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Abstract: Plant diversity measurement and monitoring are required for reversing biodiversity loss
and ensuring sustainable management. Traditional methods have been using in situ measurements
to build multivariate models connecting environmental factors to species diversity. Developments
in remotely sensed datasets, processing techniques, and machine learning models provide new op‑
portunities for assessing relevant environmental parameters and estimating species diversity. In
this study, geodiversity variables containing the topographic and soil variables and multi‑seasonal
remote‑sensing‑based features were used to estimate plant diversity in a rangeland from southwest
Iran. Shannon’s and Simpson’s indices, species richness, and vegetation cover were used to mea‑
sure plant diversity and attributes in 96 plots. A random forest model was implemented to predict
and map diversity indices, richness, and vegetation cover using 32 remotely sensed and 21 geodiver‑
sity variables. Additionally, the linear regression and Spearman’s correlation coefficient were used
to assess the relationship between the spectral diversity, expressed as the coefficient of variation in
vegetation indices, and species diversity metrics. The results indicated that the synergistic use of
geodiversity and multi‑seasonal remotely sensed features provide the highest accuracy for Shannon,
Simpson, species richness, and vegetation cover indices (R2 up to 0.57), as compared to a single model
for each date (February, April, and July). Furthermore, the strongest relationship between species
diversity and the coefficient of variation in vegetation indices was based on the remotely‑sensed data
of April. The approach of multi‑model evaluations using the full geodiversity and remotely sensed
variables could be a useful method for biodiversity monitoring.

Keywords: geodiversity; remote sensing; multispectral; random forest; time series; plant diversity

1. Introduction
Assessing biodiversity over large geographical areas is a difficult task [1,2]. There

are several traditional in situ approaches for biodiversity surveying [2–4]. In this regard,
diversity indices, such as the richness, Shannon–Wiener, and Simpson indexes, including
the number of individuals within plant communities, may be used to quantify taxonomic
diversity [3,4]. Despite the fact that field‑based botanical surveys can accurately estimate
plant diversity and species composition, they are time consuming and costly, and they
often lack a complete spatial coverage [5,6]. As a result, they cannot support checking
for trends in biodiversity at large scales. Remote sensing can provide a wider view on the
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Earth’s surface across space and time [5–7] and, as a result, it has frequently been described
as a promising solution to monitor biodiversity [8,9] by stepping up monitoring processes
at various spatial and temporal scales. When remote sensing data are coupled with field
surveys, it can lead to significant improvements and understanding of the natural world.
In particular, remotely sensed imagery has become available as open data and significantly
improved monitoring of the natural habitats, which is required for biodiversity conserva‑
tion [10,11].

Recently, remotely sensed data have revolutionized scaled plant monitoring and has
been confirmed as a useful method for mapping and monitoring biodiversity [12,13]. In
contrast to other land cover types, such as forests or croplands, grasslands have not re‑
ceived much attention in the remote sensing literature [14]. In recent decades, the avail‑
ability of satellite‑based vegetation indices has increased significantly, easing the study of
all parts of the world by removing the barriers brought by accessibility and time [15,16].
Spectral diversity, which is the variability in remotely sensed data, as reflected by plants,
is the most important indirect observation approach, providing a broad range of possibil‑
ities for monitoring species diversity. Remotely sensed features, such as the vegetation
indices, have been proved to be useful estimates of productivity and plant diversity, since
they characterize vegetation attributes [16,17]; they can be used to estimate species counts
or other biodiversity‑related metrics from remote sensing data, and quantify the spatial
non‑uniformity that indicate the patterns in biodiversity [18–21]. This is based on the link
between plant biodiversity and spectral variation [18,22], according to which, the variabil‑
ity in remotely sensed spectral patterns is connected to plant diversity [23]. Accordingly,
when the plant species diversity of a specific region increases, a heterogeneous plant com‑
munity is, therefore, expected to have increased spectral diversity and variability [24].

There have been many documented efforts to monitor biodiversity by remote sens‑
ing [25–27], but most of these studies have overlooked the impact of temporal dynamics in
plant communities (i.e., phenology) on the remote sensing of plant diversity. Specifically,
remote sensing in biodiversity studies has often been confined to data gathered at a sin‑
gle time [28–30], which is usually constrained by the availability of in situ data. The lack
of focus on the temporal dimension was mainly caused by the difficulty of implementing
repetitive field data collection campaigns, which are time consuming and costly [31].

Habitat heterogeneity, defined as the spatial and temporal variability in environmen‑
tal parameters (e.g., rainfall and temperature), management processes (e.g., grazing, fire,
and mowing), and other successional shifts, have been identified as fundamental ecosys‑
tem attributes affecting the patterns of biodiversity across spatial and temporal scales [32].
We presume that by providing multi‑temporal data at fine spatial resolution and across
large geographical extents, remote sensing can be useful in estimating environmental het‑
erogeneity and thereby biodiversity. In this research, geodiversity and remotely sensed
data were used to identify how biodiversity of grasslands changes over time. The follow‑
ing objectives were set to reach the goal of the study: (i) to evaluate the capability of re‑
motely sensed features, environmental data (hereafter geodiversity), and their integration
to estimate plant diversity, (ii) to identify the best time point of the year for estimating plant
diversity for the study area, and (iii) to test the relationship between spectral and species
diversity as a prerequisite to monitor species diversity. To do so, remotely sensed data,
geodiversity features, and in situ measurements taken during the growing season in the
southwest of Iran were integrated to develop machine learning algorithms for biodiversity
modeling and prediction.

2. Materials and Methods
2.1. Study Area and Sampling Design

Dakal‑kooh is a mountainous rangeland, which was used as the study area in this
research; it covers 1756 ha, and is located in the north‑west of Fars Province, Iran (51.30◦
to 55.57◦E, and 33.32◦ to 33.37◦N; Figure 1). The elevation of the area ranges from 920 to
1391 m (Figure 1). According to the de Martonne aridity index, the climate is semi‑arid [33].
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Figure 1. Geographic location of the study area used to collect species occurrence. Upper left panel—
map of Iran showing the Fars province and the study area; lower right panel—study area showing
the soil and vegetation plot samples.

The 11‑year average rainfall is 489 mm, and the average temperature is 21 ◦C [33].
A total of 96 (10 × 10 m, Figure 1) plots were chosen at random throughout the study
area. Each plot was spatially characterized by its geographical coordinates. In these plots,
abundance (cover percentage) of all plant species was recorded between April and May
of 2020. The flora in the study region is mostly made of ephemeral and perennial forbs
and grasses [33]. The most common species are Aegilops umbellulata Zhuk, Heteranthelium
piliferum Hochst. ex Jaub., and Spach and Stipa capensis Thumb, which are accompanied
by Amygdalus eburnea Spach, Amygdalus scoparia Spach., Astragalus baba‑alliar Parsa, and
Cerasus microcarpa Boiss [33].

2.2. Data Preparation
2.2.1. Remotely Sensed Variables

Expert knowledge of vegetation, edaphic, and hydrologic characteristics were used
to select a multi‑seasonal collection of remotely sensed features. In this regard, the Google
Earth Engine (GEE) cloud computing platform was used to create multi‑seasonal Sentinel‑2
(S2) and Landsat‑8 (L8) surface reflectance image collections. For image collection, three‑
time milestones were considered: mid‑winter (February 2019), when some herbaceous
plant species start their growth; mid‑spring (April 2020) during the peak growing season;
and mid‑summer (July 2020) during the senescence of most herbaceous plants (Figure 2).
S2 monthly image collections were used to extract the mean spectral indices, and L8 datasets
were used to extract the monthly land surface temperature (LST). These processes resulted
in 32 features extracted from remotely sensed data (Table 1).
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Figure 2. Datasets, metrics, and methodological steps used in this study.

Table 1. List of the spectral and geodiversity indices used in this study.

Sentinel‑2 Features Formulae Reference

Canopy Response Salinity Index (CRSI) √
((B8A)× B4 − B3 × B2)/(B8A × B4 + B3 × B2) [34]

Enhanced Vegetation Index (EVI) 2.5 × (B8A − B4)/((B8A + 6 × B4 − 7.5 × B2 + 1)) [35]
Green‑Red Vegetation Index (GRVI) B3 − B4/B3 + B4 [21]

Green Normalized Difference Vegetation Index
(GNDVI) B8 − B3/B8 + B3 [36]

Normalized Difference Vegetation Index (NDVI) B8 − B4/B8 + B4 [37]
Normalized Difference Vegetation Index red‑edge 2

(NDVIre2) B8A − B6/B8A + B6 [35]

Normalized Difference red‑edge 1 (NDre1) B8 − B5/B8 + B5 [35]
Normalized Multiband Drought Index (NMDI) (B8A − B11 − B12)/(B8A + B11 + B12) [35]

Normalized Difference Water Index (NDWI) B8A − B11/B8A + B11 [38]
Soil‑Adjusted Total Vegetation Index (SATVI) ((B11 − B4))/((B11 + B4 + L))× (1 + L)− B12/2 [39]

Modified Soil Adjusted Vegetation Index (MASVI) 2B8 + 1 − √
(((B8 + 1)ˆ2 − 8(B8 − B4))/2) [40]

Normalized Shortwave‑infrared Difference SM Index 3
(NSDSI3) B11 − B12/B11 + B12 [41]

Triangular Chlorophyll Index red‑edge 1 (TCIrel) 1.2 × (B5 − B3) − 1.5 × (B4 − B3) ×
√
(B5/B4) [35]

Transformed Vegetation Index (TVI) ((B8 − B4/B8 + B4) + 0.5)0.5 × 100 [21]
Vegetation (V) B8/B4 [42]

Brightness Index (BI) x =
√(
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Table 1. Cont.

Sentinel‑2 Features Formulae Reference

Moisture Stress Index (MSI) B11/B8 [48]
Salinity Index (S3) B3×B4/B2 [49]

Saturation Index‑T (SI‑T) B4 − B2/B4 + B2 [43]
Second Brightness Index (BI2) √

((B4 × B4) + (B3 × B3) + (B8 × B8)/3) [50]
Soil Moisture Monitoring Index (SMMI) √(
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Landsat‑8 Features Formulas Reference

Land Surface Temperature (LST) ‑ [51]

Geodiversity variables

Altitude (ALT) Elevation above sea level [52]
Slope degree (SLP) Gradient of the slope steepness [53]

Aspect Direction of the line of the steepest descent
(r = width/height) [53]

Plan curvature (PLC) Rate of change of aspect along a contour [53]
Profile curvature (PRC) Rate of change of slope down a slope line [53]

Stream power index (SPI) A measure of the topographic control on the sediment
transport (USLE’s LS factor) [54]

Multiresolution Index of the Ridge Top Flatnes
(MRRTF) Measure of flatness and lowness [53]

Topographic position index (TPI) Difference between a cell elevation value and the
average elevation of the neighborhood around that cell [55]

Topographic Ruggedness Index (TRI) The amount of elevation difference between adjacent
cells of a digital elevation model [56]

Ultiresolution index of valley bottom flatness (MRVBF) Measure of flatness and lowness [53]
Mass Balance Index (MBI) Balance between soil mass deposited and eroded [51]

Mean annual rainfall (Rain) The monthly average rainfall

pH Potential of hydrogen: scale used to specify the acidity
or basicity of an aqueous solution.

Electrical conductivity (EC) The total of soil anions and cations
Sand percentage (Sand) Share of sand in the soil particle size distribution
Clay percentage (Clay) Share of clay in the soil particle size distribution ‑

Silt percentage (Silt) Share of silt in the soil particle size distribution ‑
Soil organic carbon content (OC) Decayed plant residues and microorganisms

Soil organic matter content (OM)
Detritus of plant and animal, soil microbes, and

substances that soil microbes synthesize at various
stages of decomposition.

Soil Nitrogen content (N) Both organic and inorganic forms of Nitrogen in the soil

2.2.2. Geodiversity Variables
Geodiversity variables used in this study were a combination of topographic, climatic,

and edaphic variables (Figure 2). Twelve topographic factors were considered, namely the
altitude (ALT), slope degree (SLP), aspect (ASP), profile (PRC) and plan curvatures (PLC),
stream power index (SPI), Multiresolution Index of the Ridge Top Flatness (MRRTF), topo‑
graphic position index (TPI), topographic wetness index (TWI), Topographic Ruggedness
Index (TRI), multiresolution index of valley bottom flatness (MRVBF), and Mass Balance
Index (MBI). The freely available ALOS PALSAR—Radiometric Terrain Correction DEM
(https://vertex.daac.asf.alaska.edu/ accessed on 16 November 2022), with a resolution of
12.5 m, was used to generate the topographic layers.

Long‑term mean annual rainfall (Rain), calculated based on the datasets provided by
the Meteorological Office of Fars province (http://www.farsmet.ir accessed on 16 Novem‑
ber 2022), was used as a climatic variable. Moreover, soil acidity (pH), electrical conduc‑
tivity (EC), sand, clay, and silt percentages, organic carbon (OC) content, organic matter
content (OM), and nitrogen content (N) were used to specify the edaphic features. In this re‑
gard, 50 samples were collected in the upper layer (0 to 30 cm in depth) of the soils from the

https://vertex.daac.asf.alaska.edu/
http://www.farsmet.ir
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study area during the study of Rahmanian et al. [2]. These were used herein to evaluate the
relevant soil parameters across the study area (Figure 1). Procedures used to process the
soil samples and to estimate the relevant properties are given in Rahmanian et al. [2]. Then,
the edaphic values were interpolated using the inverse distance weighting (IDW) interpo‑
lation method to generate raster layers. In IDW interpolation, the closest measured values
place more weight on determining the anticipated value than those further away [57]. IDW
was performed by using the ArcGIS geoprocessing tool (version 10.8).

2.3. Statistical Analysis
2.3.1. Statistical Workflow

This study considered the available geodiversity and time series of remotely sensed
variables that can predict the plant diversity metrics in the study area. To find the most im‑
portant variables that affect plant diversity, a multicollinearity analysis was used. To char‑
acterize plant diversity, in addition to the species richness and vegetation cover that were
recorded during field sampling in each plot, the most popular diversity metrics, such as the
Simpson (sensitive‑to‑dominant species) and Shannon (sensitive‑to‑rare species) indices,
were estimated for each plot. To map and predict species diversity (Shannon’s, Simpson’s
indexes), and species richness and vegetation cover, several random forest (RF) models
were developed based on the set of remotely sensed and geodiversity variables, as well as
based on a combination of them in three seasons (winter, spring, and summer). To find out
which variables placed the most importance on predicting plant diversity and vegetation
attributes, a variable importance analysis was implemented. In addition, spectral diversity
is characterized hereafter by the coefficient of variation (CV), which reflects the variation
in remote sensing data spectrum based on the patterns in vegetation characteristics of the
plant species. Since CVs of vegetation indices are related to traditional measures of plant
diversity [58], the relationships between CVs of vegetation indices, species diversity, and
vegetation cover were tested to estimate plant diversity.

2.3.2. Preparation of Variables
By multicollinearity testing of independent variables, only the most influential vari‑

ables were kept among the associated pairs using a stepwise process. The strongly associ‑
ated variables were excluded to avoid potential overfitting issues. The “vifstep” function
of “usdm” R package was used to examine the collinearity among the 53 variables used
in this study. The variance inflation factor (VIF) and tolerance (T) were used as metrics in
multicollinearity testing. The presence of significant collinearity was defined for the condi‑
tion in which the VIF index was larger than 5.0 and T was less than 0.1 [59]. By locating and
eliminating strongly associated variables, the size of the datasets was reduced (Table 2).

Diversity metrics, namely species richness, Shannon and Simpson indices, and also
vegetation cover, were measured in this study. Species richness stands for the number of
species for which ground sampling makes it easier to obtain an accurate value. Percentage
cover is an abundance measurement metric that indicates how much space a species oc‑
cupies in a plot, and it was recorded during the field sampling. R software (version 3.5.1)
was used to calculate Shannon’s H and Simpson’s D diversity indices by implementing
the package “vegan” (R Core Team, R Foundation for Statistical Computing, Vienna, Aus‑
tria). These two indices take species uniformity into account and were calculated using the
following equations [60,61]:

Shannons Index (H) = −∑[pi × ln(pi)] (1)

Simpsons Index (D) = 1/ ∑ (pi)
2 (2)

where pi is the ratio (n/N) of the number of individuals of one species (n) to the total number
of individuals (N). The number of species present in an environment is described as the
species richness [62].
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Table 2. Results of general linear models testing the effects of geodiversity and spectral variables on plant species diversity (Shannon H and Simpson), richness,
and vegetation cover in the selected seasons.

Shannon Simpson

February April July February April July

R R2 p value R R2 p value R R2 p value R R2 p value R R2 p value R R2 p value

GNDVI 0.15 0.02 0.08 0.27 0.11 0.002 0.15 0.03 0.058 0.06 0.01 0.13 0.26 0.08 0.005 0.13 0.01 0.15

GRVI 0.13 0.01 0.13 0.28 0.07 0.01 0.14 0.025 0.09 0.18 0.03 0.06 0.25 0.05 0.025 0.21 0.05 0.02

MASVI 0.32 0.08 0.006 0.48 0.18 <0.001 0.24 0.08 0.007 0.34 0.13 0.001 0.47 0.16 <0.001 0.37 0.14 <0.001

Ndre1 0.15 0.02 0.09 0.36 0.15 <0.001 0.20 0.046 0.035 0.08 0.02 0.11 0.36 0.13 <0.001 0.16 0.02 0.116

NDVIre2 0.16 0.02 0.09 0.35 0.15 <0.001 0.19 0.045 0.03 0.1 0.02 0.09 0.35 0.13 <0.001 0.16 0.01 0.126

SATVI 0.24 0.06 0.01 0.44 0.17 <0.001 0.24 0.084 0.006 0.32 0.15 0.002 0.47 0.18 <0.001 0.37 0.15 <0.001

NDVI 0.07 0.006 0.46 0.28 0.06 0.02 0.19 0.04 0.047 0.28 0.08 0.008 0.35 0.11 0.002 0.23 0.03 0.051

TCIre1 0.12 0.002 0.37 0.34 0.13 <0.001 0.17 0.007 0.21 0.14 0.01 0.15 0.38 0.14 <0.001 0.11 0.008 0.21

VSDI 0.14 0.01 0.12 0.33 0.13 <0.001 0.18 0.016 0.14 0.12 0.04 0.04 0.33 0.12 0.001 0.14 0.01 0.17

V 0.07 0.006 0.46 0.28 0.06 0.02 0.12 0.016 0.14 0.28 0.08 0.008 0.35 0.11 0.002 0.16 0.01 0.16

TVI 0.19 0.04 0.03 0.34 0.13 <0.001 0.13 0.007 0.512 0.13 0.03 0.07 0.37 0.14 <0.001 0.08 −0.01 0.72

EVI 0.006 −0.01 0.78 0.19 0.02 0.09 0.12 0.012 0.168 0.25 0.07 0.01 0.32 0.08 0.005 0.20 0.03 0.05

CRSI 0.40 0.16 0.001 0.49 0.19 <0.001 0.05 0.013 0.80 0.32 0.14 0.001 0.41 0.14 <0.001 0.13 −0.01 0.83

Richness Vegetation cover

February April July February April July

R R2 p value R R2 p value R R2 p value R R2 p value R R2 p value R R2 p value

GNDVI 0.06 0.001 0.34 0.10 0.02 0.13 0.10 0.006 0.23 0.005 0.01 0.64 0.04 0.003 0.39 0.01 0.03 0.87

GRVI 0.22 0.049 0.03 0.33 0.12 0.001 0.37 0.14 <0.001 0.11 0.07 0.2 0.16 0.04 0.03 0.08 0.005 0.44

MASVI 0.22 0.03 0.06 0.27 0.06 0.01 0.29 0.09 0.005 0.06 0.01 0.61 0.06 0.004 0.41 0.05 0.008 0.52

Ndre1 0.10 0.005 0.24 0.22 0.06 0.01 0.16 0.023 0.10 0.05 0.01 0.4 0.09 0.001 0.29 0.06 0.008 0.52

NDVIre2 0.11 0.005 0.23 0.21 0.06 0.01 0.17 0.025 0.09 0.04 0.01 0.41 0.09 0.002 0.27 0.07 0.007 0.49
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Table 2. Cont.

Richness Vegetation cover

February April July February April July

R R2 p value R R2 p value R R2 p value R R2 p value R R2 p value R R2 p value

SATVI 0.20 0.03 0.06 0.25 0.05 0.02 0.26 0.08 0.008 0.09 0.03 0.51 0.06 0.005 0.43 0.05 0.007 0.51

NDVI 0.15 0.02 0.09 0.21 0.06 0.14 0.17 0.03 0.06 0.11 0.04 0.93 0.04 0.007 0.21 0.06 0.013 0.97

TCIre1 0.12 0.002 0.36 0.22 0.07 0.01 0.05 0.009 0.57 0.04 0.01 0.5 0.07 0.001 0.35 0.03 0.009 0.57

VSDI 0.09 0.005 0.23 0.20 0.06 0.02 0.18 0.016 0.14 0.04 0.02 0.42 0.10 0.005 0.24 0.09 0.003 0.38

V 0.15 0.02 0.09 0.22 0.07 0.01 0.08 0.002 0.27 0.01 0.01 0.93 0.04 0.006 0.22 0.14 0.008 0.52

TVI 0.13 0.004 0.25 0.21 0.05 0.03 0.02 0.013 0.95 0.01 0.01 0.65 0.03 0.008 0.54 0.22 0.03 0.07

EVI 0.11 0.003 0.27 0.15 0.02 0.11 0.12 0.005 0.30 0.13 0.07 0.51 0.01 0.01 0.62 0.09 0.007 0.50

CRSI 0.21 0.03 0.06 0.24 0.05 0.03 0.26 0.019 0.12 0.06 0.01 0.59 0.06 0.004 0.42 0.18 0.005 0.33
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To monitor spectral diversity, which refers to the variation in remote sensing measure‑
ments, the vegetation indices (GNDVI, GRVI, MASVI, Ndre1, NDVIre2, SATVI, TCIre1,
VSDI, V, TVI, EVI, MSAVI, and CRSI) were used as input for estimating the coefficient of
variation (CV) between all the pixels inside the study area. The CV was calculated across
the entire study area as the standard deviation divided by the mean value of all pixels lo‑
cated in a reference moving window of 3 × 3 pixels [63,64]. Then, the pixel values were
extracted for the 96 studied plots as these pixel values relate to conventional metrics of
biodiversity [63].

The linear regression and Spearman’s correlation coefficient were used to find out
what kind of relationship exists between CV of vegetation indices and plant diversity met‑
rics (Shannon, Simpson, richness, and vegetation cover). By this approach, the aim was to
find if there was a strong relationship, and which relationship was the strongest between
the coefficient of variation in vegetation indices and diversity metrics.

2.4. Modeling Species Diversity by Random Forest
Several random forest (RF) machine learning models were used to map and predict

species diversity (Shannon’s, Simpson’s, and richness indexes) and vegetation cover, tak‑
ing the remotely sensed, topographic, climatic, and edaphic variables as inputs. A training
sample accounting for 60% of the plots was used. RF is a machine learning algorithm that
consists of an ensemble of bootstrapped trees, which are used to reach a vote‑based deci‑
sion, making it useful and performant in classification and regression problems [65]. RF
generates accurate forecasts that are simple to comprehend, and it is able to effectively
handle large datasets. Compared to the decision tree algorithm, RF is more accurate in
forecasting outcomes [66,67].

In total, 48 models were developed to predict four plant diversity indices (Shannon,
Simpson, richness and vegetation cover) by considering four time milestones (February,
April and July, and their aggregate expressed as multi‑seasonal) and three groups of vari‑
ables (geodiversity, remotely sensed, and a combination of the two). In detail, a subset of
sixteen RF models were based on the remotely sensed data and were developed for each of
the plant diversity indices (Shannon and Simpson), species richness, and vegetation cover;
of these, three models were developed to predict plant diversity for each time milestone
(February, April, and July), with remotely sensed variables (Table A1, Appendix A), and
one model was used to predict plant diversity for all time milestones (multi‑seasonal) con‑
sidered together (Table A1, Appendix A). Moreover, a subset of sixteen RF models were
developed taking the geodiversity variables as inputs (Table A1, Appendix A) to predict
diversity indices (Shannon and Simpson), richness and vegetation cover for each time mile‑
stone, and one model using geodiversity variables was developed to predict plant diversity
for all time milestones considered together (Table A1, Appendix A). Finally, twelve models
were developed using the final set of remotely sensed and geodiversity variables (Table A1,
Appendix A) for each time milestone (February, April, and July), and one model was de‑
veloped for all the time milestones (multi‑seasonal), with a combination of all geodiversity
and remotely sensed variables (Table A1, Appendix A). Then, the maps of diversity metrics
were prepared based on the final set of remotely sensed and geodiversity variables.

To understand the importance of geodiversity and remotely sensed variables in pre‑
dicting plant diversity metrics of each time milestone (February, April, and July) by RF
models, variable importance measure was estimated [65,68] in “Caret” package of R [69].
Ten of the most important variables were selected based on their scores, which were scaled
from 0 to 100 [70].

RF models were developed in “randomForest” R package, and two main hyperpa‑
rameters related to this model were tuned to enhance the modelling performance in terms
of learning and generalization: the number of random variables used in each tree (mtry)
and the number of regression trees (ntree), which was optimized based on an out‑of‑bag
estimate error [65]. To infer the optimal values of these hyperparameters, a ten‑fold cross‑
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validation resampling with 50 iterations was applied to the training samples. For more
details about the optimal values of hyperparameters, see Table 3.

Table 3. Accuracy assessment results of single‑date and multi‑seasonal RF models based on each of
the geodiversity‑ or remotely sensed‑only variables and their hyperparameter data.

Time Scale Multi‑Seasonal April

Diversity
Metrics Variables RMSE R2 MAE Tuning

Parameters RMSE R2 MAE Tuning
Parameters

Richness

All 0.075 0.27 0.058 mtry = 67;
ntree = 600 0.08 0.26 0.06 mtry = 2;

ntree = 500

Geodiversity 0.087 0.2 0.060 mtry = 21;
ntree = 500 0.08 0.25 0.061 mtry = 2;

ntree = 500
Remotely

sensed 0.091 0.20 0.062 mtry = 49;
ntree = 550 0.08 0.19 0.062 mtry = 2;

ntree = 500

Vegetation
cover

All 0.110 0.20 0.092 mtry = 67;
ntree = 550 0.112 0.17 0.085 mtry = 32;

ntree = 550

Geodiversity 0.119 0.19 0.089 mtry = 11;
ntree = 600 0.112 0.17 0.086 mtry = 2;

ntree = 500
Remotely

sensed 0.117 0.19 0.089 mtry = 49;
ntree = 550 0.11 0.21 0.085 mtry = 2;

ntree = 500

Shannon

All 0.290 0.28 0.237 mtry = 34;
ntree = 500 0.312 0.28 0.239 mtry = 17;

ntree = 550

Geodiversity 0.290 0.18 0.201 mtry = 21;
ntree = 500 0.338 0.26 0.27 mtry = 10;

ntree = 500
Remotely

sensed 0.310 0.25 0.228 mtry = 25;
ntree = 500 0.368 0.20 0.293 mtry = 2;

ntree = 500

Simpson

All 0.021 0.44 0.018 mtry = 2;
ntree = 500 0.023 0.43 0.019 mtry = 2;

ntree = 450

Geodiversity 0.020 0.40 0.017 mtry = 2;
ntree = 500 0.024 0.39 0.018 mtry = 2;

ntree = 450
Remotely

sensed 0.020 0.26 0.019 mtry = 4;
ntree = 500 0.027 0.25 0.022 mtry = 2;

ntree = 450

February July

Diversity
Metrics Variables RMSE R2 MAE Tuning

parameters RMSE R2 MAE Tuning
parameters

Richness

All 0.080 0.25 0.063 mtry = 32;
ntree = 500 0.083 0.22 0.064 mtry = 9;

ntree = 500

Geodiversity 0.085 0.24 0.063 mtry = 10;
ntree = 500 0.083 0.21 0.064 mtry = 2;

ntree = 450
Remotely

sensed 0.080 0.18 0.063 mtry = 2;
ntree = 500 0.089 0.22 0.069 mtry = 9;

ntree = 450

Vegetation
cover

All 0.118 0.17 0.093 mtry = 2;
ntree = 500 0.124 0.21 0.095 mtry = 2;

ntree = 500

Geodiversity 0.124 0.17 0.098 mtry = 2;
ntree = 450 0.127 0.20 0.094 mtry = 2;

ntree = 500
Remotely

sensed 0.121 0.17 0.095 mtry = 2;
ntree = 450 0.122 0.20 0.095 mtry = 2;

ntree = 500

Shannon

All 0.330 0.27 0.248 mtry = 28;
ntree = 500 0.321 0.27 0.244 mtry = 19;

ntree = 500

Geodiversity 0.309 0.30 0.241 mtry = 2;
ntree = 400 0.325 0.27 0.243 mtry = 2;

ntree = 500
Remotely

sensed 0.406 0.28 0.314 mtry = 2;
ntree = 400 0.336 0.25 0.264 mtry = 2;

ntree = 500

Simpson

All 0.023 0.42 0.018 mtry = 2;
ntree = 500 0.025 0.38 0.021 mtry = 2;

ntree = 500

Geodiversity 0.023 0.53 0.017 mtry = 2;
ntree = 500 0.025 0.37 0.021 mtry = 11;

ntree = 500
Remotely

sensed 0.023 0.51 0.018 mtry = 2;
ntree = 500 0.027 0.24 0.0226 mtry = 9;

ntree = 500
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Evaluation of the Models’ Performance
Spatial distribution of the Shannon’s, Simpson’s, richness’, and vegetation cover’s in‑

dexes in the three studied seasons was predicted by RF (Figure 3). Based on the species
presence in the sampling plots, the values of predicted diversity, vegetation cover, and
richness were extracted from the maps obtained for the considered seasons. Models’ per‑
formance was evaluated by using the conventional methods of comparing the predicted
values against those from the testing samples (40% of plots Section 2.1). The used metrics
were the root mean square error (RMSE), mean absolute error (MAE), and the coefficient
of determination (R2) [71,72].Remote Sens. 2023, 15, x FOR PEER REVIEW 11 of 23 
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Figure 3. Spatial distribution of richness for February (a), April (b), and July (c); vegetation cover for
February (d), April (e), and July (f); Shannon for February (g), April (h), and July (i); and Simpson
for February (j), April (k), and July (l).

3. Results
3.1. Multicollinearity of Independent Variables

The multicollinearity test results showed that lithology, wind, SLP, ASP, Rain, PLC,
PRC, TWI, NSDSI3, GNDVI, NDVI, SATVI, VDSI, GRVI, TVI, ClaI, GRVI, NDVIre1, Ndre1,
BI, S3, SI, NMDI, Int1, Int2, and BI2 were strongly correlated with other variables for the
February dataset; therefore, these variables were excluded. Wind, SLP, sand, NDSI3, GSI,
SI, GRVI, OC, BI, CaI, NDVIre, NDre1, GSI, TVI, Int1, Int2, NDWI, SI, GNDVI, CalsI, CI, V,
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SMMI, SAVI, MASVI, VDSI, and MSI were significantly correlated with other variables in
the April dataset, and, therefore, they were excluded. For similar reasons, wind, sand, SI,
NSDSI3, OC, Int1, Int2, CI, LSWI, BI, BI2, MSAVI, GNDVI, GRVI, SMMI, CalcI, NDre1, and
NDWI were deleted from the July dataset. The list of variables kept for further analysis is
shown in Table A1.

3.2. Relationship between Species and Spectral Diversity
The results of the general linear model analysis demonstrated a significant positive

relationship (p < 0.05) between the CV of vegetation indexes, diversity indices, and veg‑
etation cover in all three seasons. However, the mid‑spring had the highest relationship
between species diversity and the CV of vegetation indices. Among the diversity metrics,
Shannon’s and Simpson’s indices showed a stronger relationship with spectral diversity
(expressed as the CV of vegetation indices), as opposed to the species richness and vege‑
tation cover (Table 2). These indices were correlated with most of the CV of vegetation in
mid‑spring (see Table 2 for more details). Furthermore, for mid‑winter and mid‑summer
there were few significant relationships between the diversity indices and the CV of vege‑
tation indices (Table 2). In mid‑winter, TVI, MASVI, and CRSI significantly correlated with
the Shannon index, and MASVI, SATVI, NDVI, VSDI, V, EVI, and CRSI had a significant
correlation with the Simpson index. Moreover, only GRVI had a correlation with species
richness. In mid‑summer, MASVI, Ndre1, NDVIre2, SATVI and NDVI, SATVI and MASVI,
GRVI, and MASVI and SATVI had significant correlations with the Shannon, Simpson, and
richness indexes, respectively.

3.3. Performance of Plant Diversity Prediction and Mapping Accuracy
A summary of the models developed by using the full set of geodiversity and remotely

sensed variables and testing samples is presented in Table 3. The results indicated that
predictions of the examined diversity indices and species richness were more accurate
when using multi‑seasonal models for Shannon’s (R2 = 0.28, RMSE = 0.29, MAE = 0.237),
Simpson’s (R2 = 0.44, RMSE = 0.02, MAE = 0.018), and species’ richness indexes (R2 = 0.27,
RMSE = 0.075, MAE = 0.58) as well as vegetation cover (R2 = 0.2, RMSE = 0.11, MAE = 0.092).
Regarding the single date models, the best results were produced using the April com‑
bined data model; results for Shannon’s (R2 = 0.28, RMSE = 0.312, MAE = 0.239), Simp‑
son’s (R2 = 0.43, RMSE = 0.023, MAE = 0.019), and species’ richness indexes (R2 = 0.26,
RMSE = 0.08, MAE = 0.6), as well as vegetation cover (R2 = 0.17, RMSE = 0.112, MAE = 0.085),
are shown in Table 3.

The comparison of the validation results for the best‑performing diversity models
based on all variables, geodiversity‑ or remotely sensed‑only variables, indicated that us‑
ing the first option returned more accurate predictions in multi‑seasonal and single‑date
models, except for vegetation cover (R2 = 0.21; RMSE = 0.11; MAE = 0.85) in April, which
was more accurately predicted by the use of remotely sensed variables, as well as Shan‑
non’s (R2 = 0.3; RMSE = 0.3; MAE = 0.24) and Simpson’s indices (R2 = 53; RMSE = 0.023;
MAE = 0.017), for February models, which were more accurately predicted by geodiversity
variables. Moreover, the accuracy results obtained from all single‑date and multi‑seasonal
models suggest that models predicting the Simpson’s diversity were the best performing
ones (Table 3). As the most precise models using the entire geodiversity and remotely
sensed datasets, three single dates are shown in Figure 3 to depict the mapping of the best
plant diversity prediction based on the RF models.

3.4. The Most Predictive Independent Variables
As shown in Figures 4–6, the results indicate the relevance of the best‑selected models

for species diversity, richness, and vegetation cover indicators. The findings on the vari‑
able importance analysis revealed that in mid‑winter (February) and mid‑summer (July),
remotely sensed variables had more importance than geodiversity variables (Figures 4
and 6). In this regard, Soil Adjusted Total Vegetation Index (SATVI), Ferrous Iron (FeI), En‑
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hanced Vegetation Index (EVI), Saturation Index‑T (SI‑T), Canopy Response Salinity Index
(CRSI), Carbonate Index (CaI), Normalized Difference Vegetation Index (NDVI), Normal‑
ized Difference red‑edge 1 (NDre1), and Green Normalized Difference Vegetation Index
(GNDVI) were the most important remotely sensed variables among the spectral variables
in mid‑winter for modeling and predicting the diversity (Figure 4), whereas Topographic
Ruggedness Index (TRI), Mass Balance Index (MBI), and Plan Curvature (PLC) were the
most important geodiversity variables (Figure 4).
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are shown in blue.

Regarding the most important variables in mid‑summer (July), land surface temper‑
ature (LST), Canopy Response Salinity Index (CRSI), Hue Index (HI), Soil Adjusted Total
Vegetation Index (SATVI), Normalized Difference red‑edge 1 (Ndre1), and Ferrous iron
(FeI) were the most important spectral variables while rainfall (Rain), altitude (ALT), To‑
pographic Wetness Index (TWI), nitrogen content (N), electrical conductivity (EC), and
slope (SLP) were the most important geodiversity variables that influenced the prediction
of Shannon’s, Simpson’s, and richness’ indexes, as well as vegetation cover (Figure 6).

In contrast, in mid‑spring (April), the geodiversity variables were more important
compared to the remotely sensed variables in modeling and predicting the vegetation
cover, richness, and species diversity. For instance, the geodiversity variables, including
Mass Balance Index (MBI), rainfall (Rain), Topographic Wetness Index (TWI), Topographic
Ruggedness Index (TRI), lithology, altitude (ALT), silt, Multiresolution Index of the Ridge
Top Flatness (MRRTF), and profile curvature (PRC), and remotely sensed variables, in‑
cluding land surface temperature (LST), Calcareous Sedimentary Rocks Index (CalcI), and
Salinity Index (S3), were the important variables (Figure 5).

4. Discussion
In this study, test results for the best‑performing diversity models indicated that the

full set of predictor variables was more accurate than the subsets of variables taken sepa‑
rately (spectral‑ or geodiversity data) in multi‑seasonal and single‑date models (Table 3),
which is in agreement with findings of Chrysafis et al. [73,74] and Senf et al. [75]. As for
this study, the accuracy of the February, April, and July models was significantly enhanced
when remotely sensed and geodiversity variables were combined. This is related to the
relative importance of the input variables in each model, which leads to different contribu‑
tions to model fitting. The reason is that RF is not a parsimonious method and uses all of
the variables in the datasets to make predictions [76]. In addition to that, the predictions
of plant diversity by the use of combined geodiversity and time series of remotely sensed
data had a greater accuracy on a multi‑seasonal model compared to single dates. This may
be related to the fact that multi‑seasonal satellite imagery captures the whole spectrum of
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phenological variations in various species, boosting the spectral differentiation [74,77,78].
The effectiveness of multi‑seasonal models of this study is consistent with prior research
findings. For example, the combination of two remotely sensed images recorded in winter
and summer periods increased forest tree diversity prediction performance in northern
Greece [79].

Concerning the single dates, the prediction of species diversity was found to be more
accurate on the scenes acquired in April compared to those of February and July. This may
be due to the optimal vegetation and high photosynthesis of April that enabled the captur‑
ing of the vegetation changes in the reflectance of fully formed leaves. The reduced photo‑
synthetic activity of both evergreen and deciduous plants, as well as the water deficit in the
preceding months, might explain the image’s low accuracy in July. Additionally, the poor
accuracy in February might be because the leaf emergence did not start for many of the de‑
ciduous plants in the area. To back up these findings, a previous study has shown that the
detection of species diversity is most accurate during the change over seasons (February
in our instance), while spectral imaging precision is the highest during the growing sea‑
son [79]. In contrast, Torresani et al. [80] found a greater link between tree species diversity
and variance in reflectance as of July in south Tyrol (Italy). Additionally, Arekhi et al. [81]
stated that the image taken in the summer helped to develop the most appropriate model
by examining the link between various Landsat TM spectral bands (original and synthetic)
and tree diversity (Shannon’s index) in a temperate forest from Turkey.

Vegetation indices (VI) were found to be important parameters for monitoring plant
diversity in the study area. The spectral diversity measured by the coefficient of variation
in vegetation indices (CV) measures the amount of variation stored in each vegetation in‑
dex, and this variability is thought to imply increased environmental heterogeneity related
to diverse species composition and species diversity [82]. The results indicated a signifi‑
cant relationship between spectral diversity, calculated as the coefficient of variation in
vegetation indices, and species diversity, calculated as Shannon’s diversity index, Simp‑
son’s diversity index, species richness, and vegetation cover. The CV demonstrates that
the three seasons hold separate mechanisms in controlling this variation. In comparison
to winter and summer, in the spring there is a stronger relationship between the increased
CV of vegetation indices and the increase in plant diversity metrics that reflects the hetero‑
geneity of the vegetation spectrum caused by some variability in species characteristics,
including phenological and physiological traits of plant species. As found in this study,
remotely sensed vegetation indices help in estimating the plant diversity. This result is
consistent with previous studies [83–85]. Moreover, the results of this study showed that
the relationship between Shannon’s and Simpson’s diversity index and the CV of vegeta‑
tion indices as spectral diversity were stronger than the species richness and vegetation
cover. Both Simpson and Shannon diversity indices are metrics that consider the abun‑
dance of species in a given plot. However, species richness values may appear to be high
due to the rare species that are present in the plots. Compared to the spectral diversity that
depends on the relative abundance of each species, it has been demonstrated that Shannon
and Simpson indices, which take species abundance into account, are more accurate.

Concerning the variable importance of the models used in this study, diversity in‑
dices of different seasons were not equally related to the landscape features. For instance,
the most important variables affecting plant diversity metrics were topographic variables
and vegetation indices in winter. In spring, topographic variables had the most important
role, and in summer, vegetation indices and edaphic variables were among the most im‑
portant factors affecting plant diversity metrics [86]. Due to the mountainous nature of
the studied area, it is likely that complex topographic features have shaped a variety of
microclimates over a short distance [87], which could provide suitable microhabitats for a
wide range of plant species holding different phenological and morphological character‑
istics [88]. Therefore, in this study, the topographic variables may have influenced plant
diversity in summer and spring. Previous research confirmed the important role of topo‑
graphical variables on plant diversity. Robinson et al. [89] stated that elevation is essential
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for diversity estimations. Moreover, across the United States, Read et al. [90] have found
that tree diversity was positively associated with elevation, slope, and aspect.

A higher importance of vegetation indices on plant diversity in winter can be due
to the role of winter cold in limiting vegetation and subsequently plant diversity in the
mountainous rangelands. In this regard, some vegetation indices, such as EVI and SATVI,
showed these changes to be better than others. This may be due to a higher sensitivity of
EVI to seasonal changes in canopy’s biophysical attributes than other vegetation indices,
which is in line with the previous study by Galvão et al. [91]. Moreover, SATVI has been
demonstrated to capture temporal changes in grassland vegetation cover more efficiently
than other vegetation indices because it relates with both live and senescent vegetation
cover [39,92,93], potentially identifying changes related to vegetation. Interestingly, the
variables characterizing the severe vegetation loss in July included high land surface tem‑
perature (LST), soil salinity, and deficit of rainfall, which are completely related to the
condition of the arid regions in July.

Protecting biodiversity and ecosystem functioning is important for the delivery of
basic services to human society. However, there are limitations in monitoring species di‑
versity and figuring out the environmental factors that affect it in various geographic se‑
tups. The accelerating loss of biodiversity makes this problem even more important. It
should be noted that ecosystem functions are rarely quantified, especially across large ar‑
eas [94]. To solve this problem, satellite remote sensing, with relatively high temporal and
spatial resolutions, offers global coverage and continuous measurements of plant diversity
in space [95].

Among the limitations of this study were the scale of the study area and the rela‑
tively small number of samples, which were not especially well distributed throughout
the region due to the severe topographic barriers in the study area. New opportunities to
simultaneously measure plant structure and terrain morphology at fine spatial scales are
presented by recent developments in airborne laser scanning (ALS). Therefore, it is neces‑
sary to address these issues in future studies by directly measuring environmental factors
with grain sizes as small as tens of meters, which can reveal links between biodiversity and
geodiversity at various scales.

Although the samples of this study were sufficient for conventional machine learn‑
ing models, they were not optimal for deep learning. As a result, having more samples
would enable the use of deep learning, which may prove more accurate. Therefore, these is‑
sues could be considered in future studies. Because grasslands located in different biomes
clearly differ in the properties of plant species that inhabit them, the remotely sensed eval‑
uation of their spectral diversity still needs to be biome‑specific. It is also important to
conduct similar studies on different scales to check whether the spectral diversity is scale‑
dependent or not.

5. Conclusions
This study provides insights into the usefulness of geodiversity and seasonal remotely

sensed data in forecasting plant diversity patterns in dry rangelands. A non‑linear model
was used to predict vegetation cover, diversity, and richness. The link between plant diver‑
sity and reflectance is season‑dependent, according to this study. The results complement
the current knowledge, which is typically based on assessing the species diversity in the
growing season. The accuracy of the models was enhanced by the use of satellite images
taken during the peak of photosynthetic output and vegetation optimum (i.e., April). On
the other hand, the use of satellite images taken in the middle of winter, when the leaf emer‑
gence for all deciduous species from the area is still incomplete, has led to a level of diver‑
sity, which is less than the actual level of diversity. Moreover, in vegetation diversity mod‑
eling, remotely sensed data might be more relevant than geodiversity data in winter and
summer. Despite that, the geodiversity data had a greater contribution to the species di‑
versity in the spring. Such evidence supports the integration of geodiversity and remotely
sensed data for plant diversity monitoring and mapping across landscapes. The results
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of such studies can be synthesized to provide documented information on plant diversity,
which, in turn, will promote the conservation in rangeland ecosystems and will make it
easier for ecologists to comprehend the temporal and spatial patterns of biodiversity.
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Appendix A

Table A1. Selected variables for modeling plant diversity in single‑date and multi‑seasonal models
for each time milestone (February, April, and July).

Time Scale Model Variable

February

Geodiversity TRI, TPI, MRVBF, MRRTF, MBI, Silt, ALT, pH, OM, EC, TWI, Rain, PRC, PLC, N, ASP

Remotely sensed NDWI, NDVIre2, NDre1, VSDI, SI, SATVI, MSI, HI, GNDVI, FeI, EVI, CRSI, CI, CalcI, CaI

All data VSDI, SI, SATVI, NDWI, NDVIre2, NDre1, MSI, HI, GNDVI, FeI, EVI, CRSI, CI, CalcI, CaI, TRI,
TPI, MRVBF, MRRTF, MBI, Silt, ALT, pH, OM, LST, CN, EC, CLY, TWI, Rain, PRC, PLC, N, ASP

April

Geodiversity ASP, ALT, PLC, PRC, Rain, Silt, TWI, EC, N OM, MBI, MRRTF, MRVBF, TPI, TRI, Lithology, Cly

Remotely sensed EVI, BI2, CalcI, CRSI, FeI, HI, NDVIre2, NMDI, SATVI, S3, TCIre1, LST, NDre2

All data NDVI, ASP, ALT, CN, EVI, EC, N, OM, PH, PLC, PRC, Rain, Silt, TWI, MBI, MRRTF, MRVBF, TPI,
TRI, BI2, CalcI, CRSI, FeI, HI, NDVIre2, NMDI, SATVI, S3, TCIre1, Lithology, Clay, LST, NDre2

July

Geodiversity ASP, ALT, Clay, EC, N, OM, pH, PLC, PRC, RN, SLP, SLT, TWI, NMDI, GRVI, Lithology, MBI,
MRRTF, MRVBF, TPI

Remotely sensed EVI, FeI, GSI, HI, N, NDVI, LST, NDre2, S3, V, VDSI, NDVIre2, TCIre1, SATVI, CRSI

All data
ASP, ALT, Clay, EC, EVI, FeI, GSI, HI, N, NDVI, OM, PH, LST, PLC, PRC, RN, SLP, SLT, TWI,
NDre2, NMDI, GRVI, MSI, TVI, S3, V, VDSI, Lithology, NDVIre2, TCIre1, SATVI, MBI, MRRTF,
MRVBF, TPI, CN, CRSI

Multi seasonal

Geodiversity ASP, ALT, Cly, EC, N, OC, pH, PLC, PRC, Rain, SLP, Silt, TWI, MBI, MRRTF, MRVBF, TPI, TRI,
CN

Remotely sensed

BI2_April, CalcI_April, CaI_April, EVI_April, HI_April, LST_April, NDVI_April, NDre2_April,
NMDI_April, NDWI_April, CRSI_April, MSAVI_April, SAVI_July, SMMI_July, TVI_July, V_July,
VDSI_July, NDVIre1_July, TCIre1_July, SAVI_July, CRSI_July, LSTJ, LST_July, BI2_April,
CalcI_April, FeI_April, GSI_April, NDVIre2_April, NMDI_April, SMMI_April, TCIre1_April,
LST_April, BI_Feb, BI2_Feb, CaI_Feb, CalcI_Feb, CRSI_Feb, EVI_Feb, FeI_Feb, GNDVI_Feb,
GSI_Feb, MSI_Feb, NDre2_Feb, NDVIre2_Feb, NDWI_Feb, SATVI_Feb, SMMI_Feb

All data

ASP, ALT, BI, CaI, CalcI, CLY, EC, EVI, HI, LST, N, NDVI, OC, PH, PLC, PRC, Rain, SLP, Silt,
TWI, NDre2_July, NMDI_July, NDWI_July, CRSI_July, LSWI_July, MSAVI_July, SAVI_July,
SMMI_July, TVI_July, V_July, VDSI_July, Lithology, NDVIre2_July, TCIRE1_July, SATVI_July,
MBI, MRRTF, MRVBF, TPI, TRI, CN, CRSI_July, LST_July, BI2_April, CalcI_April, FeI_April,
GSI_April, NDVIre2_April, NMDI_April, SMMI_April, TCIre1_April, LST_April, BI_Feb,
BI2_Feb, CaI_Feb, CalcI_Feb, CRSI_Feb, EVI_Feb, FeI_Feb, GNDVI_Feb, GSI_Feb, MSI_Feb,
NDre2_Feb, NDVIre2_Feb, NDWI_Feb, SATVI_Feb, SMMI_Feb
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