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Abstract: China is one of the countries that suffers severe damage from storm surges. Assessing
the vulnerability to storm surges holds great significance for promoting sustainable development
and minimizing disaster losses in coastal areas. This study first developed a vulnerability index
by integrating 15 indicators from three components (exposure, sensitivity, and adaptability) that
provide a comprehensive portrayal of the multidimensional structure of vulnerability. Subsequently,
the vulnerability of Chinese coastal areas was comprehensively evaluated from the perspective of
prefecture-level cities using a weight combination strategy. Furthermore, spatial statistical techniques
were utilized to analyze the spatial heterogeneity of vulnerability. The results show that 64% of coastal
cities are classified as being in the very high and high vulnerability categories, with Zhanjiang, Lingao,
Dalian, Yancheng, and Shanwei exhibiting the highest vulnerability levels. Among the provinces,
Guangxi and Hainan Provinces demonstrate the highest vulnerability, with more than 90% of their
coastal cities facing high vulnerability. Additionally, the vulnerability of Chinese coastal cities exhibits
significant spatial heterogeneity. Specifically, coastal cities located in the Yangtze River Delta and the
Pearl River Delta regions are identified as low–low (LL) vulnerability clusters, whereas high–high
(HH) vulnerability clusters are observed in coastal cities within the Beibu Gulf region. These results
provide valuable insights for the formulation of disaster reduction policies at the provincial level and
the focus for action at the local level.

Keywords: vulnerability; storm surges; disaster; China; coastal cities

1. Introduction

Marine dynamic disasters, including storm surges, huge waves, tsunami, and sea ice,
are the most harmful natural disasters for the world’s coastal countries [1]. Among them,
storm surges have gained increasing attention in recent decades as the most economically
devastating marine dynamic disaster affecting coastal countries worldwide. Within the
context of global climate change, storm surges are not only intensifying but also occurring
more frequently [2,3]. The low-lying coastal regions of mainland China, situated at the
intersection of the Eurasian and Pacific plates, are especially vulnerable to natural disasters.
Moreover, with the population growth and rapid economic development in coastal areas,
China’s coastal cities are experiencing escalating losses from storm surges [4]. According to
the Bulletin of China Marine Disaster, storm surges caused an average annual economic
loss of CNY 10.5 billion between 1990 and 2010, leading to 148 fatalities and impacting
11.5 million people. Furthermore, from 2011 to 2020, an average of 17 storm surge events
related to tropical cyclones occurred annually in coastal areas, leading to an average annual
economic loss of CNY 80.82 billion, which accounted for 92.18% of the total economic loss
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caused by marine disasters [5–7]. Recently, the “14th Five-Year Plan for National Compre-
hensive Disaster Prevention and Reduction” released by the China National Commission
for Disaster Reduction underscored the increasing vulnerability of disaster-bearing bodies
due to the frequent occurrence of marine disasters. The plan also highlighted the critical
importance of conducting vulnerability assessments to enhance the disaster prevention
and reduction system in coastal areas [8]. Given this backdrop, mitigating the impact of
storm surges has become a crucial aspect of promoting sustainable development in China’s
coastal areas, posing a significant challenge for governments at all levels.

A vulnerability assessment serves as a critical link between disaster and risk investi-
gation, playing a vital role in mitigating the future threat of storm surges [9]. Conducting
a comprehensive assessment of vulnerability to storm surges in coastal areas can assist
management in prioritizing and formulating adaptive strategies that optimize resource
allocation and enhance response efficiency [10]. The scientific literature presents various
concepts of vulnerability, each emphasizing different dimensions of vulnerability [11–15].
One widely accepted concept, as proposed by the Intergovernmental Panel on Climate
Change (IPCC), defines vulnerability as “the degree to which a system is susceptible to, or
unable to cope with, adverse effects of climate change, including climate variability and
extremes”. In this case, vulnerability is a function of the character, magnitude, and rate
of climate variation to which a system is exposed, its sensitivity, and its adaptive capac-
ity [16–18]. Vulnerability index methods, rooted in the aforementioned concepts, have been
widely employed in assessing vulnerability to storm surges by integrating various factors
across different temporal and spatial scales [19–23]. The integration of different factors into
vulnerability assessments heavily relies on data availability and the unique characteristics
of the study area. To date, numerous factors related to exposure, sensitivity, and adaptive
capacity have been employed in vulnerability assessments conducted worldwide [24–27].

Although previous studies related to assessing vulnerability to storm surges in coastal
areas of China have been reported, these studies mainly focused on a single dimension of
vulnerability and largely ignored the fact that vulnerability has evolved into a multidimen-
sional structure, which is determined by social, economic, physical, and environmental
systems [28–32]. Moreover, the incomplete consideration of vulnerability elements is more
likely to exacerbate the uncertainty of assessment results, leading to incorrect (either too
low or too high) estimates of vulnerability [33]. Therefore, it is essential to conduct a
comprehensive assessment that integrates adequate indicators of vulnerability elements
in order to generate detailed and accurate vulnerability information. On the other hand,
most studies have concentrated on individual provinces or limited regions in terms of their
research scope. Few studies have provided vulnerability mapping specifically pertaining
to storm surge disasters across the entire coastal areas of mainland China [20,21,24,34–38].
However, at the national level, it is highly desirable to have higher resolution (local admin-
istrative level) studies covering the entire coastal areas in order to effectively manage and
plan for a sustainable future in developed but highly susceptible regions [39–41].

In China, the administrative system is primarily structured into a four-tier hierarchy
comprising provincial, prefectural, county, and township levels. Prefecture-level cities,
operating under provinces, assume direct administrative control over counties. Therefore,
as the pivotal links connecting provinces and counties, prefecture-level cities play a critical
role in the development and execution of disaster prevention and mitigation policies [42,43].
Up to now, no studies have been found on mapping the prefecture-level spatial patterns
of vulnerability to storm surge disasters encompassing the entire coastline of mainland
China. To bridge this gap, this study aims to provide a comprehensive assessment of
the vulnerability to storm surges in coastal China from the perspective of prefecture-
level cities based on up-to-date data. The three specific objectives of this study include
the following: (1) to integrate the exposure, sensitivity, and adaptability components of
vulnerability to construct a vulnerability index that provides a comprehensive portrayal of
the multidimensional structure of vulnerability; (2) to evaluate the degree of vulnerability
to storm surges for 64 coastal cities based on the weight combination strategy; and (3) to
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apply a spatial statistics-based approach to assess the spatial heterogeneity of vulnerability
at the prefecture-level.

2. Study Area and Data Sources
2.1. Study Area

The coastal regions of mainland China span from 108◦21′E to 124◦21′E and from
18◦15′N to 39◦60′N, covering over 18,000 km of coastline and traversing three climate zones
(i.e., tropical, subtropical, and temperate). The densely populated and rapidly urbanizing
coastal areas are becoming increasingly vulnerable to natural disasters and the impacts
of climate change, owing to their complex climatic and geological conditions [44]. The
study area comprises 64 cities in 11 coastal provinces, including 53 prefecture-level cities,
2 provincial-level municipalities (Tianjin and Shanghai), 4 county-level cities, and 5 counties
(Figure 1). It should be noted that all 4 county-level cities and 5 counties are located in
Hainan Province and are under the direct administration of the provincial government. To
ensure a comprehensive and holistic assessment, these cities are considered as prefecture-
level cities. Hong Kong, Macau, and Taiwan were excluded due to their unique political
and economic circumstances. While these coastal cities cover only approximately 4.8% of
the national land area, they play a leading role in China’s socio-economic development,
contributing to 34.3% of the total national gross domestic product [45]. The increasing
intensity and concentration of human activity will continue to increase the vulnerability of
coastal areas to natural disasters in the future [46]. Therefore, assessing the vulnerability to
storm surges of these 64 coastal cities in China holds great practical significance.Remote Sens. 2023, 15, x FOR PEER REVIEW 4 of 22 
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2.2. Data Sources

(1) Land cover data

The European Space Agency (ESA) WorldCover 10 m 2020 product was selected for
this study, which provides a global land cover map for 2020 at 10 m resolution with 74%
overall classification accuracy [47]. The dataset includes 11 land cover types that align with
the UN-FAO’s Land Cover Classification System. However, since our study area is situated
in the coastal region of mainland China, land cover types such as moss, lichen, snow, and
ice are not represented in the dataset.

(2) Digital elevation model (DEM) data

The SRTM V3 product (SRTM Plus) provided by NASA JPL at 30 m resolution was
selected for this study, which covers almost 80% of the global land mass between 60◦ north
and 56◦ south latitude [47]. Furthermore, the slope data utilized in this study were also
derived from the aforementioned dataset.

(3) Coastline data

The coastline data were extracted by visual interpretation of the 2018 Landsat OLI
images based on the 1980–2010 coastline data and land-use change data. The coastlines
were classified into 2 primary classes based on their geographical location and coastal
development: artificial and natural coastlines.

Artificial coastline refers to a coastline constructed at the junction of land and sea for
human production and living needs, including 6 secondary classes: aquaculture dike, salt
pan dike, farmland dike, groin and jetty, town dike, and traffic dike. Notably, the groin
and jetty, town dikes, and traffic dikes are built for the protection of ports (wharf, quay),
transportation infrastructure, and structures. These constructions adhere to standards that
enable them to withstand storm surges occurring once every 20 years or more. However, the
construction standards for tidal protection of aquaculture dikes, salt pan dikes, and farmland
dikes are generally set at a lower level, providing weak defenses against storm surges.

Natural coastline refers to coastlines whose shapes and attributes remain unaltered by
human activities. This classification includes 5 secondary classes: rocky coastline, sandy
coastline, muddy coastline, biogenic coastline, and estuary. Among these, only biogenic
coastlines are covered with mangroves, coral reefs, or reeds, which effectively weaken
the impact of waves and fulfill the role of coastal protection. Detailed methods for visual
interpretation and the coastline classification system can be found in references [48,49].

(4) Point vector data of critical transportation facilities

The spatial location data of critical transportation facilities were obtained from the
national basic geographic information data (2021) published by the National Catalogue Service
for Geographic Information [50]. The data are in vector point format, and the transportation
facilities include five categories: airports, ports, tunnels, bridges, and railway stations.

(5) Census data

The census data utilized in this study were obtained from the up-to-date 7th National
Census of China (2020), which provides the most accurate and detailed statistics currently
available. The bulletin of the 7th National Census reveals that China’s population has ex-
hibited a pronounced concentration in coastal areas over the past decade, with particularly
rapid growth observed in coastal urban agglomerations such as the Yangtze River Delta
and the Pearl River Delta in particular [51].

(6) Socio-economic data

Socio-economic data were collected from the China City Statistical Yearbook (2021)
and the China Statistical Yearbook (2021) published by the National Bureau of Statistics,
as well as from the 2021 statistical yearbooks of each coastal city published by the local
government statistical offices [45,52].
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3. Research Methods
3.1. Vulnerability Assessment Model

The assessment of vulnerability to storm surges is a complex and multidimensional
issue, encompassing multiple aspects such as population, economy, industry, agriculture,
environment, and ecology. Therefore, the application of an advanced and comprehen-
sive vulnerability assessment model that incorporates essential elements is fundamental
for robust and accurate vulnerability mapping. In this study, after conducting an ex-
tensive literature review, we adopted the vulnerability assessment model described by
Equation (1), which defines vulnerability as a function of exposure, sensitivity, and adapt-
ability [12,18,53–56].

Vi =
Ei × Si

Ai
(1)

where Vi, Ei, Si, and Ai represent the vulnerability index, exposure index, sensitivity index,
and adaptability index for coastal city i, respectively. All these variables are explained
in more detail in the following sections. In the calculation of Vi, the three elements of
vulnerability were treated equally and normalized to a 0–1 scale. The values of Vi were
highest for the most vulnerable coastal cities and lowest for the least vulnerable coastal
cities. Note that this equation does not represent an actual mathematical function, but rather
illustrates the relationship between the different elements of vulnerability. Specifically,
increases in exposure and sensitivity contribute to a higher vulnerability, whereas increases
in adaptability result in a decreased vulnerability.

3.2. Selection and Processing of Indicators

Exposure index (Ei): exposure is defined as the nature and extent to which a system
is exposed to significant climatic variations or natural disasters [12,57,58]. This study
utilizes an approach that integrates the physical characteristics of disaster-bearing bod-
ies and environment factors to assess the exposure of coastal cities to storm surges [21].
The guidelines for risk assessment and zoning of storm surge disasters, issued by the
State Oceanic Administration of China in 2015, provide reference vulnerability values for
different land cover types. However, assessing vulnerability solely based on land cover
types considers only the physical characteristics of disaster-bearing bodies. Therefore, the
guidelines were adapted and improved in this study. Specifically, the 11 land cover types
in the ESA WorldCover product were reclassified into 5 land cover types: impervious
surface, cropland, wetland, vegetation (including trees, shrubland, and grassland), and
other (including water bodies and sparse vegetation). The vulnerability values prescribed
by the guidelines were then incorporated into a comprehensive assessment of vulnerability
as exposure values for different land cover types. Additionally, the exposure of a particular
type of disaster-bearing body is not fixed, but varies depending on the natural environment
in which it is situated. Moreover, storm surge outbreaks may be accompanied by extreme
rainfall, in which case, environmental factors have a more dramatic effect on the exposure
of disaster-bearing bodies to disasters. For example, low-lying areas are more susceptible to
damage from heavy rainfall or surges. The steeper the slope, the faster the water flows, and
the closer the area is to rivers or oceans, the more likely it is to be flooded. Thus, we further
quantified the influence of environmental factors on the exposure of disaster-bearing bodies
to storm surges and rainfall. In short, the lower the elevation, the gentler the slope, and the
closer the proximity to water bodies, the higher the exposure to storm surges and rainfall.
Lastly, the analytic hierarchy process (AHP) was employed to determine the weight of each
factor, with expert scores assigned based on our previous research (Table 1) [21,59]. The
formula for calculating the exposure value of different land cover types considering natural
environmental factors is as follows:

El = wl × l + we × e + ws × s + wd × d (2)
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where wl and l represent the weights and exposure values, respectively, of different land
cover types. Similarly, we, ws, and wd represent the weights, while e, s, and d represent the
corresponding exposure values of different environmental factors.

Table 1. Exposure value and weight of different land cover types and environmental factors.

Factor Judgment Criterion Exposure Value Expert Score Weight

Land cover

Impervious surface 1

9 0.5
Cropland 0.8
Wetland 0.6

Vegetation 0.4
Other 0.2

Elevation (m)

<1.0 1

3 0.167
1.0–3.0 0.8
3.0–5.0 0.6
5.0–10.0 0.4

>10.0 0.2

Slope

<0.5◦ 1

2 0.111
0.5◦–2.0◦ 0.8
2.0◦–5.0◦ 0.6
5.0◦–15.0◦ 0.4

>15.0◦ 0.2

Distance to
water (km)

<0.5 1

4 0.222
0.5–1.0 0.8
1.0–2.0 0.6
2.0–5.0 0.4

>5.0 0.2

Note that this study considers the city as the unit of assessment, and the exposure
values of different land cover types cannot be directly used as indicators to calculate the
exposure index of a city. Therefore, the area of land cover types with different exposure
values within each coastal city was further counted as final indicators. To avoid redundancy
in indicators, the area statistical results were divided into three levels at equal intervals
based on the exposure values. Moreover, considering the extent of storm surges, only the
region extending 10 km inland from the coastline was taken into account.

Sensitivity index (Si): sensitivity is defined as the degree to which a system is suscep-
tible to disasters [21,58]. The indicators involved in the sensitivity assessment primarily
focus on the population composition, economic structure, and infrastructure layout of a city.
Firstly, storm surge disasters directly jeopardize the lives and well-being of individuals.
Among society, children and the elderly are the most vulnerable groups, facing greater
challenges in taking appropriate self-protective measures during disasters. Moreover, indi-
viduals with lower levels of education often possess limited resources and face difficulties
in accessing or comprehending early warning information. Therefore, three indicators were
chosen to gauge the sensitivity of the population to storm surges, including the percentage
of the population aged 14 and under, the percentage of the population aged 65 and above,
and the percentage of the population with junior high school education or below [57,60–62].
Secondly, storm surge disasters pose a significant threat to coastal economies, particularly
those reliant on fisheries production. China holds the distinction of being the world’s
largest fish exporter and seafood producer. By the year 2020, the combined area of pond
aquaculture and mariculture had exceeded 330,000 km2 in 2020 [63,64]. Hence, the ratio of
fishery output to GDP was adopted as an indicator to measure the sensitivity of coastal
economies to storm surges [65]. Finally, certain transportation facilities located in coastal
areas are susceptible to storm surges. The potential loss of these critical infrastructures
could have a significant impact on people’s lives and the city’s economic development.
Thus, the density of critical transportation facilities, including airports, ports, tunnels,
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bridges, and railway stations, within 10 km from the coastline was used to measure the
sensitivity of a city’s infrastructure to a storm surge [66].

Adaptability index (Ai): adaptability is defined as the capacity of a system to respond,
adjust, or adapt to the adverse effects of climate change or disasters in terms of behaviors,
resources, and technology [12,58,67]. First, a more developed city implies having more
resources to prevent and resist disasters, either directly or indirectly. Therefore, we selected
general public budget expenditure and GDP as indicators to reflect the social adaptive
capacity to storm surge disasters. Disposable income per capita represents the economic
situation of individuals, indicating the availability of resources to absorb, reduce, and
recover from losses. Thus, urban disposable income per capita and rural disposable income
per capita were utilized to characterize the adaptability of citizens to storm surge disasters.
Healthcare providers play a crucial role in post-event relief. Insufficient medical services
can hinder the emergency response and prolong the recovery process after a disaster.
Adequate medical personnel and infrastructure also contribute to regional resilience and
help mitigate the immediate damage caused by disasters. Therefore, we chose the number
of hospital medical staff and medical institutions as indicators to reflect the medical and
health resources of a city [32,60–62]. Finally, artificial coastlines with high tide protection
standards, as well as biogenic coastlines, can effectively mitigate the damage caused by
storm surges, and thereby enhance the disaster prevention and mitigation capacity of
coastal regions. Therefore, the proportion of artificial coastlines with high tide protection
standards (i.e., groin and jetty, town dike, and traffic dike) and biogenic coastlines to
the total length of the coastline was taken as an indicator to directly characterize a city’s
capacity to withstand storm surge disasters [28,35].

Ultimately, 15 indicators were utilized to calculate the vulnerability index for each
city (Table 2). Detailed data for each coastal city are provided in Supplementary Table S1.
Furthermore, the raw data for different indicators are often presented with diverse criteria.
For example, the ratio of fishery output to GDP and the general public budget expen-
diture involve completely different units. Therefore, the raw data were standardized to
eliminate differences between indicators caused by inconsistencies in dimensionality and
orientation [68]. For a positive indicator,

x′ij =
xij −MIN

(
xj
)

MAX
(
xj
)
−MIN

(
xj
) (3)

For a negative indicator,

x′ij =
MAX

(
xj
)
− xij

MAX
(
xj
)
−MIN

(
xj
) (4)

where xij is the raw data value, x′ij is the standardized value of xij, MAX
(

xj
)

represents
the maximum value of the jth indicator, and MIN

(
xj
)

represents the minimum value of
the jth indicator.

Table 2. Indicators for calculating the vulnerability index.

Vulnerability
Dimension No. Indicator Impact to

Vulnerability

Exposure

1 Total area of land cover with exposure values of 0.2–0.4 (km2) +
2 Total area of land cover with exposure values of 0.5–0.7 (km2) +
3 Total area of land cover with exposure values of 0.8–1.0 (km2) +
4 Density of critical transportation facilities (facilities/km2) +
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Table 2. Cont.

Vulnerability
Dimension No. Indicator Impact to

Vulnerability

Sensitivity

5 Percentage of population aged 14 and under (%) +
6 Percentage of population aged 65 and above (%) +
7 Percentage of population with junior high school education or below (%) +
8 Ratio of fishery output to GDP (%) +

Adaptability

9 General public budget expenditure (CNY 100 million) −
10 GDP (CNY 100 million) −
11 Urban disposable income per capita (CNY) −
12 Rural disposable income per capita (CNY) −
13 Number of hospital medical staff −
14 Number of medical institutions −
15 Proportion of artificial and biogenic coastlines (%) −

“+”: positive indicator, indicating that the indicator tends to increase vulnerability; “−”: negative indicator,
indicating that the indicator tends to decrease vulnerability.

3.3. Comprehensive Assessment Based on Weight Combination Strategy

After constructing the indicator system, the next step is to assign an appropriate weight
to each indicator and calculate vulnerability values for each city. Since different methods
have their own limitations, inconsistent assessment results are easily produced when using
different evaluation methods. In order to ensure the reliability of the assessment, it is
inadvisable to apply only one method. Therefore, we adopted a comprehensive assessment
method based on a weight combination strategy. Firstly, the entropy weight method [69],
the coefficient of variation method [70], the technique for order of preference by similarity to
ideal solution (TOPSIS) method [71], and the AHP method [21] were adopted for weighting
the indicators and evaluating the vulnerability elements, respectively. Subsequently, the
compatibility test method, specifically the Kendall consistency test [38], was employed to
test the consistency of the assessment results obtained from different methods. Finally, once
all the above-mentioned methods passed the consistency test, the combination weighting
method was utilized to determine the weights of each evaluation method, thereby obtaining
the final comprehensive evaluation results for vulnerability.

Among these methods, the entropy weight method is an evaluation method that
determines the weight of an indicator based on the information entropy. Information
entropy serves as a measure of the amount of information contained within a system.
For example, indicators with greater dispersion exhibit lower information entropy, and
consequently, they should be assigned higher weights. The coefficient of variation method
assigns weights based on the degree of variation observed in the indicators. A higher degree
of variation enables better differentiation among evaluated objects, assigning a greater
weight to the indicator. The core principle of the TOPSIS method involves calculating the
distance between the evaluated object and both the positive and negative ideal solutions.
The merit of the evaluated object is then determined based on its proximity to the ideal
solution. AHP is a decision analysis method combining qualitative and quantitative
analysis. The main idea is to decompose complex problems into several levels and factors,
and then compare the importance of indicators in pairs to determine the weight of indicators.
We selected four experts from government, universities, and research institutions at the
national level. The expert selection was based on their relevant research experience and
in-depth knowledge of coastal China.

3.3.1. Consistency Test

The Kendall consistency test was applied to verify the consistency of the evaluation
results obtained from the four methods. Table S2 demonstrates that while the evaluation
values of the coastal cities differ among the four methods, the majority of the cities ex-
hibit consistent rankings. Further validation showed that the Kendall’s W values of the
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consistency coefficients for the three elements of vulnerability were 0.985, 0.942, and 0.984
(Table 3), respectively, indicating that the ranking results from the four methods are highly
consistent. There were no significant differences in the ranking results.

Table 3. Results of Kendall consistency test.

Vulnerability Components Kendall’s W X2 p

Exposure 0.985 248.187 0.000 ***
Sensitivity 0.942 237.391 0.000 ***

Adaptability 0.984 247.947 0.000 ***
“***” indicates the result at 1% significance level.

3.3.2. Combination Weighting Method

Compared to the potential bias introduced by using a single evaluation method, a
strategy that integrates multiple methods helps ensure the objectivity and reliability of
the final assessment results. The combination weighting method based on maximizing
deviations was used to calculate the combination weight coefficients of the four evaluation
methods [20]. The specific calculation formula is as follows:

θ∗j =
∑m

i=1 ∑m
t=1

∣∣ fij − ftj
∣∣

∑n
j=1 ∑m

i=1 ∑m
t=1

∣∣ fij − ftj
∣∣ (5)

where θ∗j represents the combination weight coefficients of the jth (j = 1, 2, 3, 4) evaluation
method. fij and ftj denote the evaluation values of the ith and tth coastal city under the jth
evaluation method, respectively. Subsequently, the weighted evaluation values of the four
evaluation methods were calculated to obtain the final comprehensive evaluation results.
The calculation formulas are as follows:

ei = θ∗e1e1i + θ∗e2e2i + · · ·+ θ∗ejeji (6)

si = θ∗s1s1i + θ∗s2s2i + · · ·+ θ∗sjsji (7)

ai = θ∗a1a1i + θ∗a2a2i + · · ·+ θ∗ajaji (8)

where ei, si, and ai represent the final calculated values of the exposure index, sensitivity
index, and adaptability index, respectively, for the ith coastal city using the combination
weighting method. θ∗ej, θ∗sj, and θ∗aj denote the combination weight coefficients of the jth
(j = 1, 2, 3, 4) evaluation method in calculating the exposure index, sensitivity index,
and adaptability index, respectively. eji, sji, and aji represent the exposure index value,
sensitivity index value, and adaptability index value for the ith coastal city calculated using
the jth evaluation method, respectively.

Finally, the vulnerability index values of 64 coastal city were calculated by combining
the aforementioned three vulnerability elements according to Equation (1). These compre-
hensive assessment results obtained from the four evaluation methods can be considered
as a reliable representation of vulnerability to storm surge disasters. To illustrate the spatial
characteristics and patterns of vulnerability and its components, we classified the results
into four categories (i.e., very high, high, low, and very low) using the Natural Break
(Jenks) algorithm, which employs a statistical formula called Jenks’ optimization to identify
breakpoints between categories. The Jenks algorithm is designed to minimize variabil-
ity within categories while maximizing variability between categories, which facilitates
the demonstration of spatial differences in vulnerability. Detailed assessment results are
provided in Supplementary Table S2.

It is worth noting that the comprehensive assessment method proposed in this study
actually presents a flexible and extensible framework for storm surge vulnerability as-
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sessment. It is not restricted to the currently selected indicators but allows for dynamic
adjustment of indicators based on the specific needs and practical circumstances within the
study area. This ensures the broad applicability of the framework and the scientific validity
of the final evaluation results. For instance, when applying this assessment framework to
countries in the African region, it may be necessary to exclude fisheries-related indicators.
This is because aquaculture is not well developed in most African coastal countries and
direct economic losses from storm surges are typically unrelated to fisheries.

3.4. Spatial Analysis of Vulnerability

We applied a spatial autocorrelation analysis to identify statistically significant spatial
clustering of vulnerabilities, which can provide insights for prioritizing immediate or
stepwise actions. The spatial autocorrelation analysis tests whether the same attributes
are significantly correlated at adjacent spatial locations and can be categorized into the
global spatial autocorrelation and the local spatial autocorrelation. The global spatial
autocorrelation, commonly described by the Global Moran’s I index, is used to determine
whether an attribute exhibits global spatial associations. The Global Moran’s I index
ranges from −1 to 1, where positive and negative values indicate positive and negative
spatial autocorrelation in the spatial distribution of the attribute, respectively [72,73]. The
calculation formula for the Global Moran’s I index is as follows:

I =
n ∑n

i=1 ∑n
j=1 Wij

(
Xi − X

)(
Xj − X

)
∑n

i=1 ∑n
j=1 Wij ∑n

i=1
(
Xi − X

)2 (9)

where n represents the total number of coastal cities (64 in our study), i represents the
candidate city for which I is calculated, and j represents different neighboring cities. Xi
and Xj represent the vulnerability index values of coastal cities i and j, respectively. X
represents the average of the vulnerability indices of all coastal cities, and Wij is the spatial
weight matrix indicating the spatial relationship between the city i and city j. When city i
and city j are spatially adjacent, Wij = 1, otherwise, Wij = 0.

The global spatial autocorrelation analysis is unable to provide information about the
specific spatial location of clusters or anomalies. Therefore, it is necessary to employ the
local Moran’s I index (i.e., local spatial autocorrelation analysis) to examine the correlation
of vulnerability at some local spatial locations and identify significant spatial clusters and
patterns [72,73]. The calculation formula for the local Moran’s I index is as follows:

Ii =
n
(
Xi − X

)
∑n

j=1 Wij
(
Xj − X

)
∑n

i=1
(
Xi − X

)2 (10)

where n, X, Xi, Xj, and Wij are the same as in Equation (9). According to the calculation
result of the local Moran’s I index, the spatial distribution of vulnerability indices can
be classified into five types: “high-high” (HH) and “low-low” (LL) indicate the spatial
clustering of similar values, demonstrating positive spatial autocorrelation; “high-low”
(HL) and “low-high” (LH) can be described as spatial outliers, indicating negative spatial
autocorrelation; and “not significant” denotes the absence of a significant spatial difference
in the vulnerability index between a city and its surrounding cities.

4. Results
4.1. Spatial Characteristics of Vulnerability Elements
4.1.1. Exposure

In general, there are significant differences in the spatial characteristics of exposure,
sensitivity, and adaptability. The assessment results of exposure (Figure 2a) reveal that
approximately 77% of the coastal cities in mainland China fall into the categories of low and
very low exposure. These cities are predominantly situated in the coastal areas of the Bohai
Sea and the South China Sea. On the other hand, cities classified as being in the very high
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exposure category are mainly found in the Liaodong Peninsula, the Leizhou Peninsula and
the Yangtze River Delta, including Dalian, Zhanjiang, Ningbo, and Shanghai. Cities in the
high exposure category are concentrated in the Shandong Peninsula and the coastal region
of Zhejiang and Fujian provinces. The unique geographical positioning of the peninsula
region, surrounded by the sea on three sides, leads to coastal cities experiencing higher
exposure to storm surges. In contrast, Hangzhou and Shaoxing in Zhejiang Province, as well
as Guangzhou and Dongguan in Guangdong Province, all fall into the very low exposure
category due to their short coastlines. Furthermore, nearly all coastal cities in Hainan
Province are classified as very low exposure. This can be attributed to the prevalence of
trees and shrubland with a low exposure in the coastal areas of Hainan Province, which
accounts for more than 60% of the total area, while the impervious surface with a high
exposure accounts for less than 11% of the total area.
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4.1.2. Sensitivity

The assessment results of sensitivity (Figure 2b) show that nearly 40% of the cities fall
into the very high and high sensitivity categories, mainly located in the southern coastal
areas of China. All of the coastal cities around the Leizhou Peninsula are in the high
sensitivity category, mainly due to the high percentage of the population with junior high
school education or below, all of which are close to 80%. Nearly all coastal cities in Hainan
Province also fall into the high sensitivity category. This is primarily due to the fact that
the core areas of these cities are situated within 10 km from the coastline, characterized by
remarkably high densities of critical transportation facilities. In addition, the city with the
highest sensitivity index is Lingao County in Hainan Province, due to its high economic
dependence on marine fisheries, which account for more than 60% of GDP. On the contrary,
the coastal cities located in the Yangtze River Delta and Pearl River Delta economic circles
have highly developed economies with a low ratio of fishery output to GDP. At the same
time, economically developed cities attract large numbers of highly qualified people for
employment, resulting in a generally high education level of the population. Therefore, the
cities in these regions all belong to the very low and low sensitivity categories.
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4.1.3. Adaptability

Regarding the assessment results of adaptability (Figure 2c), only 33% of the coastal
cities fall into the very high and high adaptability categories, which are concentrated in eco-
nomically developed regions such as the Yangtze River Delta, the Pearl River Delta, and the
Bohai Economic Rim. Cities in these regions exhibit a robust capacity to withstand external
disturbances because of the high proportion of artificial coastlines along their coastlines that
conform to the high-tide protection standards. For example, Tianjin has a high proportion
of 86% artificial coastlines. It is noteworthy that all coastal cities located in Hainan Province
are in the very low adaptability category. Compared to other coastal provinces in China,
Hainan Province is relatively backward in terms of economic development, and there is a
large gap between its economic output and per capita income compared with coastal cities
in other provinces. At the same time, government investment in disaster preparedness,
including medical and health resources, is insufficient. The number of medical staff and
health institutions is significantly inferior compared to coastal cities in other provinces.
More importantly, Hainan Province is dominated by sandy coastlines and lacks protection
from artificial coastlines or biogenic coastlines. Sandy coastlines are prone to severe erosion
from storm surges. These are the main reasons for the poor adaptability of coastal cities in
Hainan Province.

4.2. Spatial Characteristics of Vulnerability

The comprehensive assessment results of vulnerability to storm surges for 64 coastal
cities in mainland China are presented in Figure 3. From a national perspective, the
percentage of coastal cities belonging to the very high and very high vulnerability categories
reached 64%. Among them, the five cities displaying the highest vulnerability are Zhanjiang,
Lingao, Dalian, Yancheng, and Shanwei. Specifically, the primary reason for the high
vulnerability of Zhanjiang and Dalian lies in their unique geographical locations. These
peninsular cities, surrounded by the sea on three sides, experience the highest exposure.
Similarly, Yancheng, located in the plains, has the longest coastline in Jiangsu Province,
resulting in high exposure. Moreover, the coastlines of Yancheng predominantly comprise
aquaculture dikes, resulting in weak protection against storm surges. Unlike the cities
mentioned above, Lingao exhibits high vulnerability due to its strong economic dependence
on fisheries and insufficient medical resources. Shanwei is characterized by a low GDP and
an exceptionally high percentage of population with junior high school education or below
(84%), which leads to a high sensitivity to storm surge disasters. Concurrently, the coastline
of Shanwei predominantly comprises sandy coastlines and rocky coastlines, which are
vulnerable to storm surge erosion.

From a provincial perspective (Figures 3 and 4), Guangxi Province is the most vulner-
able to storm surges compared to other provinces, with all of its coastal cities classified as
being in the high vulnerability category. In contrast, all coastal cities in Hebei Province are
classified as being in the low vulnerability categories. The second most vulnerable province
is Hainan Province, with more than 90% of coastal cities falling into the very high and high
vulnerability categories. Guangdong, Zhejiang, and Shandong all have 57% of coastal cities
classified in the very high and high vulnerability categories. The percentages of coastal
cities classified in the very low and low vulnerability categories are 50% for Fujian and
Liaoning. In addition, Shanghai and Tianjin, the only two coastal municipalities in China,
are both classified as the low vulnerability.
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4.3. Global and Local Spatial Autocorrelation Analysis

The spatial autocorrelation statistical techniques can determine whether the vul-
nerability is statistically significant in spatial clustering, and the results are shown in
Figures 5 and 6. Firstly, the Global Moran’s I index is calculated to be 0.384 (z-score = 3.46,
p-value = 0.001), indicating a significant positive spatial autocorrelation and spatial ag-
glomeration of vulnerability among the 64 coastal cities analyzed. The Moran scatter plot,
illustrated in Figure 5, reveals that most of the points are situated in the first and third
quadrants, representing the aggregation of high vulnerability cities and low vulnerability
cities, respectively. In other words, the vulnerability of most coastal cities is characterized
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by HH and LL aggregation. In addition, a small number of points are distributed in the
second and fourth quadrants, signifying that cities with a low vulnerability are surrounded
by cities with a high vulnerability, and cities with a high vulnerability are surrounded by
cities with a low vulnerability, respectively. That is, these coastal cities exhibit a negative
spatial correlation in terms of vulnerability.

The local spatial autocorrelation analysis (Figure 6) provides an intuitive represen-
tation of vulnerability clusters in cluster types of “HH”, “LL”, “HL”, and “LH”. Firstly,
coastal cities situated in the Beibu Gulf are identified as an HH cluster of vulnerability,
which corresponds to relatively higher vulnerability for these cities. Secondly, cities situated
in the Yangtze River Delta (e.g., Shanghai, Jiaxing, and Hangzhou) and the Pearl River Delta
(e.g., Huizhou, Shenzhen, Dongguan, and Guangzhou) are identified as LL vulnerability
clusters. The Pearl River Delta and the Yangtze River Delta economic circles are the most
economically, technologically, and culturally developed regions along the Chinese coast.
Cities in these regions have developed in a resilient manner and are less vulnerable to storm
surge disasters. In addition, there is an LH cluster centered on Maoming. That is, Maom-
ing is surrounded by cities with a high vulnerability. Compared with neighboring cities,
Maoming is characterized by low exposure due to its short coastline. At the same time, the
relatively developed economy, especially the adequate medical resources, makes Maoming
highly adaptable. Lastly, the remaining cities exhibit no significant agglomeration, and the
spatial autocorrelation is insignificant, indicating that vulnerability is randomly distributed.
Given that the results are the evidence-based vulnerability distributions of coastal cities in
mainland China, it is essential to prioritize these identified cities with high vulnerability
when conducting vulnerability reduction planning and management.
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5. Discussion
5.1. Comparison with Previous Studies

Given that previous studies assessing vulnerability to storm surges along the coast
of mainland China were primarily conducted at the provincial scale, it is not possible to
directly compare their results with our findings at the prefecture-level city scale [39,74,75].
Storm surges are marine dynamic disasters mainly triggered by tropical or temperate
cyclones. Therefore, we compared our findings with two studies conducted at the county
scale, which focused on risk assessment for tropical storm surges and typhoons in coastal
regions of China, respectively [28,76]. In both studies, the assessment of vulnerability was
an integral component of the risk assessment.

In the risk assessment of tropical storm surges conducted by Gao et al. [28], Dalian,
Tianjin, Shantou, Fangchenggang, and Wenchang were identified as the cities with the
highest vulnerability along the Chinese coast. This generally aligns with our findings,
except for Tianjin, which was classified in the very low vulnerability category in our
study. First, the relative consistency of the results can be attributed to the similarity of the
vulnerability assessment models employed. The vulnerability assessment model used by
Gao et al. is a function composed of the socioeconomic index, land use index, ecological
environment index, and resilience index, which essentially correspond to the components
of the model we employed. Specifically, the socioeconomic index and resilience index can
be equated to the sensitivity index and adaptability index, respectively, while the land
use index and the ecological index can be equated to the exposure index. The significant
discrepancies in the evaluation results for Tianjin may be due to differences in the data
collection timing. Gao et al. primarily used data from the 6th National Census and the
2010 statistical yearbook, whereas we utilized data from the latest 7th National Census
and the 2020 statistical yearbook. Taking two specific indicators as an example, Tianjin’s
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GDP and per capita income in 2020 increased by 55% and 81%, respectively, compared to
2010, reaching CNY 14,083.73 billion and CNY 43,854. However, Dalian, also located in
the Bohai Sea Rim, only experienced a 36% GDP increase to CNY 7030.4 billionduring the
same period. Tianjin is not only the largest coastal open city in northern China, but also the
economic center of the Bohai Rim. The considerable improvement of the economic level
may indirectly increase the government’s investment in disaster prevention and mitigation,
thereby enhancing the city’s adaptability and reducing its vulnerability to storm surges.

In the risk assessment of typhoons conducted by Xu et al. [76], cities located in the
Yangtze River Delta and Pearl River Delta were identified as having the highest vulner-
ability, which is in direct contrast to our results. The main reason for such a significant
discrepancy may be attributed to the different definitions of the concept of vulnerability.
In Xu et al.’s study, vulnerability was defined as the susceptibility of elements exposed
to hazards, and the vulnerability index, which included four elements (population den-
sity, GDP, road network, and land use), was adopted as the assessment model. In this
assessment model, the vulnerability index of a city increased with its level of economic
development. However, this model overlooks the cities’ ability to cope with disasters,
i.e., adaptability. For instance, some cities in certain geographic locations may be highly
susceptible to disasters but also exhibit a remarkable adaptability simultaneously. This
adaptability can minimize the impact of disasters on cities and shorten their recovery
time. Therefore, it is imperative to integrate adaptability into the assessment model to
provide a more comprehensive understanding of a city’s vulnerability. On the other hand,
although storm surges can be triggered by typhoons, they differ fundamentally in nature.
Storm surges belong to marine dynamic disasters, while typhoons belong to meteorological
disasters. Consequently, considering the actual impact extent of the storm surges, the extent
we confined during the calculation of critical transportation facilities density was 10 km
from the coastline. In contrast, the calculation of a similar indicator (i.e., the density of road
networks) by Xu et al. considered the entire city as the impact range for typhoons. This
discrepancy may be another important reason for the difference in evaluation results.

5.2. Implications for Policy Making

This study provides important information for the development of disaster reduction
policies at the provincial level, as well as focus for action at the local level (prefecture-level
city scale), by identifying the spatial distribution of vulnerability, statistically significant
clusters of high vulnerability, and reporting the top vulnerability cities. First, the vulner-
ability assessment results presented in this study can directly assist decision-makers in
prioritizing cities for location-specific interventions, thereby facilitating the implementation
of sustainable development strategies in coastal areas. In particular, for cities with a high
vulnerability, provincial governments should increase their policy inclination accordingly.
At the same time, given that vulnerability is the consequence of complex interactions
between natural ecosystems and socio-economic environments, prefectural governments
should adjust the investment scale and structure, improve land use planning, strengthen
defense systems against storm surges, and increase investment in disaster prevention
and mitigation (e.g., reforestation of mangroves, construction of sea walls, protection and
restoration of natural coastal habitats, and increasing the number of shelters and health
facilities), which substantially contribute to reducing disaster losses and vulnerability lev-
els of cities [2,27]. Finally, the results of the local spatial autocorrelation analysis indicate
significant clustering of cities with high vulnerability, such as the Beibu Gulf urban ag-
glomeration, including Beihai in Guangxi Province, Zhanjiang in Guangdong Province,
Lingao in Hainan Province, and others. Given the long-standing fragmentation of China’s
emergency management organizations, the synergistic emergency efficiency among these
cities, which are administered separately by different provinces, may be relatively poor [74].
Therefore, it is necessary to promote inter-city communication and cooperation and de-
velop scientific collaborative emergency response measures. For example, establishing
inter-city emergency linkage mechanisms and emergency command systems, organizing
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joint city emergency drills, and enhancing public awareness of marine disaster prevention
and mitigation.

5.3. Uncertainties and Limitations

Although we used the best available data to assess the vulnerability of coastal cities
to storm surges, we should acknowledge several limitations of this study. China is one of
the countries with the longest coastlines in the world, and acquiring high-quality data at
the local level for each indicator is challenging. First, a reliable vulnerability assessment
requires high-resolution topographic data. However, we used a 30 m resolution DEM to
extract elevation and slope, which is still not precise enough and may affect the assessment
results. In addition, the overall classification accuracy of the land cover product is only 74%,
and excessive classification errors can lead to uncertainty in the exposure evaluation [77–79].
Moreover, owing to the coarse classification system of the 10m resolution land cover
product, we cannot distinguish different types of disaster-bearing bodies in detail, while
a high-resolution image-based land cover product could perform better. For instance,
residential land and transportation land are both impervious surfaces, but residential land
generally has a higher exposure to storm surges [21,29]. Second, the indicator system
of sensitivity and adaptability was established based on the literature review and data
availability. However, there is an absence of more detailed indicators on artificial coastlines,
particularly concerning the tide protection standards of the dikes. Given that artificial
coastlines within each city are constructed with varying tidal protection standards, their
ability to withstand storm surges varies accordingly. Presently, significant disparities in
tide protection standards for artificial dikes exist among various coastal cities in China. For
example, while the tide protection standard for artificial dikes in Shanghai is designed to
withstand against a storm surge occurring once in a hundred years, the tide protection
standard for artificial dikes in the majority of other cities are designed to withstand a storm
surge occurring once in twenty years [80]. Finally, coastal cities may face more severe
compound flooding under storm surges and rainfall [81,82]. Although this study quantifies
the exposure of disaster-bearing bodies to surges and rainfall in terms of environmental
factors, relevant indicators of a city’s drainage capacity (e.g., drainage pipe network density)
are also very important. This limits a sound analysis of a city’s adaptability to storm
surges. Therefore, future work will involve revising and further improving the established
evaluation indicator system.

6. Conclusions

With the rapid development and continued concentration of populations in coastal
areas, the vulnerability of coastal cities to marine dynamics disasters such as storm surges
is increasing, posing a critical challenge to sustainable development. This study pioneers in
producing the first comprehensive assessment of vulnerability to storm surges for China’s
coastal areas from the perspective of prefecture-level cities. The three components of
vulnerability were integrated to construct a vulnerability index that provides a comprehen-
sive characterization of the multidimensional structure of vulnerability. Additionally, we
quantified the effect of environmental factors on the exposure of disaster-bearing bodies
to storm surges at the patch scale. Finally, the degree of vulnerability to storm surges for
64 coastal cities was evaluated based on the weight combination strategy, which combines
the advantages of multiple evaluation methods. Furthermore, we explored the profile of
vulnerability of Chinese coastal areas to storm surges and analyzed the spatial variation of
vulnerability using spatial autocorrelation statistical techniques.

The assessment results indicate that 64% of coastal cities are classified into the very
high and high vulnerability categories. Among them, the cities with the highest level
of vulnerability are Zhanjiang, Lingao, Dalian, Yancheng, and Shanwei. Additionally,
the distribution of vulnerability in coastal cities of mainland China exhibits statistically
significant spatial heterogeneity. Coastal cities located in the Yangtze River Delta and the
Pearl River Delta are identified as LL vulnerability clusters, while coastal cities located
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in the Beibu Gulf are identified as HH vulnerability clusters that must be prioritized for
immediate actions related to vulnerability reduction. Since planning for the mitigation
of storm surges is a continuous and ongoing process, vulnerability assessments should
be priority work undertaken among the coping strategies to be decided. Despite the
limitations, the vulnerability assessment results generated in this study can still provide an
important reference for the development and application of effective policies and measures
for reducing the impact of storm surges in the coastal areas of mainland China.
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