remote sensing

Article

The Prediction of Transmission Towers’ Foundation Ground
Subsidence in the Salt Lake Area Based on Multi-Temporal
Interferometric Synthetic Aperture Radar and Deep Learning

Bijing Jin Lt Taorui Zeng 2,40, Taohui Yang 3 Lei Gui 1'*©, Kunlong Yin 1 Baorui Guo 1, Binbin Zhao 14

and Qiuyang Li 3

check for
updates

Citation: Jin, B.; Zeng, T.; Yang, T.;
Gui, L.; Yin, K.; Guo, B.; Zhao, B.; Li,
Q. The Prediction of Transmission
Towers’ Foundation Ground
Subsidence in the Salt Lake Area
Based on Multi-Temporal
Interferometric Synthetic Aperture
Radar and Deep Learning. Remote
Sens. 2023, 15,4805. https://doi.org/
10.3390/1s15194805

Academic Editors: Andreas Tsatsaris,
Emmanouil Economou,

Christos Chalkias, Vyron Antoniou,
Kleomenis Kalogeropoulos and

Nikolaos Stathopoulos

Received: 30 August 2023
Revised: 27 September 2023
Accepted: 29 September 2023
Published: 2 October 2023

Copyright: © 2023 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

Faculty of Engineering, China University of Geosciences, Wuhan 430074, China; begin@cug.edu.cn (B.].);
yinkl@cug.edu.cn (K.Y.); guobr@cug.edu.cn (B.G.); zhaobinbin@epri.sgcc.com.cn (B.Z.)

Institute of Geological Survey, China University of Geosciences, Wuhan 430074, China;
zengtaorui@cug.edu.cn

3 State Grid Qinghai Electric Power Research Institute, Qinghai 810001, China; ythui0518@qh.sgcc.com.cn (T.Y.);
lgyang2535@gh.sgcc.com.cn (Q.L.)

Research Institute of Transmission and Transformation Projects, China Electric Power Research Institute,
State Grid Corporation of China, Beijing 100192, China

Correspondence: lei.gui@cug.edu.cn

These authors contributed equally to this work.

Abstract: Displacement prediction of transmission towers is essential for the early warning of
transmission network deformation. However, there is still a lack of prediction on the ground
subsidence of the tower foundation. In this study, we first used the multi-temporal interferometric
synthetic aperture radar (MT-InNSAR) approach to acquire time series deformation for the transmission
lines in the Salt Lake area. Based on the K-shape clustering method and field investigation results,
towers #95 and #151 with representative foundation deformation characteristics were selected for
displacement prediction. Combined with field investigations and the characteristics of saline soil
in the Salt Lake area, the trigger factors of transmission tower deformation were analyzed. Then,
the displacement and trigger factors of the transmission tower were decomposed by variational
mode decomposition (VMD), which could closely connect the characteristics of the foundation saline
soil with the influence of the trigger factors. To analyze the contribution of each trigger factor, the
maximum information coefficient (MIC) was quantified, and the best choice was made. Finally, the
hyperparameters of the long short-term memory (LSTM) neural networks were optimized using a
convolutional neural network (CNN) and the grey wolf optimizer (GWO). The findings reveal that the
refined deep learning models outperform the initial model in generalization potential and prediction
precision, with the CNN-LSTM model demonstrating the highest accuracy in predicting the total
displacement of tower #151 (RMSE and R? for the validation set are 0.485 and 0.972, respectively).
Given the scant research on the multifactorial influence on the ground subsidence displacement of
transmission towers, this study’s methodology offers a novel perspective for monitoring and early
warning of ground subsidence disasters in transmission networks.

Keywords: transmission tower; ground subsidence; Salt Lake; displacement prediction; MT-InSAR;
deep learning

1. Introduction

Transmission lines are critical facilities of the world power grid system, especially
high-voltage transmission towers, which are essential for protecting the lives of inhabitants
and preserving the stability of the economy [1,2]. In addition, owing to increasing electricity
demand, the Qinghai-Tibet Plateau in Western China is regarded as an essential clean
power energy base [3]. However, owing to fragile geological conditions and climate change,
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the foundation of the 750 kV transmission towers in the Salt Lake area of the Tibet Plateau is
particularly vulnerable to the impact of ground subsidence disasters. In recent years, severe
deformation events have occurred in some transmission towers, seriously endangering the
safety and effective operation of the transmission grid system in this region. Despite this,
research on the ground subsidence of transmission tower deformation through medium-
and long-term monitoring suggests that early warning research in the Salt Lake area is
still limited. In the past, grid inspectors often conducted regular on-site surveys of each
tower along a transmission line to monitor its operation. This approach was not only
economically costly but also lacked insight into the overall deformation distribution of the
line. Traditional monitoring and management practices were unable to effectively provide
early warnings of tower deformations caused by ground subsidence.

Most ground subsidence is slow in development [4]. However, it is impractical to
deploy monitoring equipment and conduct long-term field investigations. The multi-
temporal INSAR (MT-InSAR) method, such as small baseline subset (SBAS) [5], permanent
scatterer INSAR (PS-InSAR) [6], etc., have been widely used to measure ground deforma-
tion [7-9]. This method provides a low-cost and high-precision deformation monitoring
method, especially in no man’s land areas, where implementing only conventional geotech-
nical monitoring methods can be difficult [10-12]. Yan et al. [13] studied the use of the
spaceborne SAR method to monitor power grid security in small-scale areas. Using the
SBAS-InSAR method, Luo et al. [14] monitored the ground subsidence of the Yongshan
County transmission line and obtained the ground deformation distribution. The InNSAR
early timing warning system is suitable for transmission line towers in the Salt Lake region
of the Qinghai-Tibet Plateau. This is an entirely new attempt, limited to many transmission
towers in the study area, resulting in differentiated time series and deformation characteris-
tics.

In the early warning of transmission tower deformation, the tower displacement
should be monitored along with the different trigger factors [15-18]. The change in the
saline soil in the study area seriously influences the damage and deformation of transmis-
sion towers [19]. Water and temperature are considered the main factors affecting saline
soil [20-22]. In saline soil, an increase in chloride ion content causes soil heaving when
the temperature is below 17.9 °C [23]. Additionally, lengthening the freezing and thawing
cycles would alter the soil strength of the saline soil [24]. Dry, saline soils have a high
carrying capacity, but when water enters, it causes collapse and deformation [25]. Saline
soil deforms due to underflow erosion when the water flow removes the salt and certain
soil particles [26]. Additionally, as rainfall intensity increases, saline soil deforms more
severely [26,27]. Upon analyzing the trigger factors of ground subsidence for transmission
towers in the study area, a pivotal aspect to investigate is the methodology for quantify-
ing the impact of various trigger factors. In previous studies, the maximum information
coefficient (MIC) has been considered a reliable measure for determining the degree of
association between two variables, with a value range of 0-1 [28,29]. This method is capable
of identifying both linear and nonlinear functional relationships among variables (such
as indices, periods, etc.) [30]. Consequently, in this paper, MIC values are employed to
compare and sift through the principal trigger factors affecting the ground subsidence of
the towers in the designated study area.

The mid-long-term warning of transmission towers requires the analysis and pre-
diction of time series displacement. Some researchers have tried to divide time series
displacements into short-term deformation trends and long-term deformation fluctua-
tions [28,31]. The long-term deformation trend reflects the creep behavior of the soil under
gravity or a continuous external force. Short-term deformation fluctuations are caused
by sudden changes in external trigger factors [29,32]. At present, few studies have fo-
cused on time series research of transmission towers, especially in the unique geological
environment of the Salt Lake area. This study uses a robust time series decomposition
algorithm called variational mode decomposition (VMD). It has found many applications
in finance, medicine, and energy [33]. Some studies have emphasized the application of
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feature engineering methods to time series prediction. Factors with low contributions
reduce the generalizability of the model [29,30]. Therefore, the maximum information
coefficient algorithm [30] was used to consider the correlation between the trigger factors
and time series.

A number of studies have suggested a variety of forecast methods, such as quasi-
3D seepage models, 1D numerical methods, statistical methods, and machine learning,
to warn against ground subsidence [4,34-36]. Since the rapid development of machine
learning for data analysis, deep learning has become increasingly popular in prediction
analysis [37]. Kim et al. [38] employed a CNN-LSTM neural network model to estimate
the amount of energy consumed at home, and the results may have met the prediction
objectives. Based on CNN, LSTM, and CNN-LSTM algorithms, Yan et al. [39] compared
the air quality index prediction of multiple hours and multiple sites in Beijing and found
that the CNN-LSTM model had an optimal effect. Mahmoodzadeh et al. [40] used the
GWO-LSTM model to predict the basic physical and mechanical parameters of rocks and
achieved exciting prediction results and generalization ability. However, research results
using deep learning to predict the time series of ground subsidence on transmission towers
have not been published.

The most critical research initiatives involve deformation monitoring and early warn-
ing of transmission towers in the Salt Lake region of the Qinghai-Tibet Plateau. This
work considers the MT-InSAR method and deep learning algorithms to conduct innova-
tive research on the ground subsidence of transmission line towers in the Salt Lake area.
Time series displacement findings and trigger factors were decomposed using the VMD
approach. Based on the MIC values, the main trigger factors for tower ground subsidence
were selected. Finally, the CNN and GWO algorithms were used to optimize the LSTM
model. Furthermore, the prediction results of the ground subsidence of the towers un-
der different optimization models were compared and analyzed. The optimal prediction
strategy can be used for the medium- and long-term early warning of transmission towers.

2. Geographical and Geological Setting

The transmission line is located in the Eastern Qaidam Basin of the Qinghai-Tibet
Plateau and passes through Qarhan Salt Lake from south to north (Figure 1a). The line’s
length is about 170 km, and the elevation is between 2684 and 3488 m. In the natural
division, the transmission line belongs to the cold zone of the Qinghai-Tibet Plateau and
part of the Central Asian desert [20]. Affected by the Qilian Mountains and the Kunlun
Mountains, it is difficult to enter warm and humid areas, which makes the transmission
line dry and causes large evaporation [9]. The average annual precipitation is only 25 mm,
whereas evaporation is as high as 3066 mm [41]. However, due to climate change, on
the Tibetan Plateau, extreme rainfall events still occur [42]. Affected by the inland desert
climate, the temperature difference between day and night in this area is large, and the
maximum daily temperature difference reaches 30.6 °C. Owing to the seasonal melting of
alpine snow and ice, there is a larger amount of water in summer than in winter, which
also leads to complex surface gullies [9]. The groundwater depth of the transmission tower
ranges from 3.5 to 4.2 m. Unfortunately, the transmission tower in the study area has not
been installed with groundwater monitoring equipment, and effective groundwater data
have not been obtained.
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Figure 1. (a) Location of the study area. (b) The Salt Lake mineral salt production and tower
deformation diagram. (c) The tower foundation drilling histogram in the Salt Lake area. (d) The
field investigation results of the research tower include transmission tower collapse, rain erosion,
deformation damage to drainage equipment, and so on.

Saline soils are widely distributed along the line and are often observed on the ground
surface (Figure 1d). Different from the three-phase structure of normal soil, saline soil has
a four-phase structure due to its ‘soluble salt phase’ [43,44]. When the water content is
meager, supersaturated salts exist in the form of crystals between the soil particles and play
a certain skeletal role [45]. However, when external conditions such as rainfall occur, the
soluble salt in the soil is completely dissolved, the soil structure is damaged, the strength is
reduced, and disaster-causing problems such as swelling, slurry, sinking, and corrosion
are very likely to occur [20,46]. The ground survey results of transmission lines in the Salt
Lake area show that dissolution fissures on the surface are developed, and the depth is
between 0.1 and 0.2 m. According to the pre-drilling data, the foundation materials for
the transmission line tower in the Salt Lake area are pebbles, crystalline salt, silty clay, and
muddy silty clay from top to bottom (Figure 1b,c). Through indoor soluble salt detection,
it was found that the crystalline salt of tower foundations in the Salt Lake area is mainly
chlorine salt, which easily collapses after encountering water [21,43,47]. With the warming
of the Qinghai-Tibet Plateau intensifying, alpine snowmelt may cause rising groundwater
levels and frequent extreme rainfall events [48], and the safe operation of transmission line
towers will be significantly threatened.
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The transmission line was built in 2011 and started operating in 2013. According to
the transmission line tower early patrol data, there was no evident deformation in the
early stage of the operation. However, due to the significant increase in precipitation,
ground subsidence around the transmission towers continued to develop. The most severe
deformation occurred between 2017 and 2018. To date, more than 200 towers have been
deformed and damaged owing to different degrees of land subsidence, and the number is
still increasing. Field survey results revealed that different transmission towers in the Salt
Lake region have varying degrees of ground collapse and cracking. There is still continuous
ground subsidence deformation around the towers (Figure 1d).

3. Methodology

The framework for predicting the ground subsidence of the transmission tower is
shown in Figure 2.

Co-registration

Sentinel-1 SBAS-InSAR Deformation
datasets Process projection
Triggering factors Original total displacement

Variational mode decomposition Variational mode decomposition
Low frequency & q Y displacement displacement displacement
Periodic MIC filtering Trend
dataset factors dataset
GWO-LSTM CNN-LSTM
model model model

MT-InSAR
result
Data

preprocessing

Calculate the
normalized
Cross-
correlation
coefficient

Calculate
cluster
centroid

Predicted trend displacement Predicted periodic displacement Predicted random displacement
Original total Predicted total Validation of
displacement displacement forecast model

Figure 2. Flowchart of the forecast model in ground subsidence.

K-Shape
clustering
results

(@) The Sentinel-1A SAR datasets from 2017 to 2021 were gathered in the first stage, and
SBAS-InSAR technology was used to obtain the same ground subsidence time series
findings for transmission towers as the MT-InSAR approach.

(b) Based on the MT-InSAR results, K-shape clustering was used to analyze the time
series characteristics of the ground subsidence of the transmission towers.

(c) To research the ground subsidence deformation trend of the representative towers,
the time series results were decomposed by VMD to obtain the periodic, trend, and
random displacements. The ground subsidence trigger factors of the transmission
tower were decomposed using the VMD method. Similar to the high-frequency
random displacement, the low-frequency sequences match the periodic displacement.

(d) Correlation analysis of the decomposed trigger factors was performed using the MIC
algorithm to obtain the maximum correlation factor of transmission tower ground
subsidence. Based on the above trigger factors and displacement decomposition
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results, the CNN-LSTM, GWO-LSTM, and LSTM models were used for displacement
prediction. Finally, the predicted results were validated using R? and the RMSE.

3.1. SBAS-InSAR Method

In 2002, a novel InSAR time series analysis technique (SBAS-INSAR) was presented
by Berardino et al. [5] for tracking the temporal development of surface deformations.
In this study, the SBAS-InSAR technique was used in MT-InSAR for ground settlement
deformation analysis. The main technical principle of the SBAS-InSAR algorithm is as
follows [5,49]: First, it is assumed that N SAR images of the same region were obtained at
times t1, t ..., tn, and one image is selected randomly as the main image for registration.
According to the interference combination condition, M interference fringe patterns are
formed under the condition of a short baseline distance, and M satisfies:

N(N —1)

N
2 2

<M< (1)

By performing three-dimensional space-time phase unwrapping on M interference
fringe patterns, it is possible to determine the deformation (d;os) of various SAR acquisition
timings. By further projecting the (d;os) findings, the ground deformation results of the
transmission line tower (dy) can be obtained [50].

d, = 2103 @
cos

For the SBAS-InSAR calculation, 67 x 2 (2 images for each date) Sentinel-1A images
were obtained. The detailed data parameters of the images are listed in Table 1.

Table 1. The SAR dataset information about the transmission lines in the Salt Lake area.

Satellite Time-Span Image Off-Nadir Azimuth Resolution
P Number Angle (°) Angle (°) (Rg x Azim)
. 2017/04/28- -104
Sentinel-1A 2021/12/8 67 x 2 33.7 (Ascending) 2.33 x 13.97

3.2. K-Shape Clustering of Time Series

As a time series clustering method, the K-shape algorithm is widely used to classify
time series data because of its efficiency and accuracy [51]. The K-shape algorithm uses a
different distance measure and cluster center calculation than the K-means algorithm, which
makes it effective in clustering time series. A distance metric based on the morphological
similarity of the time series was used to extract the most representative morphological
features from the time series. To ensure the accurate extraction of the form of the time
series, the K-shape views the centroid computation as an optimization issue. The objective
function is: L N

up =argmax ) (NCCC(x,y].))2 (3)
B xeC

where C; is the jy, cluster and j is the initial centroid of the jy, cluster.

3.3. Deep Learning and Optimization Model
3.3.1. LSTM Model

To address the problems of gradient expansion or disappearance in the recurrent
neural network (RNN), Hochreiter and Schmidhuber et al. [52] proposed an extended
short-term memory network. A new deep learning neural network called long short-term
memory networks (LSTM) extends the RNN input, output, and forget gates (Figure 3).
Long-term temporal correlations can be captured by LSTM because of its selective filtering
technique [31,52,53].
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Pointwise Pointwise
multiplication addition

Cell state

Sigmoid —

Forget gate —

Input gate Output gate
Figure 3. The structure of the LSTM network model.

3.3.2. CNN-LSTM Model

The convolutional, fully connected, and pooling layers make up the convolutional
neural network (CNN) [39]. The formula for the convolutional layer feature map, which is
typically used to calculate time series data, is as follows:

C=f(X®W+B) )

where C is the feature map after the convolution kernel and f denotes the rectified linear
unit’s (ReLU’s) nonlinear activation function.

As a hybrid network, CNN-LSTM is widely used in time series prediction because
it combines the merits of LSTM and CNN [39,54,55]. In this study, the convolutional and
pooling layers of the CNN model were used to filter the main features from the input
layer data and obtain a time-dependent sequence. The fully connected layer flattened the
sequence before feeding it into the LSTM layer for time series displacement prediction. The
dropout layer was then applied to prevent overfitting of the data, and the results of the
predictions were produced. The structure of the CNN-LSTM model is shown in Figure 4.

a ‘
=<

1
L)

5 Output
| » i LSTM  Fully connected » layrér
) . i layer layer
:Convolution  Pooling | |
Sequential layer layer | ¥
data input ‘\\ CNN layer / '\\ Dropout layer :]

N

Figure 4. The structure flowchart of the CNN-LSTM model.

3.3.3. GWO-LSTM Model

Mirjalili [56] presented a novel meta-heuristic method called the grey wolf optimizer
(GWO), which benefits from easy computation and a robust ability to search globally. The
number of grey wolf generations and groups is defined by the GWO algorithm, which then
determines the optimal parameters. To establish the fitness position, three head wolves («,
3, and 6 wolves) were employed. The remaining wolves compute the distance between
themselves and the prey based on the location of the prey at the same time. Finally, the
wolves gradually shorten the distance between the prey through continuous updating and
evolution and hunt the prey [29,57].
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The number of hidden layer neurons, learning rate, and number of iterations sig-
nificantly influence the capacity of the LSTM model to fit data and make predictions.
Consequently, the GWO technique was developed to optimize the hyperparameters of the
LSTM model in the transmission tower ground subsidence displacement prediction. The
structure of the model is illustrated in Figure 5.

Data
Grey wolf Trav:rse (@itan s et Determ Meet the Position of o is
' ”pa.ck. — & 1}; — ae ef}mlrée set the optimal
initialization ;::::k Y v condition solution
-
NO
Search for prey ¢

Figure 5. The structure flowchart of the GWO-LSTM model.

4. Results
4.1. Transmission Tower Ground Deformation Results

Using the MT-InSAR method, deformation maps from 2017 to 2021 in the transmission
towers were created to show the spatial distribution of ground subsidence (Figure 6a).
It can be seen from Figure 6a that the ground subsidence of the transmission towers is
largely in the central Salt Lake region. The maximum ground subsidence value in the study
area was —321 mm. Part of the tower was located in the center of the ground subsidence
funnel (Figure 6b,c). By adding a 30 m buffer to the center of the tower, the values of
the towers were obtained from the transmission line tower deformation [19], as shown
in Figure 6d. There were two towers with the largest cumulative deformation: tower #95
(-89 mm) and #151 (—66 mm) (Figure 6d). A comparison of the UAV aerial photographs
of the two towers shows that tower #95, in the operational phase, is located in the salt
pond (the surface contains brine). Tower #151 is located in an abandoned salt pond (the
surface is dry and presents a plowing landform). According to the results of the site
investigation, the foundations of both tower 95# and tower 151# have a certain degree of
settlement deformation, which has a greater impact on the stability of the towers. Therefore,
accurate prediction of ground subsidence deformation of the transmission towers is of great
significance to the operation and management of the subsequent transmission network.
The interpreted surface deformation of some towers was positive, which may be due to
the accumulation of wind and sand in the study area [58]. It has little or no effect on the
stability of the tower.
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Figure 6. (a) The transmission line ground deformation remote sensing interpretation results. (b) The
result of tower #95. (c) The result of tower #151. (d) The results of transmission towers and UAV
aerial photos of towers #95 and #151.

4.2. Ground Deformation Characteristic K-Shape Clustering Analysis Results

The findings of the time series clustering based on K-shape clustering were obtained
to further evaluate the time series deformation characteristics of each tower (Figure 7a-d).
It could be seen that the tower time series deformation results were mainly divided into
three types: overall upward type (Figure 7b), horizontal fluctuation type (Figure 7c), and
overall downward type (Figure 7d). Through field investigation of the transmission line
tower, it was found that the overall upward type is mainly located in the desert area, and
its deformation is mainly caused by the accumulation of wind and sand (Figure 7e). The
horizontal fluctuation type is mainly located in the wilderness area, and the horizontal
fluctuation shown on the surface may have been caused by a slight disturbance of the
surface (Figure 7f). The downward type is primarily found in the Salt Lake region, which is
the main historical deformation point (Figure 7g).
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Figure 7. The results of the K-shape clustering, (a) transmission tower time series deformation
results, (b) deformation results for the overall upward type of transmission tower time series (site
environment as shown in (e), (c) deformation results for the horizontal fluctuation type of transmission
tower time series (site environment as shown in (f), (d) deformation results for the overall downward
type of transmission tower time series (site environment as shown in (g).

4.3. Decomposition of the Ground Displacement

MT-InSAR is a high-precision monitoring method that can be used as reliable primary
data for ground displacement prediction in the absence of surface GPS monitoring equip-
ment [59-61]. Based on the distribution of rainfall and temperature data obtained in the
study area, 61 deformation values of towers #95 and #151 for the period from 28 April 2017
to 8 December 2020 were selected for the study. From Figure 8, it can be observed that both
towers exhibit continuous downward displacement deformation during the interpretation
period. This indicates that the towers will still exhibit a deformation trend in the future.
Compared with #151, the time series results for #95 showed a slight fluctuation trend
with increasing temperature and rainfall. This may be related to the evaporation and
crystallization of the brine in the salt pond.
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Figure 8. Monitoring data of rainfall, temperature, and the MT-InSAR results of towers #95 and #151.

In order to visualize the ground subsidence prediction model, an absolute valuation
of the transmission tower ground subsidence displacement values was carried out. The
thirty-seven groups from 28 April 2017 to 7 December 2018 were used to create the training
samples. Subsequently, twelve groups from 31 December 2018 to 20 November 2019 were
selected as test samples to evaluate the precision of the model and determine the optimal
prediction model. To examine the viability of the implementation of the ideal prediction
model, twelve groups’ data from 7 January 2020 to December 2020 were employed as a
verification set. In order to avoid leakage of data information, the validation set is not
involved in the training of the model. The displacements of towers #95 and #151 were
decomposed into trend, random, and periodic displacements using the VMD method
(Figure 9). The results of the trend items were then compared. It could be found that the
deformation characteristics of the two towers are the same. Both towers experienced a
slight acceleration in 2018, which coincided with the actual deformation observed in 2018.
From the decomposition results, #95 has more periodic deformation characteristics than
#151, which may be related to its being in the salt pond. Regarding the deformation of the
random term, both were minor.
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Figure 9. The results of the decomposition of the time-series displacements of towers #95 and #151.
4.4. Decomposition of Triggering Factors and Correlation Analysis
The temperature was used as an indirect intensity factor for surface evaporation and
groundwater recharge in the study area. Combined with the deformation data time span,
the temperature difference between Sentinel-1A images of two scenes was selected for
research Figure 10 (F1). Rainfall is the primary trigger factor for transmission tower ground
deformation. This study selected the cumulative rainfall for the day, the last two days, and
the three days for analysis (F2, F3, and F4). The displacement changes during the last image
(F5) and the final two photographs were chosen as the displacement factors (F6).
——F1 [ |F2 [ F3 [ F4 F5 of #95 —— F6 of #95 F5 of #151 F6 of #151
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Figure 10. The candidate triggering factors of the ground subsidence displacement prediction. (F1: the
change of the temperature during the last two Sentinel-1A images; F2: the cumulative of the rainfall
for the day; F3: the cumulative of the rainfall for the last two days; F4: the cumulative of the rainfall
for the three days; F5: the displacement changes during the last image; and F6: the displacement’s
change over the previous three Sentinel-1A images.)

The trigger factors were divided based on the VMD approach to produce high- and low-
frequency sequences (Figure 11). Then, the high-frequency component was utilized as the
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trigger factor for the random term displacement, whereas the low-frequency factor acquired
by decomposition was used as the trigger factor for the periodic term displacement [28].
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Figure 11. The candidate low-frequency and high-frequency triggering factors.

Six triggers were chosen as indicators for evaluating transmission tower displacement.
There are different contributions to displacement prediction modeling for different trigger
factors. The highest mutual information value for each trigger factor with transmission
tower movement was determined using the MIC method (Figure 12). The greater the
MIC value, the stronger the association between the two variables [29]. From Figure 12,
it can be seen that #95 was more sensitive to temperature changes and rain than #151
(F1). This is also compatible with the brine evaporation and crystallization conditions
that exist for #95 inside the salt pond. Based on the MIC values, F1, F2, and F5 were
selected for random displacement prediction, and F1, F4, and F6 were selected for periodic
displacement prediction.

I Random factors of #95 ' I Random factors of #151
[ Periodic factors of #95 [ Periodic factors of #151

MIC Value
MIC Value

-0.5 T T T T T T -0.5 T T T T T T
1 2 3 r4 5 F6 1 r2 3 T4 5 F6

Factors Factors
Figure 12. The MIC value of triggering factors.

4.5. Trend Displacement Prediction

The primary trend of the transmission tower ground subsidence was represented by
the displacement trend. Therefore, this study used univariate GWO-LSTM, CNN-LSTM,
and LSTM to predict the displacement trend. The ideal models were created utilizing
the training and testing sets to prevent the leakage of data from the validation set. The
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Displacement(mm)
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validation set was then predicted using the best models, and the training and test sets were
merged to create a new training set for the validation set. The predicted results are shown
in Figure 13, and the RMSE and R? of the prediction model for the trend displacement
are listed in Table 2. Overall, the GWO and CNN-optimized LSTM performed better in
both the training and validation sets, which can be used for the long-term prediction of the
transmission tower ground subsidence trend term.
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Figure 13. The trend displacement prediction results.

Table 2. The trend displacement prediction accuracy of towers #95 and #151.

Tower Testing . 2 Validation Validation
Number Model RMSE Testing R RMSE R?

GWO-LSTM 0.368 0.995 1.324 0.904

#95 CNN-LSTM 0.674 0.984 1.570 0.862
LSTM 1.664 0.904 3.079 0.482

GWO-LSTM 0.163 0.998 0.326 0.978

#151 CNN-LSTM 0.679 0.971 0.647 0914
LSTM 1.664 0.904 1.572 0.865

4.6. Periodic and Random Displacement Prediction

The periodic term displacement is caused by periodic action [62]. The effects of differ-
ent trigger factors on the deformation of the transmission tower are different. According to
the calculated MIC values, it was found that the periodic trigger factor of #95 was more
significant than that of #151. The periodic displacement of the transmission tower was
predicted using multiple factors based on the trigger factors F1, F2, and F5, which were
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chosen in the last comparison. The prediction results are shown in Figure 14, and the RMSE
and R? values of the prediction model for the displacement trend are listed in Table 3.
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Figure 14. Prediction results of the periodic displacement.
Table 3. The periodic displacement prediction accuracy of towers #95 and #151.
Tower Testing . 2 Validation Validation
Number Model RMSE Testing R RMSE R?
GWO-LSTM 0.413 0.941 0.470 0.734
#95 CNN-LSTM 0.161 0.991 0.056 0.996
LSTM 1.092 0.586 0.834 0.161
GWO-LSTM 0.205 0.863 0.213 0.560
#151 CNN-LSTM 0.061 0.988 0.338 0.923
LSTM 0.516 0.135 0.871 0.480

Figure 15 displays the results of the predictions made for the random items, and the
RMSE and R? of the prediction model for random displacement are shown in Table 4. It can
be seen that CNN-LSTM performs better than GWO-LSTM and LSTM models, in which
the R? in both the training and validation sets is more significant than 0.9. The LSTM model
performs poorly in multi-factor prediction, and the prediction results are less referential.
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Figure 15. Prediction results of the random displacement.

Table 4. The random displacement prediction accuracy of towers #95 and #151.

Tower Testing . 2 Validation Validation
Number Model RMSE Testing R RMSE R?

GWO-LSTM 0.360 0.940 0.518 0.895
#95 CNN-LSTM 0.259 0.969 0.251 0.971
LSTM 0.612 0.828 0.739 0.786
GWO-LSTM 0.336 0.631 0.214 0.564
#151 CNN-LSTM 0.018 0.997 0.092 0.973
LSTM 0.399 0.481 0.288 0.213

The CNN-LSTM model performs best, suggesting that it has a greater generalization
capacity for multi-factor prediction based on periodic and random prediction results.

4.7. Cumulative Displacement Prediction and Accuracy Assessment

The transmission tower cumulative displacement was determined by cumulating the
values of the periodic, trend, and random displacements. (Figure 16). The results show that
the cumulative deformation of the transmission tower optimized by the GWO and CNN
is consistent with the remote sensing interpretation results (Table 5). In #95, the RMSE
and R? of the GWO-LSTM model test set are 0.93 mm and 0.986, respectively. The RMSE
and R? values of the validation set were 1.412 and 0.923, respectively. For #151, the RMSE
and R? of the CNN-LSTM model test set were 0.723 mm and 0.976, respectively, and the
RMSE and R? of the validation set were 0.485 mm and 0.972, respectively. In addition, in
the #95 prediction results, the displacement fluctuation of the transmission tower caused
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by external disturbances is also reflected in the results of the GWO-LSTM and CNN-LSTM
models. This indicates that the optimized LSTM can better predict the actual deformation
of the transmission tower.
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Figure 16. Prediction results of the total displacement.

Table 5. The total displacement prediction accuracy of towers #95 and #151.

Tower Testing . 2 Validation Validation
Number Model RMSE Testing R RMSE R?

GWO-LSTM 0.930 0.986 1.412 0.923

#95 CNN-LSTM 0.875 0.983 1.564 0.810
LSTM 2.054 0.905 1.568 0.809

GWO-LSTM 0.490 0.989 0.813 0.922

#151 CNN-LSTM 0.723 0.976 0.485 0.972
LSTM 1.370 0.913 1.446 0.755

5. Discussion

Owing to fragile geological and environmental conditions, the transmission tower
located in the Qarhan Salt Lake area of the Qinghai-Tibet Plateau will continue to be
affected by extreme climates in the future. However, a lack of medium- and long-term
monitoring means early warning research for transmission line towers in the study area is
needed. This study attempts to use the MT-InSAR method to monitor deformation and
obtain excellent time series deformation results of the ground subsidence of transmission
towers. A deep learning model and a system of ground subsidence trigger factors were
constructed. At the same time, early warning of transmission tower ground subsidence in
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the study area was carried out based on the time series ground subsidence deformation
data of representative towers.

5.1. Application of the MT-InSAR Technology

As shown in Figure 1, the MT-InNSAR method and the division of time series results
for different deformation states were the basis for the forecasting framework. The results
of the remote sensing interpretation show that the ground subsidence of transmission
lines is mainly concentrated in the central Salt Lake area. Moreover, there was an apparent
subsidence funnel near the transmission towers. K-shaped clustering was used to reveal the
ground subsidence deformation characteristics of the transmission tower under different
geological and environmental conditions [51]. From Figure 7, it can be observed that the
K-shape algorithm can obtain good clustering results for the time series ground subsidence
deformation of the transmission tower. Combined with the field survey results, the overall
upward type (Figure 7b) is mainly located in the desert, which might be affected by wind-
sand accumulation. The horizontal fluctuation type (Figure 7c) was mainly located in the
wilderness area, which might have been caused by external disturbances. The middle Salt
Lake region, which was the primary deformation area, is where the majority of the overall
downward type (Figure 7d) is spread.

5.2. Triggering Factors of the Study Area

To accurately forecast ground deformation, it is essential to choose appropriate trigger-
ing conditions [28,63]. Quantification is challenging because of the microscopic properties
of saline soil and the influence of human engineering operations. Because tower foundation
groundwater monitoring equipment is not installed, there is a lack of useful groundwater
data. Therefore, in this study, more practical and reasonable rainfall and temperature time
series data were used as prediction trigger factors for the transmission towers. Because the
salt expansion effect in the study area is relatively small, the temperature change causes
the fluctuation of groundwater and changes the essential stress conditions [20,43,46]. Ac-
cording to the MIC value shown in Figure 12, it can be noticed that changes in temperature
and rainfall have a greater impact on # 95, which may also be related to # 95 being in the
salt pond. The data source used in this study was Sentinel-1A, which can better meet
the requirements of surface deformation monitoring accuracy [64]. However, owing to
the triggering of the atmosphere and monitoring period, the correlation between more
comprehensive trigger factors and ground deformation still needs to consider multi-source
monitoring equipment [65]. At the same time, more external trigger factors should be
explored, such as vehicle load, wind load, and mining frequency of mineral salt in the
study area.

5.3. Ground Subsidence Prediction of the Transmission Towers

Currently, there is no literature on ground subsidence prediction research on particular
geological conditions and transmission towers in the Salt Lake area. This is a new attempt
and has achieved good results. Because it can preserve and use past data and fully utilize its
advantages of extracting correlation information, the LSTM model offers an ideal prediction
capacity for displacement time series [32]. However, the built-in parameter space of the
LSTM model renders the prediction results highly uncertain. In this study, two optimization
models (GWO and CNN) were used to determine the best hyperparameter combination to
increase the precision and generalizability of the prediction outcomes [40,54]. Based on the
two selected representative transmission towers from Table 3 to Table 5, it can be found that
the optimized LSTM model has better prediction results. In future studies, the performance
of the prediction models will need to be further studied under different environmental
conditions, data support, and control factors.
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6. Conclusions

This study attempts to use the MT-INSAR method to monitor deformation and obtain
excellent time series deformation results of the ground subsidence of transmission towers.
K-shape clustering was used to cluster the time series ground subsidence deformation
trend of more than 300 base towers along the line. Combined with field investigation and
representative deformation characteristics, # 95 and # 151 were selected for deep learning
displacement prediction. The conclusions are summarized below:

(i) The mid-Salt Lake region is where the ground subsidence in the study area is most
concentrated, according to MT-InSAR data. The time series results of the transmission
towers exhibit three apparent features according to the K-shape clustering results.
The negative effect of the deformation curve of the overall downward type on the
transmission towers was the largest.

(i) The MIC values show that #95 in the salt pond was more significantly affected by
temperature and rainfall. This indicated that the towers in the salt pond were more
susceptible to external factors and deformation.

(iii) The results of the ground subsidence prediction show that the LSTM optimized by
CNN and GWO performs well in displacement prediction. The GWO-LSTM model
was more suitable for trend prediction, whereas CNN-LSTM performed better under
multiple factors.

Limited by the site conditions and fundamental data of the study area, this study has
not yet made a more detailed experimental analysis of the deformation factors of saline soil
in the study area. Nevertheless, the research presented in this study could provide a new
idea for installing future monitoring equipment and deformation monitoring in the Salt
Lake area. It could also be used in the monitoring and early warning of geological disasters
in transmission networks.
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