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Abstract: This paper aims to solve the limitations of traditional gravity physical property inversion
methods such as insufficient depth resolution and difficulties in parameter selection, by proposing an
improved 3D gravity inversion method based on deep learning. The deep learning network model
is established using the fully convolutional U-net network. To enhance the generalization ability of
the sample set, the large-scale training set and test set are generated by the random walk, based on
the forward theory. Founded on the traditional loss function’s definition, this paper introduces an
improvement incorporating a physical constraint to measure the degree of data fitting between the
predicted and the real gravity data. This improvement significantly boosted the accuracy of the deep
learning inversion method, as verified through both a single model and an intricate combination
model. Finally, we applied this improved inversion method to the gravity data from the Gamburtsev
Subglacial Mountains in the interior of East Antarctica, obtaining a comprehensive 3D crustal density
structure. The results provide new evidence for the presence of a dense crustal root situated beneath
the central Gamburtsev Province near the Gamburtsev Suture.

Keywords: gravity inversion; deep learning; U-net network; physical constraint; East Antarctica

1. Introduction

As an important method in geophysical interpretation, gravity inversion can be used to
determine the nature of mass distribution and identify anomalous fields, finding extensive
applications in various domains such as natural resource survey, bedrock topography
mapping, and global plate tectonic studies [1–3].

The traditional gravity inversion involves uniformly dividing the subsurface space
into multiple prisms, each characterized by defined physical parameters. Subsequently,
a suitable objective function is established to obtain the inversion results. During this
process, priori information and constraints are utilized to reduce the non-uniqueness of
the inversion results [1,4]. The inversion process is to minimize the objective function,
commonly used algorithms such as the least squares fitting method, gradient descent
method, Newton’s method, conjugate gradient method, etc. The issue of algorithm selection
has posed a challenge due to variations in their performance concerning inversion speed
and outcomes. The inversion problem typically suffers from issues such as insufficient
resolution and non-uniqueness. To address these challenges, constraints were introduced
to the model in the objective function and used regularization to improve the inversion
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results [5]. However, a significant concern arises from the profound decay of the kernel
function with depth leading to the inversion results clustering near the surface, referred to
as the skinning effect. To tackle this problem, a depth-weighting function was introduced
into the objective function of the inversion algorithm utilizing a spatial derivative as a
constraint [1,6]. Last and Kubic (1983) introduced a minimum volume constraint in the
objective function, leading to inversion outcomes with more explicit bounds [7]. To address
the dispersion in inversion results, Portniaguine and Zhdanov (1999) proposed a 3D
focused inversion algorithm utilizing the minimum gradient support (MGS) functionals in
combination with the penalization function [8]. Zhang et al. (2018) obtained the 3D density
structure distribution on the lunar surface through full-gravity gradient tensor inversion
using the Gauss–Legendre integral method [9]. However, implementing 3D inversion
requires a substantial allocation of computing time and storage capacity. Subsequently,
numerous advanced techniques have been proposed. These include the utilization of cubic
interpolation [10], wavelet transforms [11], and adaptive sampling of potential data [12] to
compress the function. These approaches have greatly accelerated the speed of inversion
calculations and gained extensive adoption.

As a new branch of machine learning, deep learning has shown excellent performance
in recognition and classification for image processing, particularly in handling inverse
problems like model reconstruction. This allows computer systems to train and learn
from vast quantities of data. Unlike conventional geophysical inversions, deep learning-
based inversion approaches rely on data-driven methodologies to map observed data to a
3D physical property model [13]. Due to its superior performance, deep learning-based
inversions are widely used in geophysical data processing and inverse problems, including
seismic [14–16], electromagnetic [17–19], gravity, and magnetic [13,20–24]. Moreover, deep
learning algorithms are also utilized for the joint interpretation of geophysical data through
the integration of unsupervised cluster analysis and supervised classification, enhancing
the coherence of the obtained solution [24]. Huang et al. (2021) proposed a new 3D sparse
inversion method for gravity data based on deep learning, which was validated using real
gravity data [25]. By utilizing the random walk method, the network’s generalization ability
of the network can be improved [25,26]. To estimate the depth of the sediment–basement
interface, He et al. (2021) explored a novel approach using convolutional neural networks
(CNNs) for direct depth-to-basement inversion from gravity data. Moreover, CNNs are
used to detect the impact craters from GRAIL-acquired gravity data [27]. Collectively, these
studies provide new perspectives for reconstructing density models from gravity data and
highlight the considerable potential of deep learning in the domain of gravity inversion.
However, the absence of a constraint term in the loss function leads to poor utilization of
all the observed data. Currently, the incorporation of additional constraint information into
the inversion process poses a significant challenge for the 3D physical property inversion of
potential field data. With the advancements in deep learning, enhancing data-driven deep
learning techniques is imperative to achieve more accurate outcomes, thereby highlighting
the importance of integrating constraint information [13,23].

This paper presents an improved 3D gravity inversion method based on deep learning.
Specifically, a gravity data inversion network model is developed using the U-net neural
network architecture. A large-scale dataset is constructed by using the random walk
method based on the gravity forward theory. The traditional loss function is improved by
incorporating a physical constraint term, which characterizes the level of fitting between
the real measured and predicted gravity data. The effectiveness of this improved inversion
method is demonstrated through synthetic models. Finally, this method is applied to the
airborne gravity data obtained in the interior of East Antarctica, resulting in the estimation
of 3D crustal density structure.

2. Forward Modeling of Gravity Anomalies

The forward modeling serves as the foundation for solving the inversion problem,
obtaining the anomaly observed at a specific point through theoretical forward calculation.
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This is achieved by using the positional shape and physical property parameters of the
underground source.

The underground space within the study area is divided into regular prisms, as shown
in Figure 1. This implies that the underground model space is uniformly divided into
N prisms, each with a specific size and a different density value. The calculations are
conducted within a Cartesian coordinate system, with the X and Y axes denoting the
eastward and northward directions, respectively, while the Z axis represents the vertical un-
derground direction. The resultant gravity anomaly generated by the underground sources
at the observation point is the sum of the gravity anomaly generated by all subdivision
prism units at the observation point. For a given observation point (x, y, and z) situated on
the ground surface, the gravity anomaly attributed to each prism can be mathematically
expressed as [28–30]

g = −γρj

2

∑
p=1

2

∑
q=1

2

∑
s=1

µpqs ×
[

ap ln
(
bq + rpqs

)
+ bq ln

(
ap + rpqs

)
− csarctan

(
apbq

csrpqs

)]
(1)

where, µpqs = (−1)pqs, p, q, s = 1, 2, ap = x − ξp, bq = y− ηq, cs = z− ζs. γ represents
the gravitational constant, ρj denotes the residual density, and rpqs denotes the distance

from the corner of the prism to the observation point, rpqs =
√

a2
p + b2

q + c2
s . The gravity

anomaly at the observation point can be expressed as the sum of anomalies generated by
all prisms underground, namely,

g =
N

∑
j=1

Gjρj (2)

where Gj represents the kernel matrix. The above formula can also be written as

d = Gm (3)

where d represents the observed gravity data vector, and m represents the model density
contrast value vector.
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Figure 1. Schematic diagram of underground space.

3. Gravity Inversion Based on U-net Network

Gravity inversion involves solving the inverse problem through forward modeling.
In this process, the positions, shapes, and physical parameters of underground bodies are
calculated from observed data.
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The inversion problem can be expressed as

m = M(d, θ) (4)

where M represents a mapping relation, signifying the underground density model can
be derived from the input data, with θ representing the parameters obtained during the
inversion process.

3.1. Introduction to U-net Network

With the rapid advancement of computer technology in recent years, deep learning has
emerged as a prominent area of research. Its essence lies in training established network
structures using an extensive dataset, enabling the learning of the representation level
and internal rules of the sample data. Ultimately, this process endows the network with
humanlike learning and analytical capabilities, enabling the interpretation and recognition
of diverse data modalities, such as text, sound, and images. In this study, the U-net network
architecture is employed for deep learning, complemented by the generation of a forward
gravity data sample set for network training. Once satisfactory training results are achieved,
authentic data are inputted to predict the underground density model using the network.
As shown in Figure 2, the U-net network embodies a typical fully convolutional network
(FCN), resembling the shape of the letter “U”. Comprising two main segments, the left
part constitutes the feature extraction layer, known as the encoder, while the right part
encompasses the up-sampling process, known as the decoder.
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Figure 2. Schematic diagram of gravity data inversion network structure.

The left side of the network comprises a series of down-sampling processes involving
convolution and pooling. This section includes four submodules, each housing two convo-
lution layers. Each submodule achieves down-sampling through convolution operations
using a 2 × 2 convolution kernel of with a step size of 2. Moreover, a dropout layer is
added to minimize overfitting. In this study, a single channel of gravity anomaly data
with a resolution of 32 × 32 was used as the input, which corresponded equivalently to
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1024 observation stations evenly distributed across the ground. Following two convo-
lutional layers, the channel count expands to 64. The resolutions of modules 1–5 are
successively 32 × 32, 16 × 16, 8 × 8, 4 × 4, and 2 × 2 with the channel count of the former
being half of that in the latter. This segment of the network parallels a standard CNN,
using a 3 × 3 convolution kernel to capture the implicit relationships between pixels within
the image.

The decoder mirrors the structure of the encoder and contains four modules. It
symmetrically magnifies features through up-sampling, gradually aligning the output
resolution with that of the input image. Simultaneously, the network uses jump connections
to connect the up-sampling outcome from the submodule of equivalent resolution in the
encoder. During this process, the number of data channels is halved, and the size is doubled.
This linked result is input for the next submodule in the decoder, to obtain more accurate
information and achieve better results. Finally, an activation function is applied to predict
each pixel’s value in the channel, generating the predicted subsurface density model. The
expression and pattern of the Tanh function are shown in Figure 3.
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3.2. Improvement of Loss Function

The U-net network employs supervised deep learning. Fundamentally, when provided
with training samples and their corresponding labels, it endeavors to grasp the mapping
relationship between samples and labels. Specifically, it seeks to discern the mapping
relationship between the anomaly data and the density contrast model. The training
process aims to minimize the disparity between the network’s output and the real model,
necessitating a function to quantify the distinct or level of alignment between the output
and the actual values.

The loss function is an operational measure used to characterize the difference between
the network’s output and the actual values. A smaller loss function signifies the greater
reliability of the network model. During the model’s training stage, forward propagation is
used to calculate the output of each batch input. Subsequently, the model’s predicted values
are generated. The loss function then qualifies the distinction between these predicted
values and the actual values, accomplished through a specified activation function, resulting
in a loss value. Upon obtaining the loss value, the model initiates backpropagation to adjust
updates each parameter within the network. This adjustment process aims to minimize
the disparity between the predicted and actual values, effectively reducing the loss. The
model iteratively refines these parameters to bring the calculated predictions closer to
actual values, thereby achieving the goal of learning.
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Huang et al. (2021) introduced the Dice function, which quantifies the fitting degree of
the prediction model and the real model [25]. This function denoted by the Dice function
operates within a range of 0–1, representing the degree of similarity between the two
models. A higher value denotes a greater degree of similarity. Therefore, the loss function
in this paper is expressed as follows:

L = 1−Dice
(

m̂i, mi
)

(5)

where m̂i and mi represent the prediction model and the actual model, respectively. To
enhance the loss function, this paper modifies it by adding a constraint term representing
the degree of data fitting:

L = α ∗
∥∥∥m̂i −mi

∥∥∥2

L2
+ β ∗

∥∥∥d̂i − di
∥∥∥2

L2
(6)

where α and β are the weights and d̂i and di are the gravity anomaly data of the prediction
model and the real model, respectively. In theory, a well-fitting predictive model should
generate the anomalies that exhibit a commendable degree of correspondence. The in-
corporation of the anomaly data constraint not only optimizes the loss function but also
optimally leverages the entirety of the available data.

3.3. Establishment of Sample Datasets

Once the training network has been set up, it is necessary to establish enough sample
datasets for network training. Differing from the traditional supervised learning method
that initially procures input image data and then manually labels it, this study follows
an alternative path. Here the labels are synthesized before deducing the corresponding
input data, in this case, the density model. Subsequently, the corresponding anomaly data
are calculated.

The utilization of the deep learning method requires large-scale datasets for training.
Its effect is intricately linked to the characteristics and circumstances of the dataset. To
assess the feasibility and efficacy of the deep learning inversion method within the case
of complex datasets, this study first commenced by using a random walk approach to
generate 20,000 structured density models. The underground research area was uniformly
divided into 32 × 32 × 16 = 16,384 cubes, each with 1 km side length. The underground
density models were generated by using the random walk method. This method involves
establishing an initial point within the space immediately and allowing it to move a certain
number of steps in random directions. Figure 4a,b depict the models resulting from random
walks of 10 and 30 steps, respectively.
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Upon establishing the actual model, the residual density of the gravity source was set
to 1 g/cm3, while the background was set to 0 g/cm3. Consequently, a density model was
generated in an area of 32 × 32 × 16 km underground by dividing the model space into the
same output size as the network structure. In the process of generating the underground
density model using the random walk method, a 2 × 2 × 2 cube was initially designated
as the starting point, followed by allowing it to move in a random direction (up, down,
left, right, forward, backward) for one step distance (2 km). The total number of steps for
each starting point ranged from 60 to 80 steps. This process yielded a spatially randomized
model, illustrated in Figure 5.
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3.4. Inversion Calculation Process

The overall inversion algorithm is divided into two main processes: forward propa-
gation and back propagation processes. Initially, it is essential to prepare both the gravity
data (m) and corresponding model data (d), which serve as the input data and labels.
Moreover, set the appropriate parameters such as batch size (bs) and learning rate (η), and
initialize the weights (W(t)) and biases (b(t)), where t is 0.

The forward propagation process is divided into two parts: encoding and decoding.
The encoding phase is known as the down-sampling phase. This phase includes four
identical processes: convolution, batch normalization (BN), linearization (ELU), and down-
sampling processes. The encoding phase is as follows:

for j = 1:4
ELU

(
BN
(

W(t)
2j−1 ∗ di

j−1 + bt
2j−1

))
→ di

j (7)

ELU
(

BN
(

W(t)
2j ∗ di

j−1 + bt
2j

))
→ cj (8)

Down-sampling
(
cj
)

with Dropout(0.2)→ di
j (9)

Among them, i = 1:bs, and both BNs play roles in inhibiting overfitting. ELU is the
activation function between layers. The most important function of the BN layer is to
accelerate the convergence rate of the network. BN is used to make network training easier.
In addition, the tuning process is much simpler, having a low initialization requirement.
The use of BN allows all samples in a minibatch to be associated, thereby preventing the
network from producing definitive results from a specific training sample. Despite utilizing
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identical training samples as input, the output consistently varies, thereby preventing the
entire network from excessively specializing in a particular direction and mitigating the
occurrence of overfitting.

The decoding process, also known as the up-sampling process, is the opposite opera-
tion to the down-sampling. This phase also involves four similar processes, each of which
is processed as follows:

for j = 4:−1:1

Up-sampling
(

di
j+1

)
with Dropout(0.2)→ di

j (10)

ELU
(

BN
(

W(t)
24−3j ∗ C(d i

j, cj

)
+ bt

24−3j

))
→ cj (11)

ELU
(

BN
(

W(t)
25−3j ∗ cj + bt

25−3j

))
→ di

j (12)

The Tanh activation function was used to predict the model, and the loss function was
calculated as

Tanh
(

W(t)
23 ∗ di

1 + bt
23

)
→ m̂i (13)

α ∗
∥∥∥m̂i −mi

∥∥∥2

L2
+ β ∗

∥∥∥d̂i − di
∥∥∥2

L2
→ loss (14)

The back propagation process is calculated as

W(t) + Adam
(
η,

loss
bs

)
→W(t+1) (15)

b(t) + Adam
(
η,

loss
bs

)
→ b(t+1) (16)

Among them, Adam is the adopted optimization algorithm. Once the above equation
converges, new gravity data can be input to predict the 3D density model.

3.5. Inversion Results of the Synthetic Model Data

The gravity data corresponding to the synthetic model are input into the trained
network, yielding inversion results for the model. To assess the effectiveness of the pre-
sented inversion method, we constructed a model consisting of horizontally adjacent
superimposed prisms (Figure 6a). This model consisted of two parallel individual prisms
with different depths, and the associated gravity anomaly is shown in Figure 6b. The
deep learning density inversion method established in this study was used to invert the
gravity data as presented in Figure 6b. Consequently, the 3D density distribution results
were obtained, as shown in Figure 6c. Moreover, the 3D physical property inversion
results exclusively showed the density value distribution greater than 0.5 g/cm3. From
Figure 6c, it becomes evident that the proposed method can effectively reconstruct the
3D spatial structure of the prism. The results align at the top of the prisms, although the
inversion outcomes at the prism bottom appear somewhat indistinct. The gravity data
anomaly resulting from the forward calculation of the 3D physical property inversion
results is shown in Figure 6d. Upon comparison with the theoretical gravity data anomalies
(Figure 6b), it becomes evident that the data-driven inversion method effectively fits the
density parameter inversion. These results show that the loss function, incorporating
physical constraints, steers the network training process, yielding inversion results that
align closely with the gravity forward theory and exhibit strong fitting.
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Figure 6. Inversion results of the model with horizontal adjacent superimposed prisms: (a,b) The
model distribution and its gravity anomaly. (c,d) The inversion result and its anomaly.

To enhance the clarity of the correspondence between the density values in the in-
version results and those of the density value of the actual model, cross-sectional slices
passing through the model’s center were selected for the display of the 3D inversion results
(Figure 7). Within the middle and upper sections of the model, the physical property
inversion results exhibited a higher level of accuracy, closely aligning with the density
parameters within the model. In contrast, in the deeper sections of the model, the inversion
results displayed some divergence. However, the overall inversion results can effectively
reflect the model’s spatial position and physical parameters.
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Figure 7. Inversion slice results of the model with horizontal adjacent superimposed prisms: (a) The
model distribution. (b) The inversion result.

This study established an inclined step model to assess the effectiveness of a gravity
inversion method under complex geological conditions. Figure 8a shows a spatial location
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map of the model comprising two inclined steps with the resulting gravity anomaly shown
in Figure 8b. The deep learning inversion method, as adopted in this study, was used
to generate 3D density distribution results (Figure 8c). The inversion results show that
the deep learning method can effectively determine the spatial position of the inclined
step. Meanwhile, the density distribution results can effectively determine the inclination
information of the inclined step. This indicates that the proposed method has a good
application effect in the inversion of inclined geological structures. By performing forward
calculation based on the inverted performance density distribution, the calculated gravity
anomalies in Figure 8d were obtained. These anomalies were in good agreement with the
theoretical gravity anomalies, providing validation of the accuracy of the inversion results.
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Figure 8. Inversion results of the inclined step model: (a,b) The model distribution and its corre-
sponding gravity anomaly. (c,d) The inversion result and its associated anomaly.

Observing the slices of the inversion results, it becomes evident that the inverted
density values obtained through the proposed method closely match the actual density
value of 1 g/cm3 in the shallow position of the model. While some divergence is present in
the deeper positions, densities greater than 0.5 g/cm3 effectively contribute to determine
the model’s spatial position (Figure 9).

To assess and test the applicability of the proposed method in detecting anomalies
caused by vertically superimposed prisms, a model as shown in Figure 10a was established
to evaluate the effectiveness of the proposed method. The inversion results (Figure 10c) re-
veal that the deep learning-based inversion method adeptly reconstructed the 3D structure
of two prisms with different depths, although the inversion accuracy for the deeper prisms
was somewhat diminished.
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Figure 10. Inversion results of the model with vertically superimposed prisms: (a,b) The model distri-
bution and its corresponding gravity anomaly. (c,d) The inversion result and its associated anomaly.

To prove the inversion effect of the proposed method in the case of complex models,
a complex model composed of multiple models of different types was designed in this
study, as shown in Figure 11a. The model consisted of two prisms, an inclined step, and a
Z-shaped model. The inversion result is shown in Figure 11c. Note the solid black lines
representing the boundary of the model in the figure. It can be seen from the results that
although the complexity of the model increased, the method still had a good inversion
effect and a good fitting degree on the model boundary. The inversion results were good on
the top and bottom of the Z-shaped model and the whole of the inclined steps. Figure 11b,d
show the forward data of the actual model and the prediction model, respectively, showing
a high fitting accuracy of the inversion results.
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Figure 11. Inversion results of the complex model: (a,b) The model distribution and its gravity
anomaly. (c,d) The inversion result and its anomaly.

To quantitatively analyze the model inversion results, here we used two analytical
metrics, model fitting and data fitting, to evaluate the model inversion errors. Model fitting
(Em) and data fitting (Ed) were used to measure the error between the inversion model and
the real model and the error between the corresponding anomaly, respectively, as follows:

Em = ‖m− m̂‖2
L2 (17)

Ed =
∥∥∥d− d̂

∥∥∥2

L2
(18)

From Table 1, it is revealed that the method proposed in this paper has obvious
advantages in data fitting, by means of error statistics of inversion results between the
method proposed in this paper and the deep learning inversion method without the data
fitting term.

Table 1. Error statistics of inversion results from models I–IV, the horizontal adjacent superimposed
prisms, the inclined step model, vertically superimposed prisms, and the complex model, respectively.

Model Em Ed

Model I 11.0988 21.0992
Model I (without data fitting) 11.0823 60.2477

Model II 13.8248 20.9244
Model II (without data fitting) 14.3762 73.0496

Model III 14.9442 25.7893
Model III (without data fitting) 15.0122 69.4803

Model IV 13.9615 17.7656
Model IV (without data fitting) 13.7121 67.6317
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4. Application in East Antarctica

To prove its effectiveness in a real case, we applied this improved inversion method
to the gravity data collected over the Gamburtsev Subglacial Mountains (GSM) in East
Antarctica, which are entirely concealed beneath the East Antarctic Ice Sheet. An integrated
airborne geophysical exploration of the GSM was carried out as part of the Antarctica’s Gam-
burtsev Province Project (AGAP) during the Fourth International Polar Year 2008/2009 [31].
It was the first detailed international collaborative aerogeophysical exploration effort in the
GSM [32]. Figure 12 provides the schematic map and the isostatic residual gravity anomaly
map of the GSM [32–34].

Due to the hostile environment and thick ice sheet in the interior of East Antarctica, air-
borne geophysical methods became one effective means to explore the GSM. The subglacial
bed map revealed by the airborne radar data shows the enigmatic intraplate mountain
range [31]. The average altitude of the subglacial topography was about 1.4 km, and the
maximum height reached about 3.4 km [35]. The mountain ranges were underlain by over
58 km thick crust and 200 km thick lithosphere [33,36]. The GSM have been a key site for
the evolution of the East Antarctic Precambrian cratonic lithosphere. However, little is
known about the deep crustal structure and tectonic history of the huge mountains. By
utilizing airborne geophysical data, a tectonic model was proposed, suggesting that the
uplift of the GSM was triggered by the Permian and Cretaceous East Antarctic rift system,
as a result of erosional unloading and heating of the crustal root [33]. The old root may un-
dergo a reactivation process during later Permian and Cretaceous rifting, possibly formed
during the Proterozoic assembly of East Antarctica and preserved in the old orogens. The
mountains, whose surface was lifted in the early GSM formation, were severely eroded,
while the lower crust was inferred to be well preserved. Based on the comprehensive
analysis of the determined crustal geometry and geological context of East Antarctica, a
new evolutionary framework is proposed by Wu et al. (2023), suggesting that the GSM
have been a part of the Pan-African advancing accretionary orogen superimposed on the
Precambrian basement [32]. The uplift mechanism of the GSM is still controversial, but the
presence of a dense lower crustal root beneath the GSM is noticed. The Te grid calculated by
Ferraccioli et al. (2011) reveals that the thick and dense Precambrian crust that underlies the
central and northern portions of the GSM [33]. These high Te values are routinely associated
with unreworked Precambrian cratonic regions worldwide.

In depicting the 3D crustal density structures over the GSM, here we used the isostatic
residual gravity to invert relative density. Using the deep learning U-net network model
established with synthetic model data, we processed the isostatic residual gravity data
derived from the GSM. The underground space of the GSM was uniformly divided into
123,200 prisms with grids of 88 × 50 × 28. The horizontal and vertical spacings were
10 km and 2.5 km, respectively. The obtained 3D inversion results are shown in Figure 13.
Within these results, the remarkable high-density region can be found at a slice of depth
50 km. To highlight the detailed high-density lower crust, we extracted the 3D density
structures of the crustal root from depths of 38 km to 68 km and conducted a quantitative
comparison with the previous researches. The 3D detailed density structures of the lower
crust are presented in Figure 14. Figure 14a–f show the horizontal density slices of the
crustal root. The distinct density boundaries between the northern and central GSM were
possibly related to the density difference of the Gamburtsev Suture sandwiched between the
Antarctica–Australia terrain and Antarctica–India terrain. Figure 14g–n display the vertical
density structure slices of lower crust in Y direction and X direction, respectively, with the
depth range of 38–68 km. The upper part of the high-density block in (g) and (h) has a
larger range than the lower part, like an inverted triangle, having a similar pattern to the
two models in (r) and (s). To exhibit the high-density structures intuitively and visually, 3D
voxels were used to display the dense blocks with different density ranges. Figure 14o–q
show the dense blocks with density ranges of 0.02~0.16 g/cm3, 0.04~0.16 g/cm3, and
0.06~0.16 g/cm3. Figure 14r,s show the 2D geological and geophysical models proposed by
Ferraccioli et al. (2011) and Wu et al. (2023) [32,33]. The 2D models were established along
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the profile a–a′ shown in Figure 14a. Subsequently, a quantitative evaluation was conducted
by determining the spatial locations of the high-density blocks in the lower crust displayed
by 3D voxels within different density ranges and contrasting the results with the previous
research. Table 2 shows the contrast of the spatial locations of the high-density lower crust
between our results from the improved inversion method based on U-net network and the
previous 2D models. The horizontal ranges in X direction were 245–560 km, 260–550 km,
and 300–520 km, and the corresponding densities were 0.02–0.16 g/cm3, 0.04~0.16 g/cm3,
and 0.06~0.16 g/cm3, respectively. Meanwhile, the horizontal ranges obtained from the
2D models of Ferraccioli et al. (2011) and Wu et al. (2023) [32,33] were 250–680 km and
245–670 km, respectively. Our results in the X direction were basically covered by horizontal
ranges suggested by the previous studies. Vertically, the depth values were 40–68 km,
40–67 km, and 40–60 km obtained from the three different density ranges, which were
close to the depth ranges of 46–58 km and 40–58 km achieved from the previous studies.
Based on this contrast, it becomes evident that selecting the density range between 0.06 and
0.16 g/cm3 may prove advantageous in highlighting the high-density lower crust in depth.
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The study area is highlighted in the yellow rectangle. (b) Map depicting the isostatic residual gravity
anomaly [32–34].
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Figure 13. Horizontal slices of crustal density inversed from the GSM gravity anomaly.

These lower bodies potentially signify magmatic underplating associated with back-
arc basin formation, triggered by the subduction of oceanic lithosphere located between
Australo-Antarctica and Indo-Antarctica before their collision. The remarkable density
boundary emerges between the northern and central sectors of the GSM at depths of 50 km
and 60 km. This boundary might correspond to the Gamburtsev Suture, which separates
the Archaean Ruker province and the Proterozoic Gamburtsev province [33]. The low-
density region within the Lambert Terrain is consistent with the inferred forearc basin and
accreted arc region [32]. The high-density region beneath the central and northern GSM
domain shares a similar size to the dense root proposed by Ferraccioli et al. (2011) [33].
Notably, the dense region at the central GSM is disconnected and twists southward, possibly
linked with a large fault system relevantly like the strike-slip fault with traits of a trailing
contractional imbrication fan proposed by Wu et al. (2023) based on the aeromagnetic
anomaly [32]. The results obtained from the 3D inversion of crustal density are consistent
with the previous studies, which further verifies the effectiveness of this improved gravity
inversion method.
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studies. The detailed horizontal density structures of the lower crust are presented in (a–f) with
6 km vertical spacing in the Z direction. The white line a− a′ represents the profile location of the
2D model in (r,s). (g–j) and (k–n) show the vertical density structure slices of lower crust in the Y
direction and the X direction, respectively. The depth range is 38–68 km. (o–q) show the high-density
blocks in the lower crust with the residual density ranges of 0.02–0.16 g/cm3, 0.04–0.16 g/cm3, and
0.06–0.16 g/cm3, respectively. (r,s) show the 2D geological and geophysical models unveiled by
previous studies [32,33]. Note the yellow polygons highlighting the high-density lower crust.

Table 2. Contrast of the spatial locations of the high-density lower crust between our results from the
improved inversion method based on U-net network and the previous 2D models.

Comparing Objects Density Ranges
in g/cm3

X-Axis Ranges
in km

Depth Ranges
in km

This study
0.02–0.16 245–560 40–68
0.04–0.16 260–550 40–67
0.06–0.16 300–520 40–60

Ferraccioli et al., 2011 [33] - 250–680 46–58

Wu et al., 2023 [32] - 245–670 40–58
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5. Discussion

According to the outcomes of synthetic model testing and real data application in
East Antarctica, it can be inferred that the method proposed in this study yields favorable
3D density structures. This method not only successfully restores and reconstructs the
synthetic model but also demonstrates a satisfactory concordance between the inversion
results of the field data and the synthetic model data. In terms of data fitting, the contrast
results reveal that the method proposed in this paper has obvious advantages in data
fit-ting, by means of error statistics of inversion results between the method proposed
in this paper and the deep learning inversion method without the data fitting term. The
method proposed in this study incorporates the data fitting term to constrain the inversion
process, thereby obtaining outcomes closer to the real situation and enhancing the accuracy
of the inversion results.

The method presented in this study has the potential to enhance the outcomes of 3D
density inversion for gravity data. However, it is important to acknowledge that certain
challenges persist, such as the requirement for human intervention in parameter verification
during the inversion process, which relies on empirical approaches. The quantification
and objectivity of inversion need to be improved. Meanwhile, there is a pressing need
to enhance the precision of inversion outcomes for vertically superimposed objects, a
limitation inherent to the current method and a formidable challenge in the field of gravity
inversion. Future research endeavors will focus on incorporating additional constraints
and priori information to strengthen the stability and robustness of 3D gravity inversion.

6. Conclusions

This study presents an improved 3D density inversion method for gravity data, uti-
lizing the U-net network and optimizing the existing loss function. To bolster inversion
convergence and constrain outcomes, a physical constraint term has been integrated into
this approach, quantifying the level of data fitting between the predicted and the actual
gravity anomalies. To enhance both the sample set generalization and the inversion accu-
racy, extensive training and test sets are generated by the random walk method aligned
with gravity forward theory. This methodology’s effectiveness is demonstrated through
evaluations of both a single model and a complex combination model. Through an analysis
of synthetic data, this improved inversion method demonstrates favorable outcomes in
the reconstruction of relative density. Applying this method to measured airborne gravity
data collected over the GSM of East Antarctica yields a comprehensive 3D crustal density
model. Notably, high-density bodies are identified in the lower crust beneath the central
GSM, which may reflect magmatic underplating associated with back-arc basin formation.
Moreover, the distinct density boundary between the northern and central GSM at depths
ranging from 50 to 60 km may reflect the Gamburtsev Suture, which separates the Archaean
Ruker province from the Proterozoic Gamburtsev province. Our findings provide a novel
perspective for the study of crustal structure and geological evolution in East Antarctica.
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