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Abstract: Uncontrolled and unsustainable urban sprawl are altering the Earth’s surface at unprece-
dented rates. This research explores the potential of active remote sensors for mapping urban
areas, for monitoring urban expansion processes and for depicting landscape pattern dynamics in a
metropolis of South America. Based on multi-temporal urban cover maps of Cordoba, Argentina,
purposely derived from COSMO-SkyMed SAR data by urban extraction algorithms, we quantified
urban surface increase and described urbanization processes that occurred during 2010–2021 in
sectors with different degrees of soil sealing. We extracted urban extent in four time-steps using an
Urban EXTent extraction (UEXT) algorithm and quantified urban expansion, identifying newly built
areas on 2.5 ha cells. For these cells, we computed urban cover and a set of landscape pattern indices
(PIs), and by projecting them in a composition vs. configuration Cartesian space we performed a
trajectory analysis. SAR-based urban extraction and cover change proved to be very accurate. Overall
accuracy and Cohen’s Kappa statistic evidenced very high values, always above 91.58% and 0.82,
respectively, for urban extraction, and also above 90.50% and 0.72 concerning the accuracy of urban
expansion. Cordoba’s urban surface significantly increased (≈900 ha in 10 years) following three
main spatial processes in different city sectors (e.g., edge-expansion and outlying on peri-urban
areas, and infill inside the ring road), which may have contrasting effects on the sustainability of the
metropolitan area. Trajectory analysis highlighted non-linear relations between the urban cover and
the PIs. Areas with very low and low urban intensity underwent a steep rise of both urban cover and
PI values (e.g., urban patch dimension, complexity and number), depicting urban edge-expansion
and outlying processes. In the areas with medium and high urban intensity the increase in patch
dimension, along with the decrease in patch number and complexity, evidence the coalescence of
urban areas that incorporate in the urban fabric the remnants of non-built up zones and fill the few
residual green spaces. The proposed SAR mapping procedure coupled with landscape analysis
proved to be useful to detect and depict different moments of urban expansion and, pending more
tests on other cities and geographical conditions, it could be postulated among the RS indicators to
monitor the achievement of the Sustainable Development Goals established by the United Nations.

Keywords: COSMO-SkyMed; urban extraction; landscape metrics; urbanization; sustainable planning;
SAR data; South American metropolis

1. Introduction

The continuous and persistent population growth that, in the last century, has further
raised worldwide, has promoted a consistent expansion of built-up areas at the expense
of natural, semi-natural and agricultural environments [1]. During the last seventy years,
an intense migratory movement from rural to urban areas has occurred and since, in 2008,
half of the world’s population lived in cities, recent projections suggest that by 2050 human
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populations living in urban areas will reach the level of 68% [2]. Urban expansion is
one of the major drivers of global change, causing important direct and indirect impacts
on environmental conditions and biodiversity at multiple scales [3]. Land take often
causes irreversible environmental changes due to the replacement of natural and semi-
natural ecosystems by impervious surfaces [4]. Urbanization modifies environmental
conditions, directly altering several ecosystem processes such as hydrological balance [5],
biogeochemical cycles [6], land surface temperature and local meteorological conditions [7],
and several related ecosystem services [8]. Urban expansion is one of the primary drivers
of habitat loss and species extinction [9], and it has several indirect environmental impacts
such as the intensification of global greenhouse gas emissions, the increase in pollution
levels and the alteration of residual natural ecosystems [10].

Identifying adequate management and governance strategies for a correct develop-
ment of urban areas is a crucial challenge of the Anthropocene Epoch. In consideration of
these challenges, the United Nations have included innovative management and gover-
nance strategies in the Sustainable Development Agenda for 2030 (so called SDG 2030) [11].
The 11th SDG goal states: “make cities and human settlements inclusive, safe, resilient
and sustainable” and intends to promote sustainable urban planning and management
by improving environmental infrastructures (e.g., water, urban green, drainage and solid
waste management), developing a sustainable construction industry and promoting sus-
tainable systems of energy and transport. The achievement of the 11th SDG goal requires
important efforts for identifying effective monitoring tools able to depict urban changes
and to support policy makers [12].

In this context, good support could be given by Remote Sensing (RS), which offers
multi-temporal data at different spatial scales in a cost-effective, spatially contiguous
and timely manner, allowing the standardized detection of urban areas and urbanization
processes [13,14]. RS data are a promising support for quantifying urban growth in all its
various forms (e.g., infill, edge-expansion, and outlying) [15].

RS applications for urban change analysis were traditionally based on time series of
medium resolution data registered with multi-spectral optical sensors as Landsat [16–19],
SPOT [20,21], Sentinel-2 [22], or the combination of two or more sensors [12,23]. Never-
theless, multi-spectral RS data could present some limitations due to technical constraints
such as atmospheric and light conditions (e.g., cloud percentage and night hours), in which
passive sensors are unable to acquire data [13]. Furthermore, mapping transitions among
urban and semi-natural landscapes using satellite passive data had some constraints on dis-
criminating built-up areas from bare rock or wasteland, mainly because of the insufficient
spatial and/or spectral resolution [24]. Another possible approach for quantifying urban
expansion could be based on nighttime lights sensors (e.g., DSMP-OLS satellite) [25,26],
but this presents similar shortcomings due to atmospheric conditions (e.g., clouds) and
coarse spatial resolutions [27,28]. On the other hand, remote sensed data registered by
Synthetic Aperture Radar (SAR) sensors as Envisat [29], Sentinel-1 [30], or TerraSAR-X [31]
seem very promising as SAR data overcome some atmospheric constrains (such as clouds
or light), offer very high spatial resolution (VHR; e.g., less than 5 meters) and are supported
by several satellite platforms (e.g., TerraSAR-X, Cosmo-SkyMed, Radarsat-2, etc.).

The use of VHR SAR data for producing accurate urban maps has been explored and
tested and its effectiveness for urban extraction and mapping relies on signal features (e.g.,
the double bounce backscatter effect and the temporal stability that characterizes SAR data
in correspondence with urban areas and buildings) [32]. SAR features allow built-up areas
to be clearly distinguished from other cover types [33] and VHR allows urban edges to be
accurately outlined [34]. However, to date, the use of multi-temporal VHR SAR data to
analyze urban expansion is still limited, and their application in South American cities is
rare [29,35].

South America, and in particular Argentina, has registered a consistent rise in pop-
ulation and an uncontrolled urban expansion during the last century [36]. Over 92% of
the Argentinean population lives in urban areas which makes this country one of the most
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urbanized regions in the world [37]. In this context, the peri-urban zones composed by
natural, semi-natural, and agricultural areas have been affected by a rapid and uncontrolled
land use change process, with new built-up areas and land take [38,39]. Although several
studies have analyzed the effects of this uncontrolled urbanization on different natural and
seminatural ecosystems [38,40], animal communities [41] or socio-economic impacts [42], a
landscape approach to examine the urbanization rates on city sectors with different degrees
of urban intensity has not been carried out yet. The analysis of urban land patterns over
time is crucial to better understand the incidence of built-up areas on the overall city and
may supply monitoring indicators for the assessment of Sustainable Developments Goals.
In this context, landscape trajectory analysis, depicting urban spatial patterns over time,
could be an efficient approach for analyzing urbanization processes occurring in cities
and metropolitan areas [43]. The trajectory analysis aids in the depiction of the different
ways in which urban expansion occurs (e.g., infill, edge-expansion, and outlying) inside
the city and in peri-urban areas, offering insights on the sustainability of the urbaniza-
tion process [15,43]. Trajectory analysis was developed to monitor landscape change over
time, based on continuous or multi-temporal remote sensing data [44]. This method was
applied to several variables as backscatter values derived by SAR satellites [45], surface
temperature [46], spectral indices [47] or landscape metrics [48,49], and to very different
environments (e.g., forest, urban, and agricultural). To date, most applications of trajectory
analysis on urban contexts are supported by multi-spectral optical sensors with medium
resolution (e.g., Landsat data), whereas the use of SAR data is still limited [44,50,51].

In consideration of the above, the present work aims at examining urbanization pro-
cesses detected by SAR multi-temporal satellite images occurring in a subtropical big city
of South America during the last decade (2010–2021). The research, based on purpose-
fully produced multi-temporal urban maps (2010, 2012–2013, 2018–2019, 2020–2021) of the
metropolitan landscape of Cordoba (the second city by number of inhabitants of Argentina),
aims at: (i) depicting urban cover over time and detecting the new built-up zones; (ii) quan-
tifying the intensity and extension of land take; (iii) describing, through trajectory analyses,
urban cover and spatial configuration over the last decade in the overall city and in sectors
characterized by different soil sealing degree (%) defined as urban intensity (very low, low,
medium, high), (iv) identifying different urban expansion processes [15] across the city
as mapping infill, edge-expansion, and outlying areas may support sustainable planning.
This research, based on standard SAR images elaboration, also contributes to better explore
the usefulness of active remote sensed data for mapping and monitoring urban areas and
their dynamic processes, offering further tools and indicators to assess the achievement of
Goal 11 for Sustainable Development established by the United Nations [12].

2. Materials and Methods
2.1. Study Area

The study was implemented in the metropolitan area of Cordoba (Central Argentina,
Figure 1), which is the capital of the homonymous province and, with more than 1.3 million
inhabitants in 2014 and an average annual increase of 1%, is the second most populous
city in Argentina [52]. Cordoba city is placed in an area of plains, with elevations ranging
from 360 to 480 m above sea level. Its climate is temperate and semi-dry, with mean annual
precipitations of ≈800 mm concentrated in summer. The monthly average temperature
ranges from 14.8 ◦C in winter to 22.7 ◦C in summer [53]. Cordoba is undergoing a consistent
process of urban growth on its periphery that occurs at the expense of agricultural fields
and forestry patches [52]. Its current extension is over 35 ha, with a density of 57 persons
per ha [4,52]. The population of the Cordoba province has increased during the last seventy
years, and it is expected to grow further in the future (https://estadistica.cba.gov.ar/
conoce-cordoba/ (accessed on 10 October 2022)).

https://estadistica.cba.gov.ar/conoce-cordoba/
https://estadistica.cba.gov.ar/conoce-cordoba/
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20 S, epsg: 32720).

2.2. Data Collection and Analysis

We detected and analyzed the urbanization process of the metropolitan area of Cor-
doba during the last decade, following a sequence of steps schematically reported in
Figure 2: (A) SAR satellite image selection and pre-processing, (B) urban area extraction
and accuracy assessment, (C) urban expansion detection and accuracy analysis, (D) urban
trajectory analysis.

2.2.1. SAR Satellite Images Selection and Pre-Processing

For SAR satellite image selection and pre-processing (Figure 2, box A), we downloaded
12 CSK images from the Cosmo-SkyMed portal (https://portal.cosmo-skymed.it (accessed
on 12 September 2022)), acquired in the period 2010–2021, in Stripmap Himage mode with
3 m spatial resolution in ascending orbit and HH polarization. The Cosmo-SkyMed (CSK)
constellation (Italian Space Agency—ASI) includes four first generation satellites (first
launched 8 June 2007) and five second generation satellites (first launched 18 December
2019) equipped with a multi-mode and multi-polarization (HH, HV, VV, VH) very high-
resolution SAR operating at X-band [54,55].

The selected images were radiometrically calibrated and geocoded using the Shuttle
Radar Topography Mission (SRTM) with 90 m by ASI (Table S1, Figure 2 box A) [56]. The
terrain backscattering coefficients (σ0) were extracted, exploiting the procedure, and num-
bers reported in the official mission document [56]. To reduce the speckle noise, each CSK
image was filtered according the RABASAR algorithm [57], a ratio-based multitemporal
denoising framework based on the use of a ratio image composed of a noisy image and the
temporal mean of the stack.

The CSK images were grouped in four time intervals (T0: 2010, T1: 2011–2012, T2: 2018–2019,
and T3: 2020–2021) and for each interval the mean backscatter values are computed and considered,
as opposed to keeping the images separated (Figure 2 box A). We adopted multitemporal maps
as a sound support for trajectory analysis [44].

https://portal.cosmo-skymed.it
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over the last decade in the metropolitan area of Cordoba.

2.2.2. Urban Area Extraction and Accuracy Assessment

We extracted urban area extents (Figure 2 box B) for each time period using the Urban
EXTent extraction (UEXT) algorithm [58]. The UEXT algorithm assumes that built-up
structures are subject to double bounce effects and their pixels are characterized by high
intense backscatter values that are stable over time [32]. The UEXT algorithm reduces the
false positives pixels (e.g., rocks), masking pixels with very high slopes (20 degrees in this
work) where built-up structures are not feasible [59]. This “slope threshold” is designed
using the Digital Elevation Model of SRTM at 30 m spatial resolution [59]. This urban
extraction approach was implemented in Google Earth Engine (GEE). The implementation
of the UEXT algorithm is structured in three phases (Figure 2 box B.a) [58,60]:

1. Urban seed selection: selection of a set of very likely urban pixels with very high
backscatter values above a “seed threshold”.
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2. Region growing: delimitation of a growing region window of 3 km around each “seed
threshold” and the addition inside it of further urban pixels to the original seed points.
The addition of urban pixels was performed by a flooding algorithm computed by
summing up pixels iteratively with high intensity values (≥“seed threshold”). This
algorithm assumes that different man-made elements in an image are characterized
by similar levels of backscattering. This iterative procedure is repeated as long as the
cumulative sum of the urban pixels’ backscattered values results below the “urban
threshold” value, which in this work is set to 1000 for Cosmo images of the first
generation and to 800 for Cosmo images of the second generation.

3. Post-processing: pixels located on too high slope values (above the “slope threshold”
of 20 degrees) are discarded, as well as “salt and pepper” classification errors. The
latter is carried out by means of a hole filling procedure using two morphological
parameters: “minimum size settlements” and “size hole filling”. Both procedures
aim at improving the mapping of built-up areas and the discrimination of built-up
structures from parks, ponds, or bare soil.

The urban extent maps were extracted using different combinations of UEXT algorithm
values. The “seed threshold” was defined between −3 and 3, the range of “urban threshold”
varied from 600 to 2000, and the “minimum size settlement” and “size hole filling” ranges
from 10 to 100. We adopted different combinations of these parameters by tuning them at
different steps intervals (see Table S2), and based on the higher accuracy values (Overall
Accuracy and Cohen’s Kappa statistic) we chose the best combination as follows: “Seed
threshold” was set to −2 for Cosmo images of first generation (T0, T1, T2) and to 1 for Cosmo
images of second generation (T3); for “urban threshold” the best values were established as
1000 for Cosmo images of the first generation and to 800 for Cosmo images of the second
generation; and “minimum size settlements” and “size hole filling” were fixed to 20 in
Cosmo images of the first generation and of 15 in Cosmo images of the second generation.

The accuracy of the urban extent maps (Figure 2, box B.b) was assessed through the
computation of the following indexes: Overall Accuracy (OA), Cohen’s Kappa statistic
(K), Producer Accuracy (PA), and User Accuracy (UA) [61]. The Overall Accuracy (OA)
is a measure of the overall effectiveness of extraction, and its values range from 0%, total
absence of accuracy, to 100%, a perfect urban extraction. OA values greater than 85% are
considered as acceptable results. The Producer Accuracy (PA) refers to the probability of a
built-up structure being correctly extracted, and the User Accuracy to the probability of a
pixel extracted as urban of being truly a built-up structure. PA and UA values range from
0%, with incorrect extraction, to 100%: built-up structures perfectly extracted. An urban
extraction presenting PA and UA values over 80% shows a very low probability of error [61].
The Cohen’s Kappa metric (K) measures the agreement between urban extraction and the
checkpoints and express degree of reliability of the urban map [61]. K values range from 0
(no reliability) to 1 (perfect reliability), and Landis and Koch [62] suggest the following ranges:
K ≥ 0.80: almost perfect reliability, 0.60 ≤ K < 0.80: substantial reliability, 0.40 ≤ K < 0.60:
moderate reliability, 0.20 ≤ K < 0.40: fair reliability, and K ≤ 0.20: slight or poor reliability.

The obtained urban extents were compared with the World Settlement Footprint
(WSF) 2015 and 2019, which are accurate urban classifications produced at the global scale
using multispectral and SAR sensors [63,64]. For a reliable accuracy assessment of built-up
area maps, we used three independent sets of 590 randomly selected points for each time
map, computing for each of them the above-mentioned accuracy metrics and eventually
obtaining their mean and standard deviation values. Confusion matrices are based for T0
and T1 extractions on WSF-2015 and for T2 and T3 maps on WSF-2019. To correct possible
errors of the WSF, caused by temporal shifts, the checkpoints for each time step were
visually checked on coeval aerial orthophotos with very high spatial resolution (~30 cm),
freely available on Google Earth (Table S3).
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2.2.3. Urban Expansion Detection and Accuracy

To detect urban expansion (Figure 2 box C.a) in each time period (UrbExpTn), we
used a time filtering method based on the comparison of a series of three successive urban
maps [65]. We considered as a real urban expansion only in those areas classified as
not urban in a given time step (NUTn), and as urban in the successive two ones (UTn+1
and UTn+2). For instance, UrbExpT1 = NUT0 followed by UT1 and UT2; UrbExpT2 = NUT1
followed by UT2 and UT3; and UrbExpT3 = NUT1 followed by NUT2 and UT3. To reduce
false positives, a conservative approach was adopted, and expansion areas smaller than
2.5 ha were excluded [66].

The accuracy of the detected urban expansion maps (Figure 2 box C.b) was further
validated through confusion matrices and by calculating the OA, K, PA, UA metrics on
different validation data sets. Specifically, after setting a buffer of 100 m around each urban
expansion area, including stable and changing areas, 200 randomly selected checkpoints
inside this buffer were analyzed. For each point, a multi-temporal visual inspection using
Google Earth aerial orthophotos for the analyzed period was performed in order to classify
them in two categories: UrbExpTn and NUrbExpTn, or urban and not urban expansion at
time interval Tn, respectively.

2.2.4. Urban Trajectory Analysis

Finally, urban area extents were analyzed by trajectory analysis along the time series
(Figure 2 box D), an approach effectively used to depict the relationship between landscape
composition (proportion of land-use types) and configuration (spatial arrangement of
land-use types) [67] on natural and heterogeneous landscapes [40,68]. Trajectory analysis,
here implemented on artificial contexts, could help to better understand the relationships
between built-up areas’ composition and configuration, thus offering new insights to inter-
pret and model urban changes and answering the great need of sustainability indicators
for cities [69]. The trajectory analysis offers a sound workflow to investigate the non-linear
relationship among landscape composition and configuration, and to better interpret urban
configuration values across urban cover gradients. The trajectory analysis was performed
in three steps, as follows (Figure 2 box D):

1. Urban expansion cells grid: the metropolitan area of Cordoba was subdivided into a
regular square grid of 100 ha (Figure 2 box D.a). The use of a regular grid allows
spatio-temporal information on a set of zones with the same size to be obtained,
supporting statistical comparisons [70]. A 100 ha grid size can be considered an
appropriate scale to analyze urban dynamics in a large city such as Cordoba [70]. For
statistical analysis, only cells in which urban expansion (UrbExp) had been detected
were considered.

2. Urban intensity classes: The 100 ha selected UrbExp grid cells were classified according
to their urban intensity in terms of soil sealing degree (Figure 2 box D.b) [71]. The
Copernicus Urban Atlas classification scheme was adopted, because it is a standard
frame for land monitoring in Europe (Copernicus Land Monitoring Service available
at: https://www.eea.europa.eu/data-and-maps/data/copernicus-land-monitoring-
service-urban-atlas (accessed on 24 October 2022)). We identified the following four
urban intensity classes (see also Table S4): Very Low (soil sealing degree ≤ 10%), Low
(10% < soil sealing degree ≤ 30%), Medium (30% < soil sealing degree ≤ 50%), High
(soil sealing degree > 50%).

3. Trajectory analysis: A set of four non-redundant landscape metrics (Figure 2 box
D.c; Table 1) were selected to estimate landscape composition and configuration at
each time step [72,73]. We computed for each UrbExp grid cell the percentage of
landscape covered by built-up structures (PLAND); the patch density (PD), describing
the number of urban patches per unit area; the edge density (ED), which measures
overall shape complexity defined as the total edge length of urban patches per unit
area; and the mean patch area (AREA_MN), which depicts the average extension of
urban patches per unit area (Table 1) [74].

https://www.eea.europa.eu/data-and-maps/data/copernicus-land-monitoring-service-urban-atlas
https://www.eea.europa.eu/data-and-maps/data/copernicus-land-monitoring-service-urban-atlas
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Table 1. Computed landscape parameters reporting the relative acronym, formula, description, unit of
measure and landscape pattern facet. PLAND = urban area, NP = number of urban patches, PD = urban
patches’ density, ED = urban edges’ density, AREA_MN = mean urban patch area.

Acronym Formula Description Unit Landscape Pattern Facet

PLAND ∑n
i=1 ai
A ∗100

Proportion of landscape occupied by
urban class. Measure of dominance. Percent (%) Composition

PD n
A

Number of urban patches per unit
area. Measure of urban sprawl. Number per hectare Configuration

ED ∑n
i=1 ei
A

Total edge length of urban patches per
unit area. Measure of urban areas’

shape complexity.
Meters per hectare Configuration

AREA_MN ∑n
i=1 ai
NP

Average area of urban areas weighted
by the number of urban patches.

Measure of the degree of urbanization.
Hectares Configuration

ai = area of the i-th urban patch, A = total landscape area, n = number of urban patches, ei = total length of the i-th
urban patch edge, NP= number of urban patches.

Landscape metrics, computed by a moving window approach implemented for each
time period, were obtained for each urban expansion cell and for soil sealing classes
(Figure 2 box D.c) [75]. To better depict the pattern of the analyzed urban landscape, we set
the radius of the moving window to 200 m, twice the regular street block characterizing the
metropolitan area of Cordoba (100 m).

The differences in urban composition and configuration measured by PLAND, AREA_
MN, PD, and ED were estimated using a nonparametric bootstrapping test of the mean cell
values (Figure 2 box D.c) [33,76]. Bootstrapping significances with 95% confidence intervals
were computed for both the overall urban expansion cells (UrbExpTn) and for each urban
intensity class extracted at T0 (Very Low, Low, Medium, High).

The temporal trajectories were assessed by describing the displacement into the specific
relationship spaces (e.g., composition vs. configuration) of the mean metric values (e.g.,
PLAND vs. PD, PLAND vs. ED, PLAND vs. AREA_MN) [76] measured for the different
time-steps [40,68,77].

3. Results
3.1. Urban Area Extraction and Accuracy Assessment

The UEXT algorithm allowed the mapping of the urban extents of Cordoba with very
high accuracy in all the analyzed time periods (Figure 3 and Table 2), with very high overall
accuracy values (always OA ≥ 91.58%) and almost perfect reliability (always K ≥ 0.82, Table 2).
The probability that a pixel classified as urban represents a real built-up structure is very
high (UA values between 84.55% at T1 and 94.06% at T3), denoting an excellent performance
of UEXT in all time periods. The high values of PA (between 88.17% at T3 and 94.90% at
T1) highlights a very low probability of errors made in the extraction of built-up structures
(Table 2). The UA and PA of the “not-urban” class are equally very high (UA ≥ 93.17% and
PA ≥ 90.26%; Table 2).

Table 2. Accuracy assessment of urban area extent maps obtained by applying UEXT to CSK data at
T0, T1, T2 and T3.

Step OA (%) K Urb. UA (%) Urb. PA (%) N. Urb. UA (%) N. Urb. PA (%)

T0 94.75 ± 0.74 0.88 ± 0.02 92.39 ± 3.39 91.92 ± 1.65 95.75 ± 1.23 96.24 ± 0.59
T1 91.98 ± 1.95 0.83 ± 0.05 84.55 ± 5.86 94.90 ± 1.93 96.95 ± 0.53 90.26 ± 0.02
T2 91.58 ± 0.99 0.82 ± 0.03 87.84 ± 5.50 88.68 ± 1.56 93.41 ± 1.70 93.21 ± 1.25
T3 93.62 ± 0.20 0.86 ± 0.01 94.06 ± 3.28 88.17 ± 0.94 93.17 ± 1.68 96.90 ± 1.19
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by applying the UEXT algorithm to CSK data at T0 (a), T1 (b), T2 (c), and T3 (d).

3.2. Urban Expansion

The metropolitan area of Cordoba has undergone an intense process of urban ex-
pansion, with new built-up structures between 2010 and 2021 adding almost 900 ha to
the original urban area (Figure 4). This expansion was more intense between T1 and T2,
in which almost half of the new structures (47.54%) were built, followed by a moderate
expansion between T2 and T3 (32.42%) and preceded by a weaker one between T0 and
T1 (20.05%).

Geospatially, the urban expansion was concentrated in the peri-urban areas outside
the ring road of Cordoba, with land takes of natural, semi-natural and agricultural areas
for a total of 734.35 ha (82.20% of the total expansion, Figure 4), while the fill-up of urban
green areas inside the ring road was quite limited (159.02 ha; Figure 4).
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2010–2021 across the overall metropolitan area (a) and on two zoomed areas reporting examples of
expansion processes. (b) UrbExpT2 (c) UrbExpT3.

Confusion matrices of the urban expansion maps revealed high accuracy vales (Table 3).
The overall accuracies of the three urban expansion periods exceed 90%, and the agreement
between urban expansion already mapped and new built-up areas observable by multi-
temporal interpretation of Google Earth images showed a substantial reliability of the
produced maps (K ≥ 0.73, Table 3). User accuracy (UA) of the urban expansion class
in the more recent data (UrbExpT2, UrbExpT3) was exceptionally high (around 97%) and
only slightly lower for the oldest one (UrbExpT1), evidencing a substantial correctness
in the probability expansion of the urban exon class to represent a real new built-up
structure (Table 3). The producer accuracy (PA) of the urban expansion class ranges
between 78.21% in UrbExpT2 to 93.33% in UrbExpT1, indicating a high probability that
new built-up structures are correctly mapped (Table 3). The user accuracy (UA) and the
producer accuracy (PA) of the “not urban” class were always above 87%, proving that false
positives in urban expansion were restricted (Table 3).

Table 3. Accuracy assessment of urban expansion maps at each time step (UrbExpT1, UrbExpT2, UrbExpT3).

Step OA (%) K UrbExp. UA (%) UrbExp. PA (%) N. UrbExp. UA (%) N. UrbExp. PA (%)

UrbExpT1 92.00 0.73 66.67 93.33 98.73 91.77
UrbExpT2 90.50 0.79 96.83 78.21 87.59 98.36
UrbExpT3 91.00 0.81 97.06 80.49 87.88 98.31

3.3. Urban Trajectory Analysis

Urban expansion has occurred in about 30% of the 1 km cell grids covering the entire
metropolitan area of Cordoba, highlighting consistent changes in urban extents (Figures 5–7).
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Furthermore, the analysis of composition and configuration metrics on urban expansion cells
underlined that, during the last decade, Cordoba’s urban landscape has consistently changed
(Figures 5–7 and S1–S20).
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Figure 5. Trajectory analysis on numbers (a) and Cartesian graphs (b–d) of urban expansion cells.
(a) Table reporting the mean, upper (U. CI) and lower (L CI) confidence intervals of each landscape
metric (PLAND: proportion of land covered by urban areas, AREA_MN: mean urban patch area, ED:
edge density, PD: patch density) over time, with a, b indicating significant differences. (b–d) Cartesian
relationship spaces reporting measured configuration metrics (grey dots) in relation to urban cover,
along with the relative fitted curves (blue line) and the mean metric values (red dots) for each time
step (T0, T1, T2, T3).

The percentage of landscape covered by built-up structures increased over time:
PLAND mean values raised from 40.46% in T0 to 55.40% in T3 (Figure 5a), with a significant
increment of sealed soil from T0 to T1 (Figure 5a). Similarly, changes are found on the mean
patch area (AREA_MN), which increased from ≈4 ha to ≈6 ha with significant differences
between T0 (4.04 ha) and T1 (5.10 ha, Figure 5a).

Configuration metrics (AREA_MN, ED, PD) present clear, non-linear behavior with
respect to urban cover (PLAND; Figure 5b–d). A visual inspection of the sample-based
relationship space of patch size (AREA_MN) vs. urban cover (PLAND) shows a non-linear
but clear change in the configuration metric for large composition values (Figure 5b). Edge
density (ED) is characterized by a symmetric parabolic relationship with urban cover
(PLAND; Figure 5c). ED assumes very low values in correspondence with both low and
high PLAND values, and assumes larger values in the middle (PLAND ≈ 50%; Figure 5c).
Patch Density (PD) values vary with an asymmetric parabolic trend with respect to the
PLAN gradient, with a peak at 25% of urban cover (Figure 5d) and very low values at very
low and very high urban cover metric values (Figure 5d). The temporal trajectories given
by the mean metric values at each time step shows a consistent process of urban growth.
In correspondence with the average PLAND values increasing from T0 (40%) to T1 (50%),
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and to T2 and T3 (54 and 55%), configuration metrics also change, with a steep increase of
the mean patch area (AREA_MN, Figure 5b) and stable trends for patch complexity (ED,
Figure 5c) and density of patches (PD, Figure 5d).
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Figure 6. (a) Number of urban expansion cells categorized by urban intensity classes over time. The
boxplots report the percentage of landscape covered by built-up structures (PLAND) over time on
cells labelled at T0 on urban intensity classes. (b) Very Low, (c) Low, (d) Medium, and (e) High.

The analysis over time of the number of UrbExpTn cells referable to the different urban
intensity classes (very low, low, medium, high) shows an important reduction in areas with
very low urban intensity (Figure 6a–e and S5–S20). In T0, the number of cells per urban
intensity class were quite similar, while in the following time intervals the number of cells
with high urban intensity tend to increase and those with very low and low intensity decrease
(Figure 6a). The analysis over time of PLAND for urban expansion cells underlines a continu-
ous and widespread expansion of urban areas (Figure 6b–e). For instance, urban cover on cells
with Very Low urban intensity at T0 (PLANDT0 mean < 10%) reached 27.01% on T3 (Table 4).
Similar trends are observed on Low urban intensity cells at T0, which reached PLAND values
of 42.10% at T3 (Figure 6c, Table 4), or with Medium urban intensity degree cells with mean
PLAND values changing from 44.19% at T0 to 66.13% at T3 (Figure 6d, Table 4). The cells
characterized at T0 by High urban intensity undergo a consistent urban fill process, with
PLAND at T3 reaching 100% (Figure 6e, Table 4).
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Figure 7. Trajectory analysis for the different urban intensity classes defined at T0. Cartesian
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The temporal comparison of composition and configuration metrics (PLAND, AREA_MN,
ED, PD) measured in the cells labelled at T0 on urban intensity classes (Very Low, Low, Medium,
High) show significant changes in the urban landscape (Table 4). PLAND and AREA_MN
significantly increase, evidencing a steady growth of urban cover on all the urban intensity
classes (Table 4). ED and PD present comparable mean values, as expected when considering
their parabolic non-linear relation with the urban cover (Table 4, Figure 7b,c).

The trajectory analysis of urban expansion cells referable to the different classes
of urban intensity at T0 highlight the presence of a variety of urban growth processes
(e.g., edge-expansion, outlying and filling) heterogeneously occurring on the different
sectors of Cordoba city (Figure 7a–c). Areas with very low urban intensity at T0 (Very
Low class), undergo steep landscape changes and the registered increase of urban patch
dimension (AREA_MN), complexity (ED), and number (PD), along with urban area, rise
(Table 4; Figure 7a–c), underlining the ongoing processes of urban edge-expansion and
outlying. Similar processes are registered in the low urban intensity cells (Table 4), where
the construction of new buildings and houses has promoted an increment in urban patch
dimensions (AREA_MN; Figure 7a) and a plateau in patch complexity and density values
(ED and PD; Figure 7b,c). In the areas with medium and high urban intensity (Medium
and High classes), the observed increase in patch dimension (AREA_MN), along with the
decrease in patch number (PD) and complexity, evidences the coalescence of urban areas
that incorporate into the urban fabric the remnants of non-built up zones and fill the few
residual green spaces (Figure 7a–c).
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Table 4. Landscape metrics (PLAND, AREA_MN, ED, PD) over time (T0, T1, T2, T3) for the cells
labelled at T0 according to their urban intensity (Very Low, Low, Medium, High). Mean values, upper
(U. CI) and lower (L. CI) confidence intervals are reported. a, b, c, d indicate significant differences
over time in the mean metric values.

T0 T1 T2 T3

L. CI Mean U. CI L. CI Mean U. CI L. CI Mean U. CI L. CI Mean U. CI

Very Low urban intensity
PLAND 0.00 9.21 a 33.32 0.00 14.15 b 46.11 0.69 25.24 c 73.19 1.07 27.01 c 77.12

AREA_MN 0.00 0.91 a 3.38 0.00 1.24 a 4.84 0.07 2.15 b 8.44 0.10 2.31 b 9.41
ED 0.00 25.20 a 74.60 0.00 36.60 a 94.33 7.72 49.42 a 100.58 8.83 53.37 a 107.39
PD 0.00 8.91 a 24.19 0.00 11.27 a 24.11 8.04 14.51 a 32.15 8.04 15.40 a 32.15

Low urban intensity
PLAND 1.06 24.06 a 67.58 2.28 36.27 b 85.97 2.58 41.45 b 90.73 2.99 42.10 b 89.80

AREA_MN 0.10 2.38 a 7.84 0.19 3.07 b 10.40 0.21 3.87 c 11.25 0.24 3.83 d 11.11
ED 9.21 27.23 a 98.92 13.42 31.71 b 116.21 13.42 28.36 b 106.65 14.53 30.22 b 113.64
PD 8.06 14.45 a 24.19 8.04 15.88 a 32.15 8.04 14.37 a 32.15 8.04 14.97 a 32.15

Medium urban intensity
PLAND 3.75 44.19 a 90.04 4.70 58.07 b 99.55 6.21 58.61 b 99.79 8.45 61.33 b 99.74

AREA_MN 0.28 3.59 a 11.14 0.33 4.32 b 12.38 0.40 4.32 b 12.42 0.48 4.32 b 12.41
ED 13.37 63.54 a 112.55 4.96 59.99 a 114.92 4.04 54.42 a 105.55 4.41 58.70 a 114.00
PD 8.06 15.65 a 32.26 8.04 14.21 a 32.15 8.04 13.22 a 32.15 8.04 13.27 b 32.15

High urban intensity
PLAND 13.53 68.42 a 100.00 23.96 80.11 b 100.00 34.52 81.96 b 100.00 38.21 82.77 b 100.00

AREA_MN 0.69 7.45 a 12.40 1.20 8.87 b 12.44 1.49 9.20 b 12.44 1.74 9.23 c 12.44
ED 0.00 50.77 a 95.05 0.00 40.74 a 109.22 0.00 35.06 a 108.67 0.00 36.25 a 112.35
PD 8.06 12.01 a 24.19 8.04 11.30 a 24.11 8.04 11.32 a 24.11 8.04 11.27 a 24.11

4. Discussion

As in most urban areas of the globe [1], in Cordoba a consistent process of urban
expansion, along with steep variations on landscape composition and configuration, has
been recorded. This process, registered during the last decade in the analyzed city, is most
likely related to both local population growth and migratory movements from rural areas
and small villages towards large cities [42].

4.1. Urban Extent Mapping by UEXT Algorithm

The urban extraction algorithm applied to SAR images effectively supported built-up
areas mapping as well as the description of urban expansion processes and the occurrence
of specific landscape pattern changes across the metropolitan area. As observed for other
large urban districts and SAR platforms [78,79], the analysis of multi-temporal CSK data
allows built-up structures in Cordoba to be detected effectively and for urban changes
to be described with elevated accuracy levels. Our results confirm the usefulness of
SAR images with VHR resolution, previously used in cities with different environmental
conditions [33,80], to implement robust urban extraction algorithms. The high backscatter
values, the signal stability over time and the double bounce scattering characterizing built-
up surfaces in VHR SAR data allow a precise distinction of urban areas from semi natural
or agricultural lands as well as from water bodies [81,82]. Furthermore, the registered high
accuracy metrics for urban maps over time confirm the reliability of the UEXT algorithm for
extracting built-up areas embedded on different landscapes [32], and extends its application
to a large subtropical city such as Cordoba. The highly effective adopted UEXT algorithm
may be further improved by reducing the number of urban extractions needed to obtain
highly accurate maps, and this can be achieved by setting a “seed threshold” that is greater
than the backscatter value of 82% of all pixels of the CSK image [83].
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4.2. Detecting Urban Expansion

Concerning the detection of urban expansion areas, our highly accurate results confirm
both the usefulness of Cosmo-SkyMed images and the effectiveness of the adopted time fil-
tering method for the short-term urban change detection [58]. Our results also suggest that
the selected images and the elaboration methods have great potential for urban monitoring
and early detection of soil sealing trends (e.g., infill, edge-expansion, and outlying) [82]. As
in most South American countries, the metropolitan area of Cordoba has undergone an
intense process of urban expansion which is apparently coupled with an increase in total
population [84], mainly settled in peri-urban areas (e.g., close to the ring road) and causing
urban edge-expansion and outlying processes at the expense of natural and semi-natural
landscapes [4,85]. According to our results, most urban expansion occurred starting with
edge-expansion and outlying growth (e.g., the construction of a small new nucleus of
houses on unbuilt lands close to urban areas or accessible by communication infrastruc-
tures). Urban edge-expansion and outlying processes, recently revealed in Cordoba based
on multispectral images [4,85] are also ongoing in other metropolitan areas of Argentina
(e.g., Buenos Aires) in which new sealed surfaces substitute the agricultural lands [86],
orchards and natural vegetation of the peri-urban green belt, promoting irreversible envi-
ronmental and eco-social impacts [87,88]. As observed in most of the metropolises of South
America [89] we also registered in Cordoba, even if with lower intensity, infill processes
(few, big urban patches), i.e., the construction of new houses on parcels embedded on
urban areas.

4.3. Trajectory Analysis and Urban Sustainability

The increase of the built-up cover in Cordoba, as in most of the human settlements
worldwide, resulted in very quick and irreversible urban expansion processes, and their
impact in terms of sustainability varied across areas characterized by different urban
intensities. Trajectory analysis evidenced urban edge and outlying expansion given by
new residential zones outside the city, with scattered development on peri-urban sectors
that at T0 presented low and very low urban intensity. In these sectors, the sprawling
development of sealed surfaces gave rise to small, segregated built-up areas not in contact
with the main urban fabric of the city (e.g., few, small, regularly shaped urban patches).
Such urban sprawl has deleterious impacts on natural ecosystems due to the increased need
for private transportation, high energy use, increment in pollution and traffic congestion, as
well as a decline in the sense of community and of cohesiveness of all issues that seriously
compromises urban sustainability [36,90]. Urban sprawling in Cordoba could have negative
impacts on peri-urban agricultural and semi-natural ecosystems by direct environmental
alterations due to the replacement of key areas for the kilometer zero supply of vegetables
to the city [90], increased levels of air pollution, changes in micro- and meso-climate with
consequent heat islands and extreme storm events [91,92], loss of biodiversity and reduction
of native vegetation [93], landscape fragmentation [94], and the introduction of invasive
alien species [95].

On the other hand, urban infill processes occurring downtown can be considered more
sustainable than urban edge expansion as, by involving underutilized lands inside the
urban fabric and concentrating land use on already sealed areas, it contributes to containing
human pressure caused by daily commuting movements, energy consumption, air pollu-
tion, land use changes, and general environmental degradation [36,90]. Nevertheless, the
observed urban infilling process persisting in sectors with high urban intensity (Medium
and High intensity) may have negative effects on the remaining urban biodiversity by
further reducing ecological connectivity among green spaces. Urban biodiversity relicts
tend to remain in a few isolated patches embedded on an impervious built-up matrix which
hampers the movement of species [96,97]. Urban infilling processes also promote local
air pollution and climatic alterations such as heat islands, and the occurrence of extreme
precipitation events [98–100].
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4.4. Some Insight for Sustainable Planning

The analysis of Cordoba using SAR data underlined the occurrence of peculiar pro-
cesses (edge-expansion, outlying and infilling processes) in different sectors of the city,
and offered sound information to deal with numerous challenges of urban sustainability.
Such information may support local managers and urban planners who want, as claimed
by the 11th Sustainable Development Goal, to conciliate the effects of policies and actions
with the conservation of urban ecosystems and related benefits for human wellbeing [101].
For instance, particular attention may be given to supervising urban infilling processes to
keep good levels of connectivity for biodiversity inside the city and with natural and semi-
natural peri-urban areas. Edge-expansion and outlying processes must also be carefully
regulated to reduce as much as possible irreversible damages and loss of sustainability on
peri-urban landscapes [102].

Trajectory analysis of urbanized areas in a city may support urban planning and
management strategies by offering an ecological perspective of landscape changes. This
analysis, depicting Cordoba city transformations and pinpointing the areas impinged
on by the different urban expansion processes, may help to correctly plan the interplay
among green spaces and urban infrastructures and to increase the sustainability of urban
areas [103]. The trajectory analysis, allowing the contextualization of the different types of
urban expansion (infill, edge-expansion, and outlying) inside the city and the depiction of
urban dynamics across areas with different urban intensity, offers informative insights to
deal with city management and able to orient tailored actions to contrast the loss of urban
sustainability [104].

While traditionally sustainable urban planning was mainly developed in North Eu-
rope, during the last decade various South American cities have adopted ecological manage-
ment strategies for urban environments [104]. For instance, a few municipal governments
(e.g., those of Lima, La Paz, Curitiba, Bogotá, Quito) have started a trial encouraging urban
transport transformations into sustainable infrastructures and services (e.g., cycle paths,
rail networks, public transportation, etc.) with a subsequent decrease in environmental
alterations caused by urbanization [105]. The implementation of such environmental poli-
cies contributes to reducing the consumption of energy and pollution, with positive effects
on urban wellness and human health [106]. The sustainable planning of urban expansion
requires environmental directives to be implemented at different spatial scales, from the
single settlement to the entire city and peri-urban areas [85]. The drafting and elaboration
of such directives should be supported by a better understanding of urban expansion
processes, and should define specific measures to contain the negative effects of humans
on abiotic environment (e.g., air pollution, heat islands, extreme storms, etc.), to enhance
urban ecosystems (e.g., reduction of invasive alien species impacts, maintenance of urban
connectivity, management of landscape fragmentation, etc.), and to increase social benefits
and human wellbeing [107].

Planning sustainable cities requires the integration of urban expansion monitoring
tools (e.g., supported by remote sensing tools and spatial pattern analysis) and participative
urban planning processes involving stakeholders and citizens, in order to detect the threats
for sustainability and collectively manage these impacts [108].

Since SAR data are globally available, multi-temporal, with different spatial scales
and are acquired in a cost-effective, spatially contiguous, and timely manner, the proposed
procedure of urban extraction and spatial pattern analysis has great potential for appli-
cation in other cities with different environmental and socioeconomic conditions. This is
particularly important for sustainability indicators needed by the SDG 2030 agenda, which
require a common approach to detect and classify urbanization processes across the world.
Considering this framework, we hope that several case studies will be implemented to test
the adopted approach and to provide comparable information for an increasingly large
number of cities.
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5. Conclusions

Multitemporal CSK data effectively supported landscape change analysis of the Cor-
doba metropolitan area, which during the last ten years has undergone an uncontrolled
process of urban expansion, with steep variations in composition and configuration param-
eters. Following population growth and migratory movements, Cordoba mainly expanded
on peri-urban areas by edge-expansion and outlying processes, and in a smaller measure
inside the city by infill mechanisms. Cordoban urban expansion over the 2010–2021 time-
frame varies across sectors, with different levels of soil sealing (low, medium, high and
very high). Edge- and outlying expansion given by new low-density residential zones and
built-up agglomerations in peri-urban areas were identified as sectors with low soil sealing
level (Very Low, Low classes). In these areas, there is a need for private transportation,
a procedure to reduce energy consumption ad air pollution, as well as the minimization
of the loss of the social sense of community and cohesiveness. In parallel, the infilling
process, mainly occurring inside the Cordoba city ring road on areas with high soil sealing
degree (Medium and High classes), may reduce the ecological connectivity of the city,
promoting compact urban patterns in which the built-up matrix constitutes a barrier for a
large number of species. The differences observed in the areas subject to edge-expansion,
with outlying and infilling processes, impose numerous challenges for the local government
and claims for further planning devoted to increase urban sustainability. The accurate
description of urban changes made possible by trajectory analysis in the analyzed test area
may contribute to enhancing the understanding of the transformation processes, hence
offering key information for improving the current strategies of sustainable planning and
management. Trajectory analysis of urban growth which occurred in Cordoba city dur-
ing the last decade (2010–2021) effectively depicts urban expansion across sectors, with
different urban intensities requiring different sustainable measures. A greater awareness of
landscape processes in urban areas with different soil sealing degrees may support accurate
urban planning that, ranging from single settlements to the entire city and peri-urban areas,
is efficient in reducing human pressure as well as in improving urban ecosystems’ quality
and the corresponding social benefits. The sustainable management of urban areas could
be aided by the integration of effective tools for landscape analysis with easily reproducible
mapping approaches, such as RS analysis.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs15020336/s1, Table S1: The Cosmo-SkyMed image dataset
used in this work along with the acquisition date (month, day, year), Table S2: Parameter setting of
UEXT algorithm along with the range values, the tuning step intervals and the best values identified
after accuracy assessment of urban extraction maps in T0, T1, T2, T3, Table S3: Accuracy assessment
between WSF and visual inspection of coeval Google Earth images in the four time steps (T0, T1, T2,
T3). Accuracy values (mean ± standard deviation) of overall accuracy in percentage (OA), Cohen’s
Kappa metric (K), user accuracy of Urban class in percentage (Urb. UA), producer accuracy of Urban
class in percentage (Urb. PA), user accuracy of Not Urban class in percentage (N. Urb. UA), producer
accuracy of Not Urban class in percentage (N. Urb. PA) are reported, Table S4: Correspondences
between Urban intensity classes used in this research and Urban Atlas class produced by Copernicus
Land Monitoring Service. Figure S1: Bootstrapping test and the p-value values calculated on the
difference of PLAND means between two subsequential time steps. The red line indicates the value
of real mean difference, the blue dotted lines indicate the lower and upper confidence intervals,
Figure S2: Bootstrapping test and the p-value values calculated on the difference of AREA_MN means
between two subsequential time steps. The red line indicates the value of real mean difference, the
blue dotted lines indicate the lower and upper confidence intervals, Figure S3: Bootstrapping test
and the p-value values calculated on the difference of ED means between two subsequential time
steps. The red line indicates the value of real mean difference, the blue dotted lines indicate the
lower and upper confidence intervals, Figure S4: Bootstrapping test and the p-value values calculated
on the difference of PD means between two subsequential time steps. The red line indicates the
value of real mean difference, the blue dotted lines indicate the lower and upper confidence intervals,
Figure S5: Bootstrapping test and the p-value values of Very Low class calculated on the difference
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of PLAND means between two subsequential time steps. The red line indicates the value of real
mean difference, the blue dotted lines indicate the lower and upper confidence intervals, Figure S6:
Bootstrapping test and the p-value values of Very Low class calculated on the difference of AREA_MN
means between two subsequential time steps. The red line indicates the value of real mean difference,
the blue dotted lines indicate the lower and upper confidence intervals, Figure S7: Bootstrapping
test and the p-value values of Very Low class calculated on the difference of ED means between
two subsequential time steps. The red line indicates the value of real mean difference, the blue
dotted lines indicate the lower and upper confidence intervals, Figure S8: Bootstrapping test and the
p-value values of Very Low class calculated on the difference of PD means between two subsequential
time steps. The red line indicates the value of real mean difference, the blue dotted lines indicate
the lower and upper confidence intervals, Figure S9: Bootstrapping test and the p-value values of
Low class calculated on the difference of PLAND means between two subsequential time steps.
The red line indicates the value of real mean difference, the blue dotted lines indicate the lower
and upper confidence intervals, Figure S10: Bootstrapping test and the p-value values of Low class
calculated on the difference of AREA_MN means between two subsequential time steps. The red
line indicates the value of real mean difference, the blue dotted lines indicate the lower and upper
confidence intervals, Figure S11: Bootstrapping test and the p-value values of Low class calculated
on the difference of ED means between two subsequential time steps. The red line indicates the
value of real mean difference, the blue dotted lines indicate the lower and upper confidence intervals,
Figure S12: Bootstrapping test and the p-value values of Low class calculated on the difference of PD
means between two subsequential time steps. The red line indicates the value of real mean difference,
the blue dotted lines indicate the lower and upper confidence intervals, Figure S13: Bootstrapping
test and the p-value values of Medium class calculated on the difference of PLAND means between
two subsequential time steps. The red line indicates the value of real mean difference, the blue
dotted lines indicate the lower and upper confidence intervals, Figure S14: Bootstrapping test and
the p-value values of Medium class calculated on the difference of AREA_MN means between two
subsequential time steps. The red line indicates the value of real mean difference, the blue dotted
lines indicate the lower and upper confidence intervals, Figure S15: Bootstrapping test and the
p-value values of Medium class calculated on the difference of ED means between two subsequential
time steps. The red line indicates the value of real mean difference, the blue dotted lines indicate
the lower and upper confidence intervals, Figure S16: Bootstrapping test and the p-value values of
Medium class calculated on the difference of PD means between two subsequential time steps. The
red line indicates the value of real mean difference, the blue dotted lines indicate the lower and upper
confidence intervals, Figure S17: Bootstrapping test and the p-value values of High class calculated
on the difference of PLAND means between two subsequential time steps. The red line indicates the
value of real mean difference, the blue dotted lines indicate the lower and upper confidence intervals,
Figure S18: Bootstrapping test and the p-value values of High class calculated on the difference of
AREA_MN means between two subsequential time steps. The red line indicates the value of real
mean difference, the blue dotted lines indicate the lower and upper confidence intervals, Figure S19:
Bootstrapping test and the p-value values of High class calculated on the difference of ED means
between two subsequential time steps. The red line indicates the value of real mean difference,
the blue dotted lines indicate the lower and upper confidence intervals, Figure S20: Bootstrapping
test and the p-value values of High class calculated on the difference of PD means between two
subsequential time steps. The red line indicates the value of real mean difference, the blue dotted
lines indicate the lower and upper confidence intervals.
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