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Abstract: Approaching space target tracking is a typical and challenging mission in the space
situational awareness (SSA) field. As the space-based radar is able to monitor the space targets
of interest full-weather all-time, the space-based radar system is utilized in this paper. However,
most multi-target tracking (MTT) filters in target tracking studies merely utilize the location or
narrow measurements, and many potentially valuable electromagnetic scattering characteristics are
missed, which leads to space target false tracking problems. The space-based radar transmits a
wide-band signal, and the measured high-resolution range profile (HRRP) information is an effective
characteristic for different target discrimination. Therefore, the HRRP characteristics of space targets
are implemented into the update recursion of the MTT filter, which can be utilized to improve
the tracking performance. Then, to predict the target HRRP sequence, the geometrical theory of
diffraction (GTD) model is utilized. Additionally, a modified spatial spectrum method with a novel
covariance matrix is designed to improve the scattering parameter estimation accuracy. Finally, an
adapting threshold is devised for merging the Gaussian mixture (GM) components weights. The
proposed threshold is on the basis of the proposed HRRP characteristic-aided probability hypothesis
density (PHD) filter, and it can tackle the problem of space target discrimination. Simulation results
validate the effectiveness and robustness of the proposed probability hypothesis density (HGI-PHD)
filter aided by HRRP information and improved with GM weights.

Keywords: space-based radar; space target tracking; high-resolution range profile (HRRP);
the geometrical theory of diffraction (GTD) model; adapting Gaussian mixture (GM) weights;
merging threshold

1. Introduction
1.1. Background and Problem Statement

The radar system in this paper is the space-based radar, and the reasons for utilizing
a space-based radar to detect or track space targets are analyzed as follows. Note that
with the rapid growth of stealth technology and space activity, the existing ground-based
equipment fails to monitor our space targets of interest all-weather full-time. Compared
with ground-based equipment and space-based optical equipment, a space-based radar can
provide better coverage, and it is not constrained by the weather or the curvature of the
Earth. Moreover, it possesses a stronger early warning ability for high-speed space targets.
Therefore, the space-based radar is utilized to track space targets in this paper, and some
valuable problems are solved under space-based observing scenarios.

The problems that exist in the above-mentioned space-based observing scenarios
are essential for perceiving the orbital state of the space targets of concern in real-time
accurately, which is a challenging mission for space situational awareness (SSA) [1,2]. In
general, the SSA surveillance tasks conclude the effective observation of our space targets
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of interest in the surveillance region, i.e., how the space target orbits change with varying
time in order to estimate the individual characteristics or states (such as their positions and
velocities in the reference coordinates). It should be mentioned that the number of space
targets will change as time varies, and it is not known as a priori knowledge; therefore, the
SSA tasks can be regarded as classical multiple target tracking (MTT) problems.

However, MTT will encounter some specific and typical problems when faced with
the SSA surveillance tasks. For example, the space-based radar can only cover a limited
tracking range due to its relatively smaller radar transmitting power compared to the
ground-based radar system. Furthermore, it is challenging to track space targets accurately
when they approach each other or the distance between them is close. What is more, all
target state components sometimes are not provided thoroughly in a space-based radar
system, and these characteristics make it more difficult and complicated for MTT problems.

An appealing and effective way to solve the aforementioned problems is using the
random finite set (RFS) theory and finite set statistics (FISST). It is known that FISST is
an elegant Bayesian formulation for the description of MTT based on the RFS theory [3,4].
Efficient solutions such as the probability hypothesis density (PHD) [5,6] and cardinalized
PHD (CPHD) [7–9] have emerged in the MTT region in recent years. The core goal for the
aforementioned filters is to update the first-order multi-target moments of the posterior
probability density and update the global posterior probability density rather than recur-
rence, which is able to reduce the computational complexity to a large degree. Moreover,
with the aim of alleviating poor cardinality estimation performance accuracy of the standard
PHD filter, the CPHD filter is proposed to ease the above tension. It should be noted that
the sequential Monte Carlo (SMC) model [10] and the Gaussian mixtures (GM) model [11]
are the two most typical implementations of the above-mentioned Bayesian-based filters.

Note that among the various MTT filters, the PHD filter and the CPHD filter have
concise formulation expressions and a slightly small computational burden, which is
feasible for engineering applications. However, due to the “spooky action” in the process
of PHD filter recursion, some limits exist as we propagate these two filters’ legacy PHD.
We would like to mention that it is difficult to derive a theoretical mathematical expression
for the posterior probability density. Therefore, to tackle this problem, the multi-target
cardinality-balanced multi-Bernoulli (CBMeMer) filter [12] is developed by propagating
the posterior PDF. But under high-clutter density scenarios, the tracking performance
of the CBMeMer filter will deteriorate sharply. In recent years, the generalized labeled
multi-Bernoulli (GLMB) filter [13] and its computational simplified form, the labeled multi-
Bernoulli (LMB) filter [14], have been proposed sequentially. These two filters are able to
distinguish various target trajectories more accurately. However, considering the moment
approximate operation, it is hard for the LMB filter to effectively avoid missed detection.

The space-based radar system is able to transmit a wide-band signal, and, thus, it can
provide targets additional electromagnetic information like the high-resolution range pro-
file (HRRP). Motivated by the above, we designed a filter that can update the target HRRP
pseudo-likelihood. In order to predict the HRRP sequence and employ it in update recursion,
the geometrical theory of diffraction (GTD) model is utilized in this paper. Being a classical
scattering center model, the GTD model is effective in describing the radar targets' electro-
magnetic characteristics at high frequencies. In recent years, the GTD scattering center model
has been widely applied in lots of radar domains, such as automatic target recognition (ATR),
radar cross-section (RCS) extrapolation and interpolation, radar target three-dimensional (3D)
reconstruction, and so on. Once the GTD scattering center is reconstructed, we can obtain
the targets’ electromagnetic scattering data, and the HRRP sequence can be predicted as well.
Therefore, it is vitally important to construct a precise GTD scattering model and estimate the
scattering parameters accurately. Thus, many effective methods, such as estimating signal
parameters via the rational invariant technique (ESPRIT) algorithm [15–18], the multiple
signal classification (MUSIC) algorithm [19–22], and the matrix enhancement and matrix
pencil (MEMP) algorithm [23–25], have been proposed to estimate the scattering parameters
from the back-scattered electromagnetic data.
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Based on the aforementioned background as well as to deeply analyze the scientific
problems in the process of tracking space targets based on a space-based radar, we separately
analyzed the specific problems in the observation scene of a space-based radar and provided
specific solutions so as to effectively improve the tracking accuracy of space targets.

1.2. Problem Analysis and Contributions

It is worth stressing that some electromagnetic scattering characteristics remain in
radar signals, while most MTT filters fail to utilize them properly. Therefore, some draw-
backs existed during the tracking recursion as follows:

1. Generally, most MTT filters merely utilize target information such as distance and
orientation but fail to use some targets’ additional characteristics that a wide-band
radar can provide, for example, the HRRP information.

2. It is difficult to track space targets accurately when they are closely spaced with each
other. So how can we improve the tracking performance when space targets are in
dense clutter environments (due to thermal noise in space-based platforms, space
debris, or other space targets)?

3. If the HRRP characteristics are utilized in the MTT tracking recursion process, then
how can we predict the HRRP sequence, and how can we compute the HRRP pseudo-
likelihood for different targets?

4. A more accurate GTD model is important for providing precise electromagnetic
information for tracking update procedures. However, due to the thermal noise in a
space-based platform, the signal-to-noise ratio (SNR) will be lower than the ground-
based radar, which will lead to inaccuracy in scattering center parameter estimation.
Therefore, it is vitally important to design a novel scattering parameter estimation
method that can perform well in low-SNR scenarios.

The standard PHD filters do not utilize the targets’ potential electromagnetic infor-
mation abundantly, and they will encounter the problem of poor tracking performance
under low-SNR scenarios or dense clutter environments. To improve the aforementioned
problems, a modified PHD filter with HRRP characteristics is proposed in this paper, and
the main contributions are shown as follows.

1. To fully utilize the electromagnetic scattering characteristics of space targets, HRRP
information is utilized in the update recursion of our proposed MTT filter. The HRRP for
various targets and clutter differs significantly from each other as tracking time varies;
thus, if the HRRP information is fully utilized, the difference between different targets
or clutter will be enlarged, which is beneficial for improving the tracking accuracy.

2. To solve the aforementioned second problem, an adaptive threshold for merging the
Gaussian components is designed in this paper. The designed adaptive threshold is
relevant to the noise covariance, and it is able to improve the tracking performance of
the MTT filter. Furthermore, the discrimination ability between closely spaced targets
can be enhanced at the same time.

3. In order to predict the HRRP sequence, the GTD scattering center model is constructed
in this paper. Then, the similarity rate between different HRRP sequences is denoted
to describe the HRRP pseudo-likelihood.

4. To solve the fourth problem mentioned above with the aim of improving the GTD scatter-
ing parameter estimation accuracy in low-SNR scenarios, a modified 3D-ESPRIT algorithm
with a novel correlation matrix is proposed in this paper. Furthermore, by squaring the
total covariance matrix, the parameter estimation accuracy can be further improved.

The rest of this paper is organized as follows. Section 2 investigates a review of the PHD
filter and the GTD scattering center model. Furthermore, to obtain the time-varying observing
angle, the observation geometry transformation for a space-based radar is also given in
Section 2. Section 3 presents our novel scattering parameter estimation method and the analytic
implementation of our proposed PHD (HGI-PHD) filter aided by HRRP characteristics and
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improved with Gaussian mixture components. The simulation and performance evaluation
are illustrated in Section 4. Finally, conclusions are drawn in Section 5.

2. Technical Foundation

In this section, we first introduce the basic theory of PHD filtering, which provides a
foundation for space target tracking. Then, to predict the HRRP sequence of space targets,
the GTD scattering center model is demonstrated in this section. Finally, the observation
geometry transformation for the space-based radar is derived to compute the time-varying
observing angle.

2.1. PHD Filtering

In order to ease the computational intractability of the Bayesian multiple-target filter,
the PHD filter is proposed by using the first-order moment of an RFS, which can be called
the intensity function, and it is used to approximate the posterior multiple-target state
density and propagate posterior intensity. The intensity of an RFS is defined as follows:

vk
(
x|Z1:k

)
=
∫

δX(x) f
(
X|Z1:k

)
δX (1)

where δX(x) = ∑
w∈X

δw(x) and δw(x) represent the Dirac delta function. X and Z represent

the states and measurements, respectively. Here, Z1:k is omitted from the intensity to notate
it more simply. The integral of the PHD is not a constant, and the expected number of
targets is expressed as ∫

vk(x)dx = λk (2)

The PHD filter approximates the density of multiple targets by using a Poisson process
as follows:

fk|k(X) = e−λk ∏
x∈X

λkvk(x) (3)

Then, the PHD prediction recursion is computed as

vk|k−1(x) =
∫

pS,k(ζ) f (x
∣∣ζ)vk−1(ζ)dζ + γk(x) (4)

where vk|k−1(x) represents the predicted PHD density of time k, pS,k(ζ) is the target survival
probability, γk(x) is the target birth intensity function, and f (x|ζ) denotes the Markov
transition density with state x.

Finally, the PHD update step can be summarized as

vk(x) =
[
1− pD,k(x)

]
vk|k−1(x) + ∑

z∈Z

pD,k(x)gz(z
∣∣∣x)vk|k−1(x)

κ(z) +
∫

pD,k(ξ)gz(z
∣∣∣ξ)vk|k−1(ξ)dξ

(5)

where at time k, pD,k(x) is the detection probability of the target, gz(z|x) is the measurement
likelihood of the target, and κ(z) is the clutter RFS intensity function.

2.2. GTD Scattering Center Model

As one of the typical scattering center models, the geometric theory of diffraction
(GTD) model enables us to describe the electromagnetic characteristics of radar targets
effectively. Therefore, in a high-frequency region, the GTD scattering center model can be
expressed as [26]

E( fm, θn, ϕk) =
I

∑
i=1

Ai(j
fm
f )

αi
exp[−4πj fm(xi cos θ cos ϕ + yi sin θ cos ϕ + zi sin ϕ)/c] + ω( fm, θn, ϕk)

=
I

∑
i=1

Ai(j
f0+m∆ f

f )
αi

exp[−4πj fm(xi cos θ cos ϕ + yi sin θ cos ϕ + zi sin ϕ)/c] + ω( fm, θn, ϕk)
(6)
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where E( fm, θn, ϕk) represents the back-scattering data of radar targets, I denotes the total
scattering centers, and {Ai, αi, xi, yi, zi} denote the scattering intensity, scattering type,
transversal position parameter, and longitudinal position parameter and vertical position
parameter of the i-th scattering center, respectively. fm = f0 +m∆ f represents the operating
frequency, and { f0, ∆ f , m} represent the initial frequency, the frequency step, and the
frequency index, respectively. In similarity, θn is equal to θ0 + n∆θ; ϕk is equal to ϕ0 + k∆ϕ;
θ0 and ϕ0 are the initial azimuth angle and the initial elevation angle, respectively; and
n∆θ and k∆ϕ are the radar rotation angles, which are relatively small. c = 3× 108 m/s
represents the electromagnetic wave propagation speed, and ω( fm, θn, ϕk) denotes the
Gaussian white noise. The type scattering parameter αi of typical scattering structures is
given in [26].

Then, according to Ref. [27], the scattering center parameters αi, xi, yi, and zi can be
estimated as

αi =
(|Pxi|−1) f0

∆ f
(7)

xi =
−angle(Pxi)× c

4π∆ fx
(8)

yi =
−angle(Pyi)× c

4π∆ fy
(9)

zi =
−angle(Pzi)× c

4π∆ fz
(10)

where Pxi = (1 + αi
∆ fx
fx0

) exp(−4πj∆ fxxi/c), Pyi = exp(−4πj∆ fyyi/c), and
Pzi = exp(−4πj∆ fzzi/c).

Finally, the intensity parameters
~
A can be estimated by using the least square method

as follows ~
A = (GHG)

−1
GHEk (11)

where
G= [a1, . . . , aI] (12)

ai =

ai(0, 0, 0), . . . , ai(M− 1, 0, 0), ai(0, 1, 0), . . . ,
ai(M− 1, 1, 0), . . . , ai(M− 1, N − 1, 0),
ai(0, 0, 1), . . . , ai(M− 1, N − 1, K− 1)

T

(13)

ai(m, n, k) = j(
fm

f0
)
αi

exp[
−4πj fm

c
(xi cos θn cos ϕk + yi sin θn cos ϕk + zi sin ϕk)] (14)

Ek =

E( f0, θ0, ϕ0), . . . , E( fM−1, θ0, ϕ0), ai( f0, θ1, ϕ0), . . . ,
ai( fM−1, θ1, ϕ0), . . . , ai( fM−1, θN−1, ϕ0),
ai( f0, θ0, ϕ1), . . . , ai( fM−1, θN−1, ϕK−1)

 (15)

[]T represents the transpose operation.

2.3. Observation Geometry Transformation for Space-Based Radar

In this section, the observation geometry transformation for a space-based radar is
derived to obtain accurate observing angles, which are significant for GTD scattering center
estimation and the HRRP prediction process.

As depicted in Figure 1, the Earth-centered, Earth-fixed (ECEF) coordinate system
Oe − XeYeZe and the radial tangential normal (RTN) coordinate system Ot − XtYtZt are
marked in black lines and in red lines, respectively. The origin of the ECEF coordinate
system is at the center of the earth, and it is a non-rotating right-handed Cartesian coor-
dinate system. The direction of its Xe axis points to the equator, and the prime meridian
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intersection and the Ze axis pass through the Earth's north pole. As for the RTN coordinate
system, the Xt axis is parallel to the direction of the velocity, the Zt axis is along the main
body of the space target, and the Yt axis is determined according to the right-hand theorem.
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Figure 1. Schematic of the coordination system transformation.

The orbit of the space target is determined by six orbital elements, which are derived
from a priori two-line elements (TLEs). To be specific, these elements are expressed as
h (semi-major axis), α (inclination), Ω (right ascension of the ascending node), e (eccentric-
ity), ω (argument of perigee), and θ (true anomaly). Thereafter, the observation geometry
transformation between the ECEF coordinate system and the RTN coordinate system can
be derived according to the given six orbital elements.

Then, the positions of the space target and the space-based radar in the ECEF coordi-
nate system are given as

Ot1 ECEF = Rz(Ω1)Rx(α1)Rz(ω1)

·
[
h1

e1+cos θ1
1+e1 cos θ1

(
h1

1−e1
2

1+e1 cos θ1

)
sin θ1 0

]T (16)

Ot2 ECEF = Rz(Ω2)Rx(α2)Rz(ω2)

·
[
h2

e2+cos θ2
1+e2 cos θ2

(
h2

1−e2
2

1+e2 cos θ2

)
sin θ2 0

]T (17)

where Rx, Ry, and Rz represent the rotation matrix around the x axis, the y axis, and the z
axis, respectively.

Also, the rotation matrices can be expressed as follows:

Rz(Ω) =

cos Ω − sin Ω 0
sin Ω cos Ω 0

0 0 1

 (18)

Rx(α) =

1 0 0
0 cos α − sin α
0 sin α cos α

 (19)

Rz(ω) =

cos ω − sin ω 0
sin ω cos ω 0

0 0 1

 (20)

Thus, the coordinate transformation matrix between the ECEF coordinate system and
the RTN coordinate system can be expressed as

MECEF−OF = [Rz(Ω)Rx(α)Rz(ω + θ)]−1 (21)
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So, the positions of the space target and space-based radar in the RTN coordinate
system are given as

Ot1 OF = MECEF−OF(Ω1, α1, ω1, θ1)Ot1 ECEF (22)

Ot2 OF = MECEF−OF(Ω1, α1, ω1, θ1)Ot2 ECEF (23)

Also, the line of sight (LOS) of the radar in the RTN reference coordinate system is
computed as

LOS = Ot1 OF −Ot2 OF =
(
x∆, y∆, z∆

)
(24)

θ∆ = arctan
Å

x∆

y∆

ã
(25)

ϕ∆ = arctan

Ñ
z∆»

x2
∆ + y2

∆ + z2
∆

é
(26)

where x∆, y∆, z∆ represent the location vector of the LOS in the RTN coordinate system
and θ∆ and ϕ∆ are the observing azimuth angle and elevation angle in the RTN coordinate
system, respectively.

By deriving the observation geometry transformation for the space-based radar, the
inherent motion of space targets can be eliminated from consideration in this paper.

3. Proposed Method

In Section 3.1, to predict the HRRP sequence more accurately, we first introduce a
novel scattering parameter estimation method based on an improved 3D-ESPRIT algorithm.
Then, in Section 3.2, HRRP characteristics obtained via the wide-band radar and HRRP
pseudo-likelihood predicted by using the GTD scattering center model are employed in the
PHD filter to fully utilize space targets' electromagnetic characteristics. Finally, the main
steps of our proposed HGI-PHD filter are given in Section 3.3. To be specific, the flowchart
of our proposed HGI-PHD filter is shown in Figure 2.
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3.1. Parameter Estimation of Scattering Centers

In this section, in order to predict the HRRP sequence more accurately, an improved
3D-ESPRIT algorithm with reconstructed covariance matrices is proposed to estimate
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the 3D-GTD model parameters, and the main contribution of our proposed 3D-ESPRIT
algorithm is shown as follows.

Firstly, by performing the spatial smoothing operation in the x direction, a Hankel
matrix pencil Xx can be given by reference [27]

Xx =


Xx

0 Xx
1 · · · Xx

M−P
Xx

1 Xx
2 · · · Xx

M−P+1
...

... · · ·
...

Xx
P−1 Xx

P · · · Xx
M−1

 (27)

where

Xx
m =


x(m, 0) x(m, 1) · · · x(m, K− L)
x(m, 1) x(m, 2) · · · x(m, K− L + 1)

...
... · · ·

...
x(m, L− 1) x(m, L) · · · x(m, K− 1)

 (28)

x(m, k) =


E(m, 0, k) E(m, 1, k) · · · E(m, N −Q, k)
E(m, 1, k) E(m, 2, k) · · · E(m, N −Q + 1, k)

...
... · · ·

...
E(m, Q− 1, k) E(m, Q, k) · · · E(m, N − 1, k)

 (29)

where P ∈ [I + 1, M− I + 1], Q ∈ [I + 1, N − I + 1], L ∈ [I + 1, K − I + 1], and M, N, K,
and I represent the frequency steps, azimuth angle steps, elevation angle steps, and the
scattering center numbers, respectively.

Then, a permutation matrix J is defined as

J =


0 . . . 0 1
... 0 1 0

0 . .. . . .
...

1 0 . . . 0


PQL×PQL

(30)

By combining the permutation matrix J and the original back-scattering electromag-
netic data Xx, a new matrix Econj containing the covariance information of the original
scattered data Xx is obtained by

Econj = J·Xx (31)

Then, we construct the following three covariance matrices to fully utilize the electro-
magnetic scattering characteristic of radar targets:

RXxXx = XxXx
H

REconjEconj = EconjEconj
H

RXxEconj = XxEconj
H

(32)

Next, by averaging the above three covariance matrices, a novel covariance matrix R
is proposed in this paper, which is shown as follows:

R =
RXxXx + REconjEconj + RXxEconj

3
(33)

Note that R is a Hermitten matrix, and it satisfies R = RH. Thus, by squaring matrix
R, we have the final covariance matrix R1 as follows:

R1 = RRH = R2 (34)
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Also, the following relation satisfiesß
λ1i = λi

2

Λ1i = Λi
i = 1, . . . , I (35)

where λ1i and Λ1i are the eigenvalue and the eigenvector of R1, respectively, and λi and Λi
are the eigenvalue and the eigenvector of R, respectively.

Note that from (34), the eigenvalues of R1 are twice those of R. Therefore, the dif-
ferences between the noise eigenvalues and the signal eigenvalues can be broadened by
constructing R1.

To analyze our motivation for constructing the aforementioned covariance matrix
mathematically, the estimated parameters variance is derived as follows:

E
{

(ξ̂ − ξ)
2
}
=

σ2

2MNK

I
∑

i=1
− γi

(σ2−γi)2

∣∣∣GH·(vi)
H
∣∣∣2

MNK
∑

i=I+1
−
∣∣∣îdGH/d(z)

ó
·(vi)

H
∣∣∣2 (36)

where E{( ξ̂ − ξ
ä2
} represents variance of the estimated parameters; ξ̂ and ξ represent the

estimated parameter and the original parameter, respectively; σ2 and γi denote eigenvalues
of noises and eigenvalues of signals, respectively; vi = γiI−Xx represents the eigenmatrix
of γi; and I denotes a identify matrix.

It can be seen from (36) that E{( ξ̂ − ξ
ä2
} decreases when σ2 and γm differ greatly

from each other, which will bring out more accurate scattering center parameters. So,
constructing R can broaden the differences between σ2 and γm, which can estimate the
GTD model parameters more accurately.

Then, the scattering parameters {αi, xi, yi, zi} are estimated according to reference [27],

and the intensity parameters
~
A can be obtained by using the least square method in (27). It

should be noticed that for the sake of readability, the detailed CRB derivation of the GTD
scattering center parameter is given in Appendix A.

3.2. HRRP Characteristic-Aided Filter

Once we have estimated the scattering center model parameters, the HRRP sequence
can be predicted at a relatively small observing angle. Thus, the predicted HRRP infor-
mation can be utilized in the update recursion of the PHD filter. In this section, we will
introduce the specific implementation of our proposed HRRP characteristic-aided filter.

Let us denote the surveillance region as three-dimensional; then, the target state can
be expressed as

xk =
î
lx,k, vx,k, ly,k, vy,k, lz,k, vz,k

óT
(37)

where at time k, lx,k, ly,k, and lz,k are the three-dimensional locations of targets. vx,k, vy,k,
and vz,k are the three-dimensional velocities of targets.

Thereafter, as the HRRP characteristics are employed, the measurement state of targets
at time k yields

zk =
î
zl,k, zhrrp,k

ó
(38)

where at time k, zl,k and zhrrp,k denote the location measurements and the HRRP measure-
ments, respectively.

The specific prediction and update recursion of the proposed HGI-PHD filter are
discussed as follows.

Prediction:
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The prediction recursion of the proposed filter is written as

Dk|k−1(xk) = γk(xk) +
∫ Ä

ps,k(xk−1) fk|k−1(xk

∣∣∣xk−1) + bk|k−1(xk

∣∣∣xk−1)Dk−1|k−1(xk−1)
ä

dxk−1

(39)
where at time k, γk(xk) denotes the intensity of the birth RFS, ps,k(xk−1) is the survival

probability, fk|k−1(xk

∣∣∣xk−1) is the Markov transmission density, bk|k−1(xk

∣∣∣xk−1) represents
the density of the spawned at time k under the condition of the previous state at time k− 1,
and Dk−1|k−1(xk−1) is the density of the PHD filter at time k− 1.

Update:
After employing the HRRP characteristics in the standard PHD filter, the update

recursion of the proposed HGI-PHD filter can be given by

Dk|k(xk) = LZ(xk)·Dk|k−1(xk) (40)

Assuming the HRRP characteristic of targets is independent of location states, the
likelihood for targets and for clutter can be denoted as

g(z
∣∣∣x) = g((zl,k, zhrrp,k)

∣∣∣x) = gl(zl

∣∣∣x)ghrrp(hrrp) (41)

c(z
∣∣∣x)) = cz(z

∣∣∣x)chrrp(hrrp) (42)

where gl(zl |x) and ghrrp(hrrp) are the state location likelihood and HRRP pseudo-likelihood
functions for targets, respectively. cz(z|x) and chrrp(hrrp) are the state location likelihood
and HRRP pseudo-likelihood functions for clutter, respectively.

However, how do we predict the HRRP sequence as time varies, and how do we
compute the HRRP pseudo-likelihood for various targets and clutter? These two problems
are core points to be solved in this paper, and we give the detailed process as follows.

(1) HRRP sequence prediction

Note that the radar is able to provide range and bearing measurements of the target’s
center, and the observation model of kinematic measurement is denoted as follows:

Mk =
[
Rk, βk

]
= h(lk) + wk (43)

where at time k, h(·) denotes the kinematic observation function; Rk and βk represent the
target range measurements and bearing measurements, respectively; and wk represents the
zero-mean observation noise matrix.

For the space target, due to its previously known orbital information and low maneu-
verability, the velocity direction is almost aligned with the axial direction of the target's
main body, which is shown in Figure 3.
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Therefore, the observing angle can be computed as

ϕk = θk − βk = cos−1

Ö
xkvx,k + ykvy,k»

x2
k + y2

k

√
v2

x,k + v2
y,k

è
(44)

where θk = tan−1
( vy,k

vx,k

)
denotes the heading angle for space targets.

Once the specific observing angles are given as time varies, different back-scattering
echoes can be obtained via the 3D scattering center model in (6). Then, the frequency re-
sponse of the m-th frequency point can be written as Em = E( fm, θn, ϕk), and by taking an in-
verse discrete Fourier transform (IDFT) on frequency response sequence E = E0, E1, . . . EM,
the HRRP sequence of space targets can be predicted eventually, which is denoted as
hrrpk_est in this paper.

(2) HRRP pseudo-likelihood evaluation

At time k, we can acquire the actual HRRP sequence of different space targets or clutter,
which is denoted as hrrpk_act. Then, the HRRP pseudo-likelihood can be computed as

ghrrp,k =
〈hrrpk_act, hrrpk_est〉
‖hrrpk_act‖·‖hrrpk_est‖

(45)

where 〈a, b〉 =
∫

a(x)b(x)dx represents the inner product operation and ‖h‖ is the l2 norm
function.

Note that the posterior intensity at time k− 1 is in the form of a Gaussian mixture;
then, we have

vk|k−1(x) =
Jk|k−1

∑
i=1

wi
k|k−1N

Ä
x; mi

k−1, Pi
k−1

ä
(46)

where wi
k|k−1 is the i-th Gaussian mixture weight at time k − 1; mi

k−1 and Pi
k−1 denote

the mean vector and covariance vector of the i-th Gaussian mixture weight at time k− 1,
respectively; and Jk|k−1 represents the number of Gaussian mixture weights at time k− 1.

Substituting (46) into (40), we have the posterior intensity at time k as

Dk|k(xk) =
[
1− pd

]
Dk|k−1(xk) +

Jk|k−1

∑
i=1

∑
zk∈Z

w̃i
k|k−1N

Ä
xk; mi

k|k−1, Pi
k|k−1

ä
(47)

where the normalized GM weight is denoted as

w̃j
k|k−1(zk) =

pD,k(x)gz(z
∣∣∣x)ghrrp(hrrp)wj

k|k−1qj
k(zk)

κ(z)chrrp(hrrp) + pD,k(x)gz(z

∣∣∣∣∣x)ghrrp(hrrp)
Jk|k−1

∑
i=1

wi
k|k−1qi

k(zk)

(48)

where


qi

k(zk) = N
Ä

zk, ηi
k|k−1, Si

k|k−1

ä
ηi

k|k−1 = Hkmi
k|k−1

Si
k|k−1 = HkPi

k|k−1HT
k + Rk

.

3.3. Improved Gaussian Component Weight Merging Principal

By utilizing (43), the posterior intensity of targets can be obtained, and different intensities
are represented by different constituent Gaussian component weights. With the aim of tracking
space targets with high clutters effectively, label κ is denoted in this paper. Then, we have the
set vk =

¶
wk, xi

k, Pi
k, κi

k

©
, and κi

k denotes the label of the kth target at time i.
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Following the RFS scheme, the constituent Gaussian mixture component weights are
modified as follows.

(1) First, the index of the highest weight component in the target posterior density is
selected as follows:

imax = argmax
i∈I

(wi
k) (49)

where I is the index set.
(2) Then, the set of component orders that are most similar to the largest weighted

component in the target posterior intensity at time k is represented as

Φk =
{

i |
(Ä

xi
k − ximax

k

äTÄ
Pi

k

ä−1Ä
xi

k − ximax
k

ä
≤ Umm

)}
(50)

Umm =
Ä

1 + wi
k

ä
σs (51)

where σs is the variance of the measured Gaussian white noise.
(3) If the Gaussian component satisfies Equation (50) and the sum of the component

weights fails to exceed twice the state extraction threshold, then a novel set vτ
k , which

contains components, can be obtained as follows:

l̃τ
k = iimax

k , w̃τ
k = ∑

i∈Φk

wi
k, xτ

k =
1

w̃τ
k

∑
i∈Φk

wi
kxi

k (52)

While
Mk
∑

k=1
w̃τ

k > 1, the sub-weights of the target are multiplied by a penalized factor

except the highest weight imax. Therefore, the novel weights yield the following:

wk
novel

=

®
w̃τ

k
, i f k = imax

βw̃τ
k
, i f k 6= imax, k ∈ [1, . . . , Mk]

(53)

where β = α(1− wimax
k

) denotes the penalized factor and 0 ≤ α ≤ 1 is a constant that
can determine the penalized degree.

(4) Substituting (53) into (48) yields

wi,n
novel

=



wi,n
k

κk(λc)+wimax
k β+

Nk|k−1
∑

i=1
wi,n

k

, i 6= imax, i ∈ [1, Mk], n ∈ [1, Nk|k−1]

wimax,n
k

β

κk(λc)+wimax
k β+

Nk|k−1
∑

i=1
wi,n

k

, i = imax, n ∈ [1, Nk|k−1]
(54)

where wn,m
k

= pD,k(x)grcs(rcs)gd(d)wj
k|k−1qj

k(zk) and κk(λc) = λccrcs(rcs)cd(d).

(5) Finally, the novel posterior density is computed as follows:

v(x) =
τ=1

∑
Jk

wτ
k N
(
x; xτ

k , pτ
k
)

(55)

P̃
τ
k =

1
xτ

k
∑

i∈Φk

wi
k

(
Pi

k +
Ä

xτ
k − xi

k

äÄ
xτ

k − xi
k

äT)
(56)

We can observe from (51) that Umm is an adaptive threshold varying with the measured
noise in tracking scenarios. Therefore, the threshold can be dynamically adjusted during the
whole tracking process and has a better tracking performance for the closely spaced targets.
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3.4. Key Steps of the Proposed HGI-PHD Filter

The main steps of our proposed methods are given as follows. For the sake of read-
ability, the corresponding pseudo-code of our proposed HGI-PHD filter is provided in
Appendix B.

Step 1 Calculating the time-varying line-of-sight (LOS) and observing angles.
Step 2 Estimating the GTD scattering parameter via our proposed improved 3D-

ESPRIT algorithm and reconstructing the scattering center model.
Step 3 Combining the time-varying observing angles with the scattering center model

to predict the real-time scattering echo of space targets and applying an IFFT transform to
the real-time electromagnetic echo to obtain the predicted HRRP sequence.

Step 4 Computing the HRRP likelihood for different targets and clutter.
Step 5 Improving the constituent Gaussian component weights by using the method

introduced in Section 3.3.
Step 6 Employing the HRRP likelihood and the improved Gaussian component weight

merging principal (e.g., wi.n
novel

) in the update recursion of the PHD filter.

4. Simulation Results

In this paper, a merging PHD (HGI-PHD) filter aided by HRRP characteristics and
improved with Gaussian mixture components is proposed, which can be applied to track
space targets accurately. The time-varying HRRP pseudo-likelihood is utilized in the GM
process of the standard PHD filter. The performances of our proposed HGI-PHD filter
are validated by the following simulation experiments. Furthermore, the capability of the
proposed HGI-PHD filter to discriminate approaching space targets is also demonstrated
by utilizing the star-link satellites' real raw data.

4.1. Performance Evaluation of Scattering Center Estimation

In this section, the performance of the modified algorithm with respect to the SNR is
compared with the other two methods. We set the scattering center parameters as shown
in Table 1; the matrix beam parameters P, Q, and L are all set as 6; the SNR varies from
0 dB to 30 dB with an interval of 1 dB; and 200 Monte Carlo trials are performed for each
fixed SNR. To simplify, here, we just provide the mean RMSE of the scattering centers
obtained by using different methods. Simulation results are depicted in Figure 4. It can
be observed from Figure 4a–e that all of the scattering parameter estimation accuracies
obtained via different methods increase as SNR increases, and our proposed improved
3D-ESPRIT method has a better parameter estimation performance than the traditional
3D-ESPRIT algorithm, the method in reference [15], and the method in reference [27].
Furthermore, note that the location parameter estimation accuracy is better than that of the
type parameter and intensity parameter due to the latter two parameters being dependent
on the aforementioned location parameters.

Table 1. Scattering parameters.

Scattering Centers xi(m) yi(m) zi(m) αi Ai

Scattering center 1 1.202 1.080 1.320 1.0 6.2
Scattering center 2 1.353 1.263 1.541 0.5 5.6
Scattering center 3 1.534 1.702 2.520 0 4.7
Scattering center 4 1.892 2.322 3.210 1.0 3.4
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4.2. HRRP Sequence Reconstructed by the GTD Model

To evaluate the reconstruction and parameter estimation performance of the proposed
improved 3D-ESPRIT algorithm with simulated data, the back-scattering electromagnetic
echo of three typical targets is calculated using electromagnetic computing software. To
be specific, the shape and geometrical size of these three typical targets are depicted in
Figure 5. In this simulation, we set the frequency number as 101 points with a range of
15.7~17.7 GHz and a frequency step of 20 MHz. Here, the incident azimuth angle and the
elevation angle are set as 0◦ and 90◦, respectively.
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Figure 5. Scattering center model. (a) Target 1, (b) Target 2, and (c) Target 3.

It can be observed from Figure 6 that for these three typical targets, there are 3, 3, and
2 sharp peaks in the HRRP curve of the original data. Note that the reconstructed HRRP
curve of these three targets obtained by using our improved 3D-ESPRIT algorithm matches
the whole trend well, and it can also describe the fluctuation characteristics accurately. The
above simulation results validate the effectiveness of our improved 3D-ESPRIT method
and the feasibility of HRRP reconstruction via the GTD scattering center model.
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4.3. HRRP Similarity Rate Comparison

Firstly, the following three-dimensional (3D) simulation scenario is set to obtain the
dynamic HRRP of three typical space targets, as depicted in Figure 7. From Figure 7, it can
be seen that there are three typical space targets in the surveillance tracking region of the
space-based radar.
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In most applications, LOS parameter sequences are acquired via different methods. In
this paper, we solve satellite targets with TLE ephemeris to compute their positions in the
SGP4 model, and then their positions relative to the space-based radar can be calculated
eventually. Hence, the LOS parameters can be calculated by using the spacecraft orbit
computing software, which is shown in Figure 8. Table 2 gives the specific simulation
parameters of the space radar and the three typical satellite targets in the spacecraft orbit
computing software. Finally, combining the predicted HRRP sequence and the theoretical
HRRP sequence of different targets and clutter, we obtain the dynamic coefficients among
different targets and clutter as shown in Figure 9. It can be obviously seen that the predicted
HRRP and the theoretical HRRP of the same target have the highest similarity rate than
those of different targets or clutter. That means the same target has the largest HRRP
pseudo-likelihood with its theoretical HRRP sequence, which can be utilized to improve
the update accuracy and space target tracking performance.
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Table 2. Simulation parameters in the spacecraft orbit computing software.

Parameters Value

Range of detection R 200 km
Orbit altitude of space-based radar H0 500 km

Orbit altitude of target 1 H1 400 km
Orbit altitude of target 2 H2 500 km
Orbit altitude of target 3 H3 480 km

Orbit inclination of space-based radar ϑ0 45◦

Orbit inclination of target 1 ϑ1 48◦

Orbit inclination of target 2 ϑ2 55◦

Orbit inclination of target 2 ϑ3 60◦
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4.4. Comparisons of OSPA Errors

Suppose there are three space targets existing in the surveillance region with a detec-
tion range of [0, 100]km× [0, 100]km× [0, 100]km. As for these three space targets, all of
them obey the variable acceleration motion model, and the kinematic state vector includes
the positions, velocities, and accelerations as zk =

[
x, y, z, vx, vy, vz, ax, ay, az

]T. Moreover,
it should be noticed that the measurement vector

~
xk = [xk, HRRPk]T includes the position

measurements and HRRP characteristic measurements.
Let us set the duration for the whole surveillance simulation as 100 s and the survival

probability for independent space targets as 0.98. As for the three space targets, they are
born at 1s, and the second target vanishes at 70s, while the third one is present throughout
the whole tracking process. Then, the pruning procedure is employed with varying time
by utilizing the Gaussian weight threshold as Tth = 10−5 and the maximum number of
the mixture components as 100, and we fix the cardinality distribution over 100 terms.
Furthermore, the detection probability is set as Pd = 0.98 for all filters, V = 8× 106 m3

represents the whole space surveillance region volume, and measurements for detected
targets are immersed with clutter, which obeys a Poisson RFS distribution and has an
intensity of 1.4× 10−5 m−3 (i.e., 112 false alarms over space surveillance region per frame).
Notice that the HRRP probability density functions of clutter are obtained by adding white
Gaussian noise to the HRRP probability density functions of targets.

Here, the optimal sub-pattern assignment (OSPA) metric is employed for the detection
performance evaluation metric, and its specific form is given as follows [28]:

Dp
c (X, Y) ,

ñ
1
N

Ç
min
`∈ΠM

N

M

∑
i=1

dc(xi, y`(i))
p + cp(N −M)

åô 1
p

(57)

where dc(xi, y`(i)) , min
(
c, ‖xi − y`(i)‖

)
is the cut-off distance with parameter c > 0, ‖·‖

denotes the Euclidean distance, and ΠM
N represents the set of permutations of cardinality

M on {1, 2, . . . , N}. p is the order parameter of the OSPA metric with a range of 1 ≤ p ≤ ∞,
and the OSPA distance is given by dp

c (X, Y) = dp
c (Y, X), which corresponds to the case of

M > N. Then, the average OSPA results after 100 Monte Carlo simulations for detection
probabilities with parameters set as p = 1 and c = 200 m are shown in Figure 10, which is
able to demonstrate the performance metrics for the accuracy of target location estimation
as well as target number estimation.
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OSPA cardinality.

It can be seen from Figure 10a,b that the GM-PHD filter has the highest location error
and average OSPA cardinality among the four methods in general. Note that for most of the
observing time, the amplitude-aided GM-PHD (Am-GM-PHD) filter and the Doppler-aided
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GM-PHD (Do-GM-PHD) filter have better location estimation accuracy and cardinality
estimation accuracy than the conventional GM-PHD filter. We would like to mention that
the estimated OSPA location obtained by the Am-GM-PHD filter fluctuates sharply as the
time sequence varies. Furthermore, it can be observed that our proposed HRRP-aided filter
has lower estimation OSPA results than the other three methods as depicted in Figure 11.
We can also notice that our proposed filter fits better with the ground truth data than the
other three methods.
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The explanation is that, as expected, the proposed filter utilizes the HRRP charac-
teristics of space targets obtained via the wide-band space-based radar system, which is
more delicate in describing the target scattering features than the aforementioned ones (e.g.,
amplitude, etc.). Simulation results show that the proposed HRRP-aided filter outperforms
the GM-PHD filter, the Am-GM-PHD filter, and the Do-GM-PHD filter, especially in dense
clutter detection scenarios.

4.5. Effective Tracking of Two Closely Spaced Targets

To further exploit the performance of our proposed HGI-PHD filter to track closely
spaced multiple targets, two closely spaced targets are chosen for tracking in this subsection.
Note that due to Space-X satellites having similar orbit characteristics, two star-link satellites
with serial numbers 55713U and 55715U are selected as the closely spaced targets to validate
the discrimination functionality of the proposed filter.

The TLE information and observing duration for the two selected star-link satellites
are depicted in Table 3, and the observing duration is from 3 Mar 2023 01:55:39.000 to
3 Mar 2023 01:57:19.000. Moreover, the 3D observation diagram in the spacecraft orbit
computing software is shown in Figure 12.

Table 3. TLE information of the two selected star-link satellites.

Targets TLE Information

Satellite 1 1 55713U 23026U 23066.91667824 .00087040 00000-0 95406-3 0 9990
2 55713 43.0022 235.7401 0001445 276.7526 56.7822 15.62262486 1301

Satellite 2 1 55715U 23026W 23066.91667824 .00053204 00000-0 58720-3 0 9995
2 55715 41.0058 235.6894 0002065 272.0442 84.7138 15.62266923 1303
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Figure 12. Three-dimensional observation diagram of two closely spaced targets.

After obtaining the trajectories of the two space targets, the tracking performance of
various MTT filters can be compared. Figure 13a,b show the time-averaged OSPA distance
and the time-averaged OSPA cardinality over 200 Monte Carlo trials, respectively. Figure 14
shows the mean deviations of the cardinality distributions. As shown in Figures 13 and 14,
the proposed HGI-PHD filter produces the best results in the simulation not only in OSPA
distance but in cardinality estimation as well. In contrast, the worst performance is from
the standard GM-PHD filter, i.e., both its OSPA distance and OSPA cardinality are high in
the initial stage of our simulation. Furthermore, it can be also seen that the results obtained
from the Am-GM-PHD filter and the Do-GM-PHD filter fluctuate more violently than those
obtained from the HGI-PHD filter. Hence, we are convinced by comparing Figures 13
and 14 that the proposed HGI-PHD filter outperforms the other three filters for resolving
closely spaced targets.
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4.6. Computational Time Analysis

To analyze the computational complexity of different filters, the computational time
is compared with an Intel(R) Core(TM) i7-8700 CPU @ 3.20GHz PC with 16 GB RAM and
MATLAB R2021b. The core number we have utilized is 6, and the operating system is
Windows 10. And the average computational time of the four filters is given in Table 4
after 100 Monte Carlo trials. It can be observed the proposed filter has a little heavier
computational burden than the Am-GM-PHD filter under two clutter scenarios, which are
3.005 s and 3.086 s corresponding to two different clutter rates. The Do-GM-PHD filter and
the standard GM-PHD filter have similar computational costs. In fact, due to computing
the prior knowledge of the time-varying HRRP pseudo-likelihood, the proposed filter has a
similar computational cost to the Am-GM-PHD filter theoretically, and the results in Table 4
validate it quantitatively.

Table 4. Comparisons of Average Computational Time.

Clutter λc GM-PHD Am-GM-PHD Do-GM-PHD The Proposed
Filter

50 0.725 s 3.249 s 0.780 s 3.005 s
100 0.815 s 3.425 s 1.075 s 3.086 s

5. Conclusions

In the standard PHD filter, the tracking performance deteriorates sharply when clutter
rates are high, detection probabilities are low, or targets approach each other. To deal with
the aforementioned problems, an adapted PHD-based filter aided by HRRP characteristics
and with an adapting threshold for the GM component merging procedure was proposed
in this paper. By fully using the HRRP information, the electromagnetic characteristics of
space targets were utilized in the update recursion of the standard PHD filter. We have also
derived the mathematical proof for the GM component merging procedure.

Our proposed HGI-PHD method can be applied to the space situational awareness
region. It was shown that our proposed HGI-PHD filter outperformed the GM-PHD filter,
the Am-GM-PHD filter, and the Do-GM-PHD filter, especially in scenarios where the
detection probabilities are low, clutter rates are high, or there are closely spaced targets.
the robustness and effectiveness of the proposed HGI-PHD filter were validated through
simulation experiments and using real trajectories. Future work includes the development
of efficient real-time algorithms for SAA tasks and the improvement of tracking accuracy
for space targets.
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Appendix A

Derivation of CRLB of the GTD Model

Here, we derive the deterministic Cramer–Rao lower bound (CRLB) of the GTD
scattering center model parameters. For simplicity, we give the CRLB derivation of the
one-dimensional GTD model, and the CRB for the 3D-GTD model can be obtained by
expansion. The one-dimensional GTD model can be written as

E( fm) =
I

∑
i=1

Ai exp(−j4π f0ri/c)(1 + m∆ f
f0

)
αi

exp(−j4πm∆ f ri/c) + ω( fm)

=
I

∑
i=1

ai(1 +
m∆ f

f0
)
αi

exp(−jmvi) + ω( fm)
(A1)

where {ri, ai, Ai} represent the position parameter, scattering intensity, and scattering type
of the i-th scattering center, respectively. And other parameters have been defined in
(6). Note that ai is equal to Ai· exp(−j4π f0ri/c) =aRi + jaIi = |ai|ejϕi , and vi is equal to
−4π∆ f ri/c.

Thereafter, the estimated scattering parameters in (A1) can be expressed as follows:

ζ =
[
σ2 ζT

aRe ζT
aIm ζT

P ζT
v

]T (A2)

where σ2 denotes variance of Gaussian white noise, ζT
aRe = [aRe1, . . . , aReI],

ζT
aIm = [aIm1, . . . , aImI], ζT

P= [p1, . . . , pI
]
, and ζT

v= [v1, . . . , vI
]
.

When the relative operating bandwidth of radar satisfies γ = N∆ f
f0

= B
f0
� 1, then we

can obtain the following approximation:Å
1 + m

∆ f
f0

ãαi

= exp
Å

αi· ln(m
∆ f
f0

)
ã
≈ exp

Å
αi·m

∆ f
f0

ã
(A3)

So, the 1D-GTD model is transformed as the damped exponential (DE) model, which
is shown as

EDE( fm) =
I

∑
i=1

Ai exp(mαi∆ f / f0) exp(−4πj fmri/c) + ω( fm) =
I

∑
i=1

Aiν
m
i + ω( fm) (A4)

where νm
i = pi· exp(−4πj fmri/c) and pi = exp(mαi∆ f / f0).

In [29], it has been verified that the CRLB of the DE model and the GTD scattering
center model are substitutable by both theoretical derivations and simulation experiments.
Therefore, the CRLB of the DE model is derived here to substitute that of the GTD model.

Due to being the Gaussian white noise, the CRLB matrix of the DE model can be
computed as

CRLBDE =

ñ
σ4

N 01×4I

04I×1
σ2

2 F

ô
(A5)
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F =


Re
¶

E + EB∆−1
1 BE

©
−Im

¶
E + EB∆−1

1 BE
©
−Re
¶

EBA∆−1P
©

Im
¶

EBA∆−1
©

Im
¶

E + EB∆−1
1 BE

©
Re
¶

E + EB∆−1
1 BE

©
−Im

¶
EBA∆−1P

©
−Re
¶

EBA∆−1
©

−Re
¶

P∆-1AHBE
©

Im
¶

P∆-1AHBE
©

Re
¶

P∆-1P
©

−Im
¶

P∆−1
©

−Im
¶

∆-1AHBE
©

−Re
¶

∆-1AHBE
©

Im
¶

∆−1P
©

Re
¶

∆−1
©

 (A6)

where 0 denotes the zero matrix, ∆ = AH∆1A, A = diag(a1, a2, . . . , aI), ∆1 = B2 − BEB,

B2 = VHN2V, B = VHNV, V = [ν1, ν2, . . . , νI], νi = vl
i ·[1, vi, . . . , vN−1

i ]
T

,

l =

ß
−(N − 1)/2, N is odd
−N/2 + 1, N is even

, N= diag(−(N − 1)/2, . . . , (N − 1)/2), and

P = diag(p1, p2, . . . , pI).
According to (A5) and (A6), it can be observed that it is complicated to obtain the

Cramer–Rao lower bound of the DE model. However, for most wide-band radars, we have
∆ f / f0 � 1, which is equivalent to pi ≈ 1. Therefore, by simplifying the CRLB matrix in
(A5), the CRLB of the DE model can be obtained as

CRLBai ≈
σ2

2N
(A7)

CRLBvi ≈
6σ2

|ai|2N3
(A8)

CRLBpi ≈
6σ2 p2

i

|ai|2N3
(A9)

Based on (A4), the exact relations between the DE model parameters and the GTD
model parameters are given by

ri= −
c

4π∆ f
·vi (A10)

αi =
f0

∆ f
· ln pi (A11)

Ai = ai· exp(j4π f0ri/c) (A12)

According to Equations (A7)–(A12), we obtain

var{ri} ≥ (
c

4π∆ f
)
2
· 6σ2

|ai|2N3
=

3
2π2 ·

1
SNRi

(A13)

var{αi} ≥
Å

f0

∆ f
)

2
·

6σ2 p2
i

|ai|2N3
=

6
γ2·SNRi

(A14)

var{|Ai|} ≥
σ2

2N
(A15)

where SNRi denotes the peak signal-to-noise ratio of the i-th scattering center and SNRi ≈
N|ai |2

σ2 .
Finally, by extending the 1D-GTD model to the 3D-GTD model, we have

var{x̂i} = var{ŷi} = var{ẑi} ≥
3

2π2SNRii
(A16)

var{α̂i} ≥
6

γ2SNRii
(A17)



Remote Sens. 2023, 15, 4808 23 of 24

var{Âi} ≥
1

2SNRii
(A18)

SNRii ≈
MNK|Ai|2

σ2 (A19)

where σ2 denotes the white Gaussian noise variance.

Appendix B

Pseudo-code for the HGI-PHD filter

given
¶

wi
novel,k−1, mi

k−1, Pi
k−1

©Mk|k−1

i=1
, the measurement set Zk

step 1 Prediction of the HGI-PHD filter
i = 0.
for m = 1, . . . , Mk−1
i = i + 1.
wi

novel,k|k−1 = ps,kwm
novel,k−1,

mm
k−1 = Fk−1mm

k|k−1, Sm
k = Rk + Hk|k−1Pm

k|k−1HT
k .

Km
k = Pm

k|k−1HT
k
[
Sm

k
]−1, Pm

k|k =
[
I−Km

k Hk
]
Pm

k|k−1.
end
Mk|k−1 = i.
step 2 Construction of the HGI-PHD update components
for m = 1, . . . , Mk|k−1
ηm

k|k−1
= Hkmm

k|k−1, Sm
k = Rk + HkPm

k|k−1HT
k ,

Km
k = Pm

k|k−1HT
k
[
Sm

k
]−1, Pm

k|k =
[
I−Km

k Hk
]
Pm

k|k−1.
end
step 3 Update of the HGI-PHD filter
for m = 1, . . . , Mk|k−1
wm

novel,k = (1− pD,k)wm
novel,k|k−1,

mm
k = mm

k|k−1, Pm
k = Pm

k|k−1.
end
n = 0.
for each measurement z ∈ Zk
n = n + 1.
For m = 1, . . . , Mk|k−1

w
nMk|k−1+m
novel,k =

pD,k(xk)ghrrp(hrrpk)wn
k|k−1qn

k (Zk)

λcchrrp(hrrpk)cd(dk)+pD,k(xk)ghrrp(hrrpk)
Nk|k−1

∑
i=1

wn
k|k−1qn

k (Zk)

m
nMk|k−1+m
k = mm

k|k−1 + Km
k (z− ηm

k|k−1
),

P
jMk|k−1+m
k = Pm

k|k.
end

mmax = argmax
m∈I

(wi
k), m ∈

î
1, nMk|k−1 + Mk|k−1

ó
, < = κk(λc) + wmmax

novel,kβ +
Nk|k−1

∑
i=1

w
jMk|k−1+m
novel,k ,

w
nMk|k−1+m
novel,k =


w

nMk|k−1+m

novel,k
< , m 6= mmax, m ∈ [1, Mk], n ∈ [1, Nk|k−1]

w
nMk|k−1+m

novel,k β

< , m = mmax, n ∈ [1, Nk|k−1]
.

end
nMk|k−1 + Mk|k−1.

output
¶

wi
novel,k, mi

k, Pi
k

©Mk|k

i=1
.
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