equations (7) and (8), the symbol xj represents the rating of the i-th indicator, si sig-
nifies the state variable weight vector corresponding to the i-th indicator, wi denotes the con-
stant weight vector associated with the i-th indicator, and wi’ indicates the variable weight
vector of the i-th indicator. The parameters are subject to the conditions 0 < λ < α < β < µ < 1
and 0 < c < b < a < 1. In this study, the parameter values were set as follows: λ = 0.2, α = 0.4,
β = 0.6, µ = 0.8, c = 0.2, b = 0.3, and a = 0.5 [111].

Finally, the Comprehensive Index (CPI) is determined by Equation (9).

CPI = ∑n
i=1 w′ixi (9)
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3.3.3. Assessment Unit Segmentation

The irregular polygon grid method was used to segment assessment units [112].
Specifically, for each geohazard, the distribution maps of all indicators were superimposed
using ArcGIS 10.6 to generate a susceptibility distribution map. Each closed polygon with
uniform ratings was treated as an individual assessment unit, thus eliminating rating incon-
sistencies within the same unit that could introduce errors. The irregular polygons formed
by overlaying the susceptibility distribution maps were considered as the assessment units
for geo-environment vulnerability assessment. The distribution maps of assessment units
are shown in Supplementary Figures S1–S7.

3.3.4. Weight Determination and Comprehensive Index Calculation

Utilizing the AHP method, the constant weights of each indicator were computed, and
the VWT was employed to determine the variable weights. Specifically, within each assessment
unit, the constant weights for each indicator remained fixed, while the variable weights were
dynamically adjusted based on the indicator’s rating and Equations (7) and (8).The judgment
matrices and the constant weights of each factor are presented in Supplementary Tables S1–S6.
The variable weights of each factor are presented in Supplementary Tables S7–S12.

The CPI for each assessment unit was calculated following Equation (9) and cate-
gorized [113,114]. Based on the classification results, high susceptibility areas, medium
susceptibility areas, low susceptibility areas, and stable areas were identified using the
Jenks Natural Breaks method [114].

3.3.5. Geo-Environment Vulnerability Assessment

The categorization of geo-environment vulnerability is determined based on the
principle of the “barrel effect”, considering the susceptibility to all geohazards. Specifically,
for each assessment unit, if a high susceptibility area is identified for any type of geohazard,
it is designated as a high geo-environment vulnerability area. Conversely, if a medium
susceptibility area exists for any geohazard, it is classified as a medium geo-environment
vulnerability area. In cases where neither high nor medium susceptibility areas are present
for any geohazard, and a low susceptibility area is detected, it is categorized as a low
geo-environment vulnerability area. Otherwise, it is classified as a stable area.

4. Results and Discussion
4.1. Geohazard Susceptibility
4.1.1. Landslide and Collapse Susceptibility

The high susceptibility areas are concentrated within three subareas in both the eastern
and western sectors, covering a combined area of 3514.68 km2 (Figure 12). Subarea A is
located in the southwestern mountainous and hilly terrain of the study area, characterized
by prevalent geological formations such as metamorphic rock, clastic rock, and sand shale,
with annual precipitation exceeding 2000 mm. Subarea B is located in the northwestern por-
tion of the study area, exhibiting similar topographical and geological conditions to Subarea
A. Nevertheless, the precipitation within this area falls below 2000 mm. Subareas C, D, and
E are distributed in the mountainous and hilly areas of the eastern part of the study area.
The dominant geological formations include metamorphic rock, clastic rock, sand shale,
massive rock, and massive lava. The annual precipitation in these subareas ranges from
1600 mm to 2400 mm. In comparison to the other subareas, Subarea C exhibits a denser river
network. The medium susceptibility areas and low susceptibility areas are primarily situ-
ated around the high susceptibility areas, covering an area of 9848.89 km2 and 9688.68 km2,
respectively. The stable areas are extensively distributed across low-altitude tablelands and
plains, encompassing an area of 18,645.75 km2. These areas feature widespread occurrences
of mucky soil and cohesive soil, dense river networks, and precipitation predominantly
below 1600 mm.
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4.1.2. Debris Flow Susceptibility

The high and medium susceptibility areas are concentrated in the southwestern part
of the study area, characterized by higher elevations and precipitation below 1600 mm,
primarily within mountainous and hilly areas (Figure 13). In other parts of the study area,
the high susceptibility areas are scattered along faults and river valleys, primarily within
areas of fractured rock. The high susceptibility areas cover 480.94 km2, while the medium
susceptibility areas span 3619.66 km2. The low susceptibility areas are situated around the
high susceptibility areas and medium susceptibility areas, as well as along rock fractured
areas along faults, covering an area of 26,905.16 km2. The stable areas are widely distributed
in the study area, encompassing low-elevation, flat terrain such as tablelands and plains,
with a total area of 10,692.25 km2.
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4.1.3. Karst Collapse Susceptibility

The high susceptibility areas cover an extent of 484.94 km2, primarily subdivided into
three subareas characterized by dominant rock formations including argillaceous limestone,
sandstone, and basalt, with a fragmented geological structure (Figure 14). Subarea A is
situated in the southwestern portion of the study area, exhibiting a moderate degree of
karst development and a thickness of overlying layer generally exceeding 20 m. Subarea
B experiences a poorer degree of karst development, with thickness of overlying layer
typically under 20 m. Subarea C, located in the central part of the study area, presents a
limited degree of karst development, and the thickness of overlying layer is generally less
than 10 m. The medium susceptibility areas are distributed around the high susceptibility
areas, covering areas characterized by thickness of overlying layer below 10 m, significant
aquifer yields surpassing 100 m3/d, or prominent fault development. The combined area
of these areas totals 2553.61 km2. The low susceptibility areas are distributed within areas
outside the high and medium susceptibility areas, where distributed soluble lava is present,
covering an area of 1812.95 km2. Areas lacking distributed soluble lava are designated as
stable areas, covering an expanse of 36,841.23 km2.
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4.1.4. Ground Subsidence Susceptibility

The high susceptibility areas are sparsely distributed in areas with a thickness of soft
soil layer exceeding 20 m, fractured geological structures, and aquifer yields less than
100 m3/d, covering an area of 454.65 km2 (Figure 15). The medium susceptibility areas
are predominantly distributed along faults, characterized by thickness of soft soil layer
surpassing 10 m, encompassing an area of 3741.20 km2. The low susceptibility areas are
situated within areas other than the high susceptibility and medium susceptibility areas,
where distributed soft soil layers are present, covering a total area of 4468.67 km2. Areas
devoid of distributed soft soil layers are classified as stable areas, covering an area of
36,841.23 km2.
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4.1.5. Soil Erosion Susceptibility

The high susceptibility areas are primarily concentrated in the central part of the
study area, with scattered occurrences in other areas, generally associated with sandy
terrain or urban land use (Figure 16). These areas are characterized by predominantly
alluvial soil, dense river networks, and cover a total area of 344.54 km2. The medium
and low susceptibility areas are widely distributed along riverbanks, characterized by
diverse vegetation and soil types. The total area occupied by the medium susceptibility
areas is 5526.97 km2, while the low susceptibility areas encompass an extensive expanse of
22,743.83 km2. The stable areas are predominantly distributed across arbor lands and shrub
lands, characterized by predominant soil types of red soil and paddy soil. These areas are
situated at a considerable distance from rivers, covering a total area of 13,081.98 km2.
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4.1.6. Sea Water Intrusion Susceptibility

The high susceptibility areas can be further subdivided into two subareas, covering a
total area of 1095.33 km2 (Figure 17). Subarea A is located in the southwestern plains of
the study area, characterized by widespread distribution of proluvial clay and bedrock.
The groundwater level is situated below −2 m, and the annual precipitation surpasses
2000 mm. Subarea B is distributed in the central plains of the study area, characterized
by widespread distribution of alluvial sandy clay. The groundwater level typically ranges
between 0 m to 2 m, and the annual precipitation is generally less than 2000 mm. The
medium susceptibility areas are primarily situated in the plains surrounding the high sus-
ceptibility areas. The topographical and geological conditions in these areas are relatively
comparable to the high susceptibility areas. The annual precipitation typically falls within
the range of 1600 mm to 2000 mm. The cumulative area of these medium susceptibility
areas amounts to 4341.74 km2. The low susceptibility areas are extensively distributed
across plains and tablelands, characterized by widespread presence of alluvial sandy clay
and marine clay. The groundwater level typically remains above 2 m, while the annual
precipitation is less than 2000 mm. The combined area of these low susceptibility areas en-
compasses 14,123.59 km2. The stable areas are predominantly situated in the mountainous
and hilly areas characterized by extensive distribution of bedrock, covering a total area of
22,136.74 km2.
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4.2. Geo-Environment Vulnerability

The high vulnerability areas are predominantly situated in the southwestern, north-
western, and northeastern mountainous and hilly areas, as well as the central plains of the
study area (Figure 18). These areas cover a total area of 5961.85 km2 and can be further
divided into four subareas. Subarea A is situated in the southwestern part of the study
area, while Subarea B is located in the northwestern portion. Both subareas exhibit higher
susceptibility to landslides, collapses, debris flows, and karst collapses. Subarea C is lo-
cated in the northwestern section of the study area, exhibiting an elevated susceptibility to
landslides, collapses, and debris flows. Subarea D is situated in the central plains of the
study area, characterized by a higher susceptibility to karst collapse, ground subsidence,
soil erosion, and sea water intrusion. The medium vulnerability areas, low vulnerability
areas, and stable areas are interspersed, covering areas of 19,227.93 km2, 14,892.02 km2,
and 1616.19 km2, respectively.
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4.3. Accuracy of Assessment Results

In this study, the integration of the AHP and VWT was employed for the assessment
of susceptibility to multiple geohazards. In comparison to using only AHP, notable shifts
in the weights of factors were observed, resulting in significant changes in the distribution
and extent of susceptibility areas (Table 5). The results of geohazard susceptibility assess-
ment should adhere to two sufficiency principles: the density of geohazards gradually
increases from stable areas to high susceptibility areas, and the high susceptibility areas
occupy a relatively smaller area [115]. Table 5 demonstrates that regardless of whether the
VWT-AHP method or the AHP method is employed, the assessment results consistently
adhere to the first principle. Except for the susceptibility assessment results for sea water
intrusion obtained using the AHP method, all other results also conform to the second
principle. It is worth noting that for the same geohazard, the susceptibility assessment
results obtained using the VWT-AHP method indicate a higher density of geohazards in
the high susceptibility areas compared to the results obtained using the AHP method. A
similar trend is observed for the density of geohazards in the medium susceptibility areas
for debris flows, ground subsidence, soil erosion, and sea water intrusion.

Table 5. Results of susceptibility assessment of geohazards.

Geohazard Method Area Stable Low Medium High

Landslide and collapse

VWT-AHP
Area (km2) 18,645.75 9688.68 9848.89 3514.68

Number of geohazards 3 3 22 56
Density of geohazards 0.0002 0.0003 0.0022 0.0159

AHP
Area (km2) 20,079.53 11,597.94 8076.18 1944.34

Number of geohazards 8 25 37 13
Density of geohazards 0.0004 0.0022 0.0046 0.0067

Debris flow

VWT-AHP
Area (km2) 10,692.25 26,905.16 3619.66 480.94

Number of geohazards 2 1 11 9
Density of geohazards 0.0002 0.0000 0.0030 0.0187

AHP
Area (km2) 14,253.97 19,483.31 6716.05 1244.67

Number of geohazards 5 6 9 3
Density of geohazards 0.0004 0.0003 0.0013 0.0024
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Table 5. Cont.

Geohazard Method Area Stable Low Medium High

Karst collapse

VWT-AHP
Area (km2) 36,841.23 1812.95 2553.61 484.94

Number of geohazards 0 1 39 57
Density of geohazards 0.0000 0.0006 0.0153 0.1175

AHP
Area (km2) 36,841.23 3033.69 1752.37 65.42

Number of geohazards 0 24 62 11
Density of geohazards 0.0000 0.0079 0.0354 0.1681

Ground subsidence

VWT-AHP
Area (km2) 33,007.04 4468.67 3741.2 454.65

Number of geohazards 0 1 33 31
Density of geohazards 0.0000 0.0002 0.0088 0.0682

AHP
Area (km2) 33,007.04 1109.03 5616.46 1939.02

Number of geohazards 0 0 25 40
Density of geohazards 0.0000 0.0000 0.0045 0.0206

Soil erosion

VWT-AHP
Area (km2) 13,081.98 22,743.83 5526.97 344.54

Area of geohazards (km2) 71.96 252.77 627.08 133.84
Density of geohazards 0.0055 0.0111 0.1135 0.3885

AHP
Area (km2) 14,525.31 15,470.48 10,386.07 1315.47

Area of geohazards (km2) 81.36 180.78 548.36 275.17
Density of geohazards 0.0056 0.0117 0.0528 0.2092

Sea water intrusion

VWT-AHP
Area (km2) 22,136.74 14,123.59 4341.74 1095.33

Area of geohazards (km2) 471.08 1277.44 1893.99 889.54
Density of geohazards 0.0213 0.0904 0.4362 0.8121

AHP
Area (km2) 20,285.86 9269.77 8698.65 3443.12

Area of geohazards (km2) 196.89 846.61 1875 413.55
Density of geohazards 0.0097 0.0913 0.2156 0.1201

The Receiver Operating Characteristic (ROC) curve serves as a tool for quantitative
analysis to gauge the precision of models, with the Area Under the Curve (AUC) value
falling within the range of 0.1 to 1.0 [116,117]. A higher AUC value indicates enhanced
model accuracy, with an AUC value of 1.0 signifying optimal accuracy. An AUC value
below 0.5 suggests that the model’s predictive ability is less precise than random chance.
Based on the AUC value, the performance of the assessment model is classified as excellent
(0.9–1.0), very good (0.8–0.9), good (0.7–0.8), general (0.6–0.7), or poor (0.5–0.6) [118,119].
The ROC curves illustrating the susceptibility assessment results for different geohazards
are shown in Figure 19. The AUC values demonstrate that the utilization of VWT-AHP in
assessing the susceptibility of various geohazards consistently yields outcomes categorized
as “very good”, while the employment of AHP alone results in classifications of “good” or
“general”. This suggests a reasonable determination of constant weights of each assessment
indicator, with the variable weights calculated by VWT more closely aligned with the actual
conditions of the study area. For the assessment of geohazard susceptibility, the VWT-AHP
model demonstrates higher precision compared to AHP alone.

In addition, a comparison was made with other studies focusing on geohazard suscep-
tibility within the study area. Zhang et al. (2019) [55] conducted landslide susceptibility
assessments using the AHP method with ten random samples, resulting in ROC curves with
a maximum AUC value of 0.855, a minimum of 0.791, and an average of 0.831. This closely
aligns with the AUC value of 0.82 obtained in this study. Lin et al. (2019) [58] employed a
Bayesian averaging approach, combining three machine learning models for predicting sea
water intrusion susceptibility, achieving a Nash-Sutcliffe Efficiency Coefficient (NSE) of
0.79, indicating a good fit. In this study, an AUC value of 0.81 was achieved, classified as
“very good”. However, it is essential to acknowledge that comparing the accuracy of results
between classification and regression tasks is not straightforward. Liu et al. (2023) [57]
investigated ground subsidence in a specific area of the Pearl River Delta using an RF
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model, yielding an R2 of 0.579. In contrast, this study achieved an AUC value of 0.84.
Notably, the spatial patterns of ground subsidence susceptibility obtained from the two
studies were not significantly different.
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water intrusion.

4.4. Single-Indicator Sensitivity Analysis

The single-indicator sensitivity analysis is utilized to assess the spatial importance
of each indicator in the assessment of geohazard susceptibility [120]. Higher effective
weights indicate a more pronounced importance of factors in the geohazard susceptibility
assessment. The calculation method for effective weights is presented in Equation (10).

Wi =
xi·w′i
CPI

(10)

In Equation (10), the symbol xj represents the rating of the i-th indicator, wi
′ indicates

the variable weight vector of the i-th indicator, CPI represents the comprehensive index.
Table 6 presents the maximum, minimum, average, and standard deviation values

of the effective weights of each assessment indicator. The effective weights reveal that
in the assessment of landslide and collapse susceptibility, topography and lithology are
indispensable crucial indicators. For debris flow susceptibility, topography and landform
remain highly significant, but the impact of the distance to river should not be disregarded.
In the assessment of karst collapse susceptibility, the distance to fault emerges as the
paramount indicator, followed by lithology. In the assessment of ground subsidence
susceptibility, the age of soft soil layer holds the most significant effective weight. The
most significant effective factor for soil erosion susceptibility is the type of vegetation,
followed by distance to river and topography. In the assessment of sea water intrusion
susceptibility, precipitation holds the highest level of effect, followed by topography and
type of Quaternary sedimentary rock.
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Table 6. Results of single-indicator sensitivity analysis.

Geohazard
Susceptibility Assessment Indicator Maximum Minimum Average Standard Deviation

Landslide and
collapse (A1)

Elevation (B11) 0.6089 0.0133 0.1004 0.0877
Slope (B12) 0.4058 0.0106 0.0492 0.0371

Lithology (B13) 0.8187 0.0280 0.2413 0.1969
Topography (B14) 0.6304 0.0096 0.1844 0.1407

Distance to fault (B15) 0.6512 0.0100 0.1453 0.1435
Distance to river (B16) 0.4906 0.0059 0.0952 0.0904

Precipitation (B17) 0.8034 0.0218 0.1842 0.1232

Debris flow (A2)

Elevation (B21) 0.3267 0.0063 0.0403 0.0383
Slope (B22) 0.3539 0.0069 0.0318 0.0267

Lithology (B23) 0.6452 0.0112 0.1638 0.1372
Topography (B24) 0.6646 0.0135 0.2371 0.1696

Distance to fault (B25) 0.5780 0.0080 0.1008 0.0990
Distance to river (B26) 0.7111 0.0162 0.1680 0.1411

Distance to landslide and
collapse (B27) 0.7722 0.0206 0.0960 0.1028

Precipitation(B28) 0.7722 0.0207 0.1621 0.1123

Karst collapse (A3)

Lithology (B31) 0.7268 0.0603 0.2707 0.1429
Degree of karst

development (B32) 0.7268 0.0587 0.1748 0.0946

Thickness of overlying layer (B33) 0.4356 0.0161 0.1288 0.1149
Water yield property (B34) 0.4356 0.0178 0.0852 0.0531

Distance to fault (B35) 0.6833 0.0491 0.3405 0.1852

Ground
subsidence (A4)

Thickness of soft soil layer (B41) 0.7917 0.0747 0.1872 0.1114
Age of soft soil layer (B42) 0.7683 0.1054 0.5342 0.1878
Water yield property (B43) 0.4935 0.0203 0.0826 0.0690

Distance to fault (B44) 0.6223 0.0376 0.1960 0.1396

Soil erosion (A5)

Slope (B51) 0.3794 0.0077 0.0398 0.0356
Topography (B52) 0.5837 0.0082 0.1825 0.1612

Type of vegetation (B53) 0.8482 0.0295 0.3052 0.2061
Type of soil (B54) 0.8290 0.0305 0.1728 0.1076

Distance to river (B55) 0.7106 0.0152 0.2072 0.1488
Precipitation (B56) 0.6175 0.0089 0.0925 0.0765

Sea water
intrusion (A6)

Topography (B61) 0.6626 0.0155 0.2534 0.1756
Type of Quaternary sedimentary

rock (B62) 0.7534 0.0240 0.2046 0.1731

Groundwater level (B63) 0.8753 0.0496 0.1346 0.0829
Precipitation (B64) 0.8054 0.0270 0.4074 0.1521

4.5. Geo-Hazard Prevention Strategies

The distribution of critical infrastructures, roads, and artificial surfaces in various
geo-environment vulnerability areas is presented in Figure 20 and Table 7. The distribution
in different geohazard susceptibility areas can be found in Figure S8 and Table S13.

Table 7. Distribution of critical infrastructures, roads, and artificial surfaces in different vulnerability areas.

Stable Low Medium High

Critical infrastructure 8 175 512 102
Road (km) 575.43 10,258.47 16,550.36 3890.09

Artificial surface (km2) 18.95 447.95 1653.15 359.71
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The critical infrastructures and artificial surfaces are primarily located in medium
and high geo-environment vulnerability areas, particularly in the major cities in the study
area (Figure 20). Guangzhou, Shenzhen, and Jiangmen face significant threats from land-
slides, collapses, and debris flows. When selecting locations for critical infrastructure,
it is crucial to avoid faults and hazardous slopes. Simultaneously, identifying potential
hazard-prone areas is essential for implementing early protective measures or considering
relocation. Karst collapses also pose a threat to Guangzhou and Foshan, mainly due to the
widespread distribution of soluble rocks and the thickness of overlying layers. Conducting
a comprehensive assessment of karst development and implementing measures such as
reinforcement in vulnerable areas is necessary. Foshan and Jiangmen need to address the
threat of ground subsidence. New construction should strictly control ground loads, and in
areas prone to subsidence attention should be paid to controlling groundwater extraction
and implementing groundwater recharge measures if necessary. Soil erosion and sea water
intrusion are common challenges faced by all cities. Soil erosion often arises large-scale
urban development, extensive agricultural activities, and low vegetation cover. Enhancing
vegetation restoration, planning protective forests, and implementing sustainable land
management practices are advisable to mitigate soil erosion. Sea water intrusion primarily
results from groundwater extraction during urbanization. It is recommended to establish
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effective coastal management policies, construct protective structures such as seawalls, and
manage groundwater extraction rationally to address sea water intrusion issues.

Over half of the road mileage is situated in medium and high geo-environment
vulnerability areas. In urban areas, roads encounter geohazard threats akin to critical
infrastructure. In mountainous areas, road construction is mainly impacted by landslides,
collapses, and debris flows. Hence, it is essential to identify potential threats during road
planning, avoid areas with fractured rock slopes and valleys, and implement protective
measures for hazardous slopes.

4.6. Limitation and Future Research

This study is inherently constrained by certain limitations. The availability of data
has imposed significant constraints on the selection of indicators for assessing geohazard
susceptibility. Notably, the absence of long-term monitoring data for groundwater levels
represents a substantial limitation, impeding the acquisition of crucial indicators of suscep-
tibility to ground subsidence and sea water intrusion [121,122]. On the other hand, within
the VWT-AHP method, the judgment matrix is established by researchers, introducing a
notable element of subjectivity. Even though results with relatively high accuracy have
been obtained, to enhance the objectivity and precision of weights, alternative method-
ologies such as regression models, decision trees, and artificial neural networks could be
considered [123–125].

Geohazard susceptibility is a crucial aspect of disaster prevention and management.
Nevertheless, the devastating impacts of geohazards are not solely contingent on suscep-
tibility, but also intricately linked to regional economic progress and human activities.
The geo-environment vulnerability assessed in this study is rooted in the susceptibility to
diverse geohazards. Due to the determination of geo-environment vulnerability based on
the principle of the “barrel effect”, there is a possibility of an overestimation of vulnerability
levels in certain areas. As a result, it serves merely as a fundamental point of reference for
the systematic development of strategies in geohazard management and economic growth
planning. The alignment of geological circumstances with human activities remains a
pivotal concern that local administrations and researchers must conscientiously address.

5. Conclusions

In conclusion, this study successfully demonstrates the methodology of using VWT-
AHP for assessing geo-environment vulnerability based on susceptibility to various geo-
hazards. The application of this method resulted in the classification of the Pearl River
Delta in China into high vulnerability (5961.85 km2), medium vulnerability (19,227.93 km2),
low vulnerability (14,892.02 km2), and stable areas (1616.19 km2). The ROC curves indicate
that the accuracy and reliability of VWT-AHP are significantly improved compared to
the standalone use of AHP. Furthermore, the study assessed the threats posed by vari-
ous geohazards to critical infrastructure, roads, and artificial surfaces, while discussing
prevention measures.

However, the study does acknowledge several limitations. The constrained availability
of data limited the selection of indicators for assessment, particularly the absence of
long-term groundwater level data which impacted the assessment of susceptibility to
ground subsidence and sea water intrusion. Furthermore, the subjectivity inherent in
the establishment of judgment matrices within VWT-AHP underscores the necessity of
exploring alternative methodologies to enhance the objectivity of factor weights.

It is crucial to recognize that geo-environment vulnerability is just one facet of disaster
prevention and management. The broader impacts of geohazards are interlinked with
regional economic development and human activities. The geo-environment vulnerability
identified in this study serves as a crucial reference for informed decision-making in
geohazard management and economic planning. Balancing geological considerations with
human actions emerges as a critical imperative for local governance.
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