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Abstract: The basic information survey on homesteads requires understanding the shape of home-
steads, and the shape of the homesteads based on the spatial location can reflect information such
as their outline and regularity, but the current shape classification of rural homesteads at the parcel
scale lacks analytical methods. In this study, we endeavor to explore a classification model suitable
for characterizing homestead shapes at the parcel scale by assessing the impact of various research
methods. Additionally, we aim to uncover the evolutionary patterns in homestead shapes. The study
focuses on Yangdun Village, located in Deqing County, Zhejiang Province, as the research area. The
data utilized comprise Google Earth satellite imagery and a vector layer representing homesteads
at the parcel scale. To classify the shapes of homesteads and compare classification accuracy, we
employ a combination of methods, including the fast Fourier transform (FFT), Hu invariant moments
(HIM), the Boyce and Clark shape index (BCSI), and the AlexNet model. Our findings reveal the
following: (1) The random forest method, when coupled with FFT, demonstrates the highest effec-
tiveness in identifying the shape categories of homesteads, achieving an average accuracy rate of
88.6%. (2) Combining multiple methods does not enhance recognition accuracy; for instance, the
accuracy of the FFT + HIM combination was 88.4%. (3) The Boyce and Clark shape index (BCSI)
proves unsuitable for classifying homestead shapes, yielding an average accuracy rate of only 58%.
Furthermore, there is no precise numerical correlation between the homestead category and the shape
index. (4) It is noteworthy that over half of the homesteads in Yangdun Village exhibit rectangular-like
shapes. Following the “homesteads reform”, square-like homesteads have experienced significant
vacating, resulting in a mixed arrangement of homesteads overall. The research findings can serve as
a methodological reference for the investigation of rural homestead shapes. Proficiency in homestead
shape classification holds significant importance in the realms of information investigation, regular
management, and layout optimization of rural land.

Keywords: homesteads; shape classification; parcel scale; fast Fourier transform; Hu invariant
moments; BC shape index; AlexNet

1. Introduction

In China, rural homesteads are owned collectively by villages, representing a welfare
guarantee provided by the state to farmers, and they cannot be bought or sold. The term
“homesteads” encompasses the land used by rural villagers for constructing various living-
related structures, such as houses, courtyards, grain-drying fields, toilets, and cowsheds [1].
Homesteads play a crucial role in rural settlements [2]. In 2015, the Chinese Ministry of
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Agriculture and Rural Affairs initiated the first wave of rural homestead system reform,
selecting 33 counties nationwide as pilot projects for “homesteads reform”. Assessing the
status of rural homesteads resources in China is a critical undertaking [3], and understand-
ing their spatial configurations is of paramount importance. The spatial arrangement of
homesteads can indicate their regularity, which, in turn, impacts the regularity of neigh-
boring parcels. Irregularities can lead to increased resource utilization costs, particularly
in cases of irregularly shaped arable land surrounding homesteads, resulting in higher
cultivation expenses. Furthermore, irregularly shaped homesteads pose challenges for
rational planning and construction, thereby impacting the surrounding environment and
travel accessibility. In both China and Vietnam, rural homesteads are state-owned, with
farmers granted the right to utilize them. Given the similarity in homestead components [4],
farmers are required to adhere to national policies and planning regulations when under-
taking homestead transformations. Rural buildings in Britain are privately owned and can
be bought and sold. While these buildings differ from homesteads in China and Vietnam,
any alterations must align with state regulations or the Localism Act [5]. Supervision of
rural homesteads is often lax, making them susceptible to post-construction expansion or
dismantling, thereby impacting the equilibrium between rural construction land and arable
land. Consequently, it holds significant importance to understand homestead shape classifi-
cations and patterns of change, facilitating information investigation, regular management,
and layout optimization of rural land.

Shape classification of homesteads is essential for analyzing the two-dimensional
graphics of rural homesteads in China. Similarities exist between these graphics and those
of buildings or rural settlements. Numerous scholars have conducted extensive research
on describing and classifying such shape features. Broadly, methods for expressing shape
features can be categorized into two main types: (1) outline-based shape representation
and (2) region-based shape representation.

Outline-based shape representation involves describing shape using the outer bound-
ary of two-dimensional graphics and representing it through contour features. Common
methods include Fourier transform, the wavelet descriptor method, chain coding, and
shape features. For instance, Li and Zhang utilized Fourier transform to convert vector
coordinates into a function in the frequency domain, expressing the boundary shapes of
faceted elements of varying scales [6]. While effective for polygons with smooth boundaries,
this method may not suit right angles. The wavelet descriptor method compensates for
Fourier transform’s limitations in local feature extraction. Thus, Sui and Kim decomposed
building images into different scales using wavelet descriptors and described shapes using
wavelet coefficient series [7]. The chain code method is simple and can significantly reduce
data; however, it is susceptible to noise. Liu and Žalik utilized chain coding to extract
key points for representing the shape of two-dimensional graphics [8]. To circumvent the
contour point-matching process, Shen et al. transformed the shape into a feature vector
using the shape feature bag and represented the shape outline by encoding and aggregating
local contour features [9]. While this method is straightforward in terms of calculation, it to
some extent neglects visual cognition factors [10].

The second type of region-based method involves utilizing the internal region of the
two-dimensional graph to represent shape [11], Mainstream methods within this category
encompass four types. (1) The skeleton method [12]: This method entails extracting the
skeleton line from the two-dimensional representation of the residence and analyzing
settlement shape through multiple rounds of extraction and aggregation. (2) Boyce–Clark
shape index [13]: This approach is based on the radius measurement and yields a relative
shape index by comparing a standard circle with the shape boundary profile. It is frequently
employed to assess urban boundary shapes and analyze the direction and extent of urban
expansion. (3) Hu invariant moments (HIM): This method relies on algebraic invariants
and introduces moment invariants. Through the nonlinear combination of geometric
moments, it derives a set of moments that remain invariant to the translation and rotation
of two-dimensional images. For instance, in the literature [14], a high-spatial-resolution
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method was proposed, characterizing the geometric invariant moments of building shapes
from various viewing angles. (4) Matching method: This method involves matching house
shapes with letters [15] or graphics [16] and templates and exploring the relationship
between residences and templates by calculating similarity.

Both of the abovementioned machine learning (ML) methods heavily rely on manual
parameter configuration and expert knowledge [17]. To address this limitation, scholars
have explored deep learning (DL) methods, which have gained widespread adoption
in fields such as computer vision, natural language processing, and speech recognition,
yielding impressive results [18,19]. Among these, convolutional neural networks (CNNs)
stand out for their powerful learning capabilities and significant achievements in shape
recognition and classification. Consequently, some researchers have applied CNNs to the
study of buildings, which can be categorized into two main areas. The first area focuses
on building shape recognition. For instance, Yan et al. [20] employed a graph convolu-
tional neural network (GCNN) architecture to analyze the graphical structures of buildings,
studying the distinctive characteristics of individual buildings and examining the distribu-
tion patterns of building clusters. Yang et al. [21] introduced an integrated classification
approach that combines vector-based building data with points of interest, enhancing the
GCNN to extract morphological features of buildings. The second area deals with building
shape classification. For instance, Meng et al. [22] employed ResNet50 to automatically
classify rural building characteristics for large-scale village surveys. Yan et al. [23], with
the assistance of the graph convolutional automatic encoder (GCAE) model, conducted
an analysis distinguishing various building shapes while effectively representing both
local and global shape features. Jiao et al. [24] utilized the AlexNet model to classify and
recognize the shapes of large-scale buildings, achieving an impressive recall rate of 92.32%.
In comparison to other CNN models, the AlexNet model notably enhanced building shape
classification, proving effective even for buildings with complex shapes. The aforemen-
tioned research represents valuable progress in utilizing deep learning for building target
detection and classification.

In conclusion, numerous studies have examined shape recognition and classification,
whether in the context of urban buildings or rural settlements. Traditional feature extrac-
tion methods and deep learning approaches are commonly employed. However, rural
settlements, in contrast to urban buildings, exhibit greater compositional diversity and
dispersion, and their shapes can evolve post-construction. Thus, urban building shape
classification methods may not fully encapsulate the complexity of rural homesteads. Rural
homesteads encompass more than just buildings; they also include courtyards, grain-
basking fields, cowsheds, and other ancillary land. Moreover, not all rural buildings are
part of homesteads; for instance, schools, factories, and shops require classification based on
land use. Therefore, methods suitable for rural building classification may not necessarily
be optimal for rural homestead classification.

Based on the above analysis, we conducted method comparison experiments. These
methods have demonstrated effectiveness in recognizing urban and rural buildings and
were chosen from four categories based on image contours, image regions, urban bound-
aries, and deep learning. Consequently, this research aims to achieve the following ob-
jectives: (1) determine the optimal method for rural homestead shape classification by
comparing traditional and emerging deep learning approaches and (2) uncover the spa-
tiotemporal evolution pattern of rural homestead shapes using Yangdun Village as an
illustrative example. The primary contributions of this study are as follows:

(1) We introduced mature methods from other fields into homestead classification and
demonstrated an effective approach for classifying homestead shapes through experi-
mentation, including the determination of key parameters for FFT and the random
forest (RF) method.

(2) We conducted a numerical comparison to reveal the practicality of common shape
classification methods for homesteads, encompassing four method categories and
eight scenarios, including both machine learning and deep learning.
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(3) We conducted a comparative analysis of multiple feature extraction methods with
a single classification algorithm, departing from the common practice of comparing
multiple classification methods with a single feature extraction method. This approach
offers insights for future research.

(4) Utilizing Yangdun Village as a case study, we elucidated the spatiotemporal variation
patterns in rural homestead shapes in the context of the “homesteads reform”.

The remainder of this article is structured as follows: Section 2 provides an introduc-
tion to the research area, data sources, classification scheme, feature extraction methods,
and accuracy evaluation criteria. Section 3 outlines an in-depth analysis of the accuracy
achieved conducted using various methods in the shape classification of homesteads and
elucidates the spatiotemporal evolution patterns of rural homestead shapes in Yangdun
Village based on the best classification method. Sections 4 and 5 comprise discussion and
conclusions, respectively.

2. Materials and Methods

This article employs various methods: fast Fourier transform (FFT), Hu invariant mo-
ments (HIM), the Boyce and Clark Shape Index (BCSI), and AlexNet. These methods, rep-
resenting image contours, image regions, urban boundaries, and deep learning approaches,
respectively, have been effectively applied in extracting shapes of urban boundaries and
rural buildings. However, determining the most suitable single or combined method for
classifying homestead shapes required a comprehensive investigation in this study.

2.1. Study Area

In 2015, the Ministry of Agriculture and Rural Affairs of China designated 33 counties
(cities and districts) across the country for a pilot program on rural homestead system
reform, commonly known as “homesteads reform”. Our research is centered in Yangdun
Village, Deqing County, Huzhou City, Zhejiang Province. Deqing County was among the
pioneering counties in the first wave of “homesteads reform” pilots and was recognized
for its outstanding achievements in rural “homesteads reform” [25]. Over the decade
preceding and following the “homesteads reform”, Yangdun Village’s homesteads un-
derwent significant transformations, offering insights into the evolving shape of rural
homesteads under this reform. This holds valuable implications for guiding homestead
policy development in other regions. Yangdun Village is situated in the southern-central
region of Deqing County, at the intersection of Huzhou City and Hangzhou City, cover-
ing an area of 6.11 square kilometers. The terrain is predominantly flat, with an average
elevation of approximately 12 m, and the region boasts ample water resources. Yangdun
Village comprises 931 households organized into 26 groups, with residential buildings
dominating the landscape. Homesteads are primarily concentrated in areas with abundant
water sources and well-developed road networks, resulting in an overall clustered layout.
Figure 1 illustrates the diverse shapes and sizes of homesteads in Yangdun Village. Area 1
exhibits irregular patterns with noticeable elevations and depressions, while areas 2 and 3
feature more regular homestead layouts.
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Figure 1. Yangdun Village: relative location in China and the shape of the homesteads. Note: (a) the
location of the study area in China; (b) the location of Yangdun Village in Zhejiang Province; (c) land-
form of Yangdun Village, with yellow rectangular frames representing different areas; (d) homesteads
with different regular shapes.

2.2. Data Source

The research encompasses spatial distribution data of homesteads, remote sensing
data, and field survey data, with the following specifics:

(1) Spatial distribution data of homesteads: This dataset includes vector data for the years
2010, 2015, and 2020. The 2010 and 2015 data were meticulously compiled parcel by
parcel, utilizing Google Earth satellite imagery and on-site surveys. The 2020 vector
data were obtained from the Deqing County Agriculture and Rural Bureau.

(2) Remote sensing data: Our dataset includes Google Earth satellite images from 2010
and 2015, accessible at https://earth.google.com (accessed on 20 December 2021).

(3) Field survey data: Field visits were conducted to determine the locations of home-
steads within the study area and to document the reasons for any changes.

2.3. Construction of Homestead Patch Classification Scheme
2.3.1. Classification Scheme

FFT, HIM, and the Boyce and Clark shape index (BCSI), along with their various
combinations, were employed to extract homestead characteristics. Additionally, we
utilized the random forest (RF) algorithm to oversee homestead shape classification. The
deep learning method took AlexNet as an example. The specific method flow was as
follows: (1) Based on OpenCV, the homesteads in Yangdun Village were divided, and each
homestead was cyclically exported. (2) Combining with the shape classification library
of homesteads summarized in advance, we manually distinguished and set classification
numbers for each homestead and obtained sample standards with different shapes. (3) Fast
Fourier transform (FFT), HIM, and the BCSI were used to extract the features of each
homestead and divide them into single features and combinations of multiple features.
The former refers to the use of a feature extraction algorithm, while the latter refers to the
combination of more than two algorithms. (4) Based on different features, the RF method
was used to carry out model training. A cross-validation method involving 100 random
trials was employed to enhance reliability. In each experiment, 70% of the patches (with a
total sample of 877) were randomly selected as the training set. We used the training model
to classify the remaining patches, and obtained the classification results for each category
of feature. (5) The classification results of the previous step model were compared with
the manual classification categories, and the accuracy of the classification results of the RF

https://earth.google.com
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method based on different feature methods was evaluated. (6) Simultaneously with steps
(3)–(5), the AlexNet model based on deep learning was established by using the sample
library of homestead shapes, and 100 random experiments were also carried out to obtain
classification accuracy. (7) The optimal classification method was selected based on the
accuracy evaluation results of various methods. (8) The optimal method was used to study
the spatiotemporal evolution characteristics of the homestead shapes in Yangdun Village.
The technical route is shown in Figure 2.
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2.3.2. Classification Criteria

Based on the analysis of the homesteads in Yangdun Village in 2010, it was found that
they had different sizes and shapes and could be classified into four categories. The specific
description and diagram are shown in Figure 3.
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2.4. Feature Extraction Methods and Scenario Design
2.4.1. Fast Fourier Transform Algorithms

Fast Fourier transform (FFT) is simple and efficient, and it is one of the common meth-
ods to extract the boundary contour of an object [26,27]. Therefore, this study attempted
to employ this method for the identification and classification of homestead boundaries.
The difficulty was in how to select an appropriate descriptor. If the value is too large, the
recognition efficiency will be reduced, and if it is too small, the features will be lost, and
the accuracy of boundary extraction will be affected. Using the equal interval method,
multiple tests were conducted on the four homestead categories. As shown in Figure 4, the
first column represents four types of original homesteads, and the next five columns are
the recognition results of descriptors with values of 50, 40, 30, 20, and 10. Comparative
analysis revealed that setting the descriptor to 40 struck a balance between preserving
feature integrity and maintaining recognition efficiency.
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Figure 4. Schematic diagram of different values of FFT descriptors to identify the outline of
the homesteads.

2.4.2. Hu Invariant Moments Algorithm

The Hu invariant moments (HIM) method, proposed by Hu in 1962 [28], summarizes
image features such as shape, symmetry, and structural information through invariant
moments. It was often used to analyze the shape rules of images or whether they were of
the same category [29]. In this study, it was introduced into the shape feature extraction
of homesteads. HIM gave seven related moment expressions (φ1–φ7). The calculation
formula can be found in the literature [28]. The identification results of certain homesteads
based on this method are presented in Table 1.

Table 1. The results of extracting homesteads based on HIM.

Serial Number φ1 φ2 φ3 φ4 φ5 φ6 φ7

1 2.838 5.780 11.959 12.404 24.587 15.316 25.799
2 2.845 5.871 10.072 10.568 21.053 14.794 21.026
3 2.747 5.560 10.102 10.303 20.506 13.094 21.696
4 3.114 6.828 10.819 11.853 23.374 15.518 23.309
5 3.107 6.810 10.695 11.603 22.807 15.089 23.072
6 2.758 5.601 10.256 10.359 20.668 13.228 21.638
7 3.135 7.018 10.976 12.625 24.806 16.533 24.466
8 3.172 8.412 13.285 14.154 27.882 18.661 28.578
9 3.031 6.394 10.753 11.509 22.810 15.314 22.773

10 2.961 6.137 10.674 11.207 22.153 14.286 22.933

2.4.3. Boyce–Clark (BC) Shape Index

The Boyce and Clark shape index (BCSI) is a widely adopted method in urban space
shape measurement. It was proposed by Boyce and Clark in 1964 [30] to address shape
boundary measurement challenges. Based on the radius measurement, the BCSI method
compares the standard circle with the shape boundary outline to obtain a relative shape
index, which is simple and universal, and it can reflect the compactness of the parcel shape;
the smaller the value, the more compact the parcels [31]. For example, the BCSI yields
smaller values for circular shapes, approaching 0, and larger values for linear shapes.

Based on this method, Wang et al. [31] studied the outline shapes of 31 megacities in
China and proposed 15 standard shape indices, as shown in Figure 5A; furthermore, they
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quantitatively explained the corresponding relationship between the index value range and
standard shapes [31]. On this basis, Wang et al. (2022) took Long Town, Mizhi County, as
an example and summarized rural settlements into five shapes, as shown in Figure 5B [32].
These two studies show that the number of standard graphics for urban and rural clustering
is different. It can be seen that there are differences in the classification results for different
application fields. Can this method effectively classify homestead shapes, and how accurate
is it in doing so? To address these questions, this study investigated its suitability for
homestead shape classification.
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In this study, the centroid of the homesteads was used as the center of the standard
circle, and rays were emitted from the center at a specific interval angle α. The value of
α affected the accuracy of the BCSI, so the parameter setting was very important. The
intersection point of the ray and the boundary of the homesteads was defined as the feature
point, and the line connecting the feature point and the centroid of the parcels was the
radius. The calculation formula is shown in the Formula (1).

BC = ∑n
i−1

∣∣∣∣[( ri

∑n
i=1 ri

)
× 100 − 100

n

]∣∣∣∣ (1)

If there are multiple feature points between a ray and the border of the parcels, which
one should be selected as the optimal feature point? As shown in Figure 6a, rays L1, L2,
L3, and L4 all have three intersections with the boundary, namely, the internal intersection,
central intersection, and external intersection from inside to outside. The three selection
effects are shown in Figure 6b–d. After comparison, we found that the external feature
points were closest to the shape of the original homesteads. Therefore, the feature point
farthest from the centroid was defined as the optimal choice.
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2.4.4. Characteristic Scenario Design

The above methods constructed features from two perspectives, such as the outline
and area of the homesteads, and each of them had its advantages and disadvantages.
Therefore, to explore the best method for extracting the shape of the homesteads, seven
scenarios were intentionally designed, as illustrated in Table 2.

Table 2. Overview of 7 group feature scenarios for shape classification.

Feature Category Feature Scenarios Feature Variable Feature Size

FFT FS1 The first 40 descriptors of the FFT 40
HIM FS2 Seven moments of HIM 7
BCSI FS3 Value of BCSI 1
FFT + BCSI FS4 The first 40 descriptors of the FFT, value of BCSI 41
HIM + BCSI FS5 Seven moments of HIM, value of BCSI 8
FFT + HIM FS6 The first 40 descriptors of the FFT, seven moments of HIM 47

FFT + HIM + BCSI FS7 The first 40 descriptors of the FFT, seven moments of HIM,
value of BCSI 48

2.5. Classification Model Construction
2.5.1. Random Forest Method

The random forest method is a classifier algorithm that combines and integrates
multiple decision trees [33,34]. The returned random sample was used as the training
set, and each training set generated a new decision tree. After multiple extractions and
comparisons of the decision tree scores, the final classification result was determined [35,36].
The RF method has the advantages of strong stability, high precision, easy implementation,
and strong noise resistance [37], and it has been widely employed in tasks such as crop
information extraction [38], land use classification [39], and tree species identification [40].

When utilizing the RF algorithm for homestead classification, two crucial parameters
need consideration, namely the number of randomly extracted feature quantities in the
decision tree and the number of decision trees (Ntrees). With the help of results in relevant
industry research and actual homestead data tests, the number of feature quantities was the
square root of feature quantities [41]. Determination of the parameter Ntrees was closely
related to an out-of-bag (OOB) error. When Ntrees iterated to a certain value, the OOB
error was insensitive to the change in Ntrees [42]. To avoid the contingency caused by a
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single test set, 50 random simulation experiments were conducted to mitigate errors (with
Ntrees values ranging from 1 to 500). As shown in Figure 7a, each experiment generated a
curve, and it was not easy to find the decision tree threshold from Figure 7a, resulting in a
statistical chart displaying the average values, as illustrated in Figure 7b. It was observed
that once Ntrees reached 120, the OOB error stabilized. Consequently, this value was
chosen to optimize the model’s processing time, and the default values were selected for
other parameters.
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2.5.2. AlexNet Method

The AlexNet network model was proposed by Krizhevsky et al. and made a significant
breakthrough in the image classification task of ILSVRC in 2012 [18]. This approach has
become a classic in the field of deep learning and has been applied to the classification of
building shapes [24]. To preserve the salient features of the image, the maximum pooling
layer was used in the AlexNet network. In addition, the Dropout function was applied in
the fully connected layer to improve the generalization ability of the model. Therefore, our
study tried to use this method to classify the shape of homesteads and accelerate the model
training through a GPU to improve the calculation speed.

For this study, the AlexNet convolutional neural network model was implemented
using the Python language and the PyTorch deep learning framework. The computer
platform for training was the Linux system, the CPU model was AMD-7742, the GPU
model was A100-SXM4, and the memory was 40G. The initial learning rate of the network
training was set at 0.0002, and the Adam optimizer was employed to facilitate automatic
adjustment. The network underwent 100 iterations with 32 samples per batch. In our study,
a total of 100 model training and testing sessions were carried out. The average accuracy
rate of the model for the classification of the test set was 0.807, the calculated loss value
dropped to 0.705, and the experiment took a total of 300 min.

2.6. Accuracy Evaluation

Based on manually labeled category data and the classification standard, we utilized
a confusion matrix and the accuracy index to evaluate the model’s classification results.
Additionally, we employed key indicators, including accuracy, precision, and recall, to
assess the classifier’s performance. The meaning and formulas of these three indicators
are as follows: (1) Accuracy (ACC): This metric calculated the ratio of correctly predicted
samples to the total number of samples, providing insight into the classifier’s overall
classification ability for all categories, as demonstrated in Formula (2). (2) Precision (P):
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Precision measured, among the samples predicted as positive by the classifier, the pro-
portion of samples that were truly positive compared to all samples predicted as positive.
For instance, in our research, the first category was considered positive, while the other
three were considered negative. This metric illustrated the classifier’s accuracy in positive
classification, as indicated in Formula (3). (3) Recall (R): Recall calculated the proportion of
correctly predicted positive samples out of all actual positive samples. This metric reflected
the classifier’s ability to identify positive samples, as shown in the Formula (4).

ACC =
TP + TN

TP + TN + FP + FN
(2)

P =
TP

TP + FP
(3)

R =
TP

TP + FN
(4)

where TP represents the number of positive categories judged as positive categories, TN
represents the number of positive categories recognized as negative categories, FP repre-
sents the number of negative categories judged as positive categories, and FN represents
the number of negative categories recognized as negative categories.

3. Results
3.1. Effect of Different Interval Degrees of BCSI

The scatter plot depicting the relationship between the BCSI and homestead categories
is presented in Figure 8. To investigate the impact of ray interval degrees on the relationship,
we specifically analyzed intervals of 1 degree, 5 degrees, 10 degrees, and 20 degrees, and
the following was observed: (1) The interval degree of rays caused by the centroid had little
effect on the BCSI results of the homesteads, and some values fluctuated with a small range.
(2) The BCSI values for homestead parcels were distributed in the range of 6.23–71.06, the
BCSI values of homestead parcels in categories 2 and 3 were larger than those of the other
two categories, and the distribution of BCSI values in category 1 was relatively centralized.
(3) Intersections were observed in the BCSI values of four categories, and the intersections
were mainly distributed in the range of 9–25. Within this range, four categories of shapes
could not be distinguished. Parcel shapes with a BCSI greater than 35 were classified
as either the second or third category, and there was no obvious range correspondence
between the set of four categories of shapes and the BCSI.

3.2. Comparison of Classification Accuracy of Different Feature Extraction Technologies
3.2.1. Overall Accuracy

To mitigate the risk of overfitting in classification models tailored to specific datasets
and address the challenge of insufficiently convincing individual classification results,
a cross-validation approach was employed. This involved training and evaluating the
model through 100 random selections of training and verification sets. Figure 9 displayed
the results comparing the accuracy rates of seven scenarios, including FS1–FS7, across
100 random experiments using the RF method and AlexNet. It was found that FS1 had the
highest average accuracy rate of 88.6%, followed closely by FS4, FS6, and FS7, with little
difference among these four. FS2 and FS5 both had an average accuracy rate of 83%, while
FS3 had the lowest average accuracy rate. This observation highlights the significant role
of FFT in homestead shape classification. In comparison, using the AlexNet model resulted
in an average accuracy rate of 80.7% for homesteads, surpassing only the FS3 scenario but
falling short of other scenarios.
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3.2.2. Between-Category Accuracy

For the sake of clarity in understanding the mutual judgment results across categories
in 100 random experiments, we present them in the form of a hierarchical confusion matrix.
This matrix revealed that classifiers utilizing FFT and HIM of the RF method exhibit high
accuracy, as shown in Figure 10. In addition, Figure 10a reveals that in the case of FFT, 14%
of Category 1 homesteads were wrongly identified as Category 2, and 14.8% of Category
3 homesteads were also misidentified as Category 2. These errors were relatively large,
indicating that some square-like and irregular rectangular-like homesteads were prone to
be misidentified as regular rectangular-like. Furthermore, 8% of Category 4 homesteads
were erroneously categorized as Category 1, implying that certain irregular shapes were
mistakenly identified as square-like. Misclassification rates for the remaining categories
were below 6%. Notably, there were no instances of Category 1 being misclassified as
Category 3 or Category 4 being misclassified as Category 3.
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Figure 10b illustrated that with HIM, there was a notable 19.8% likelihood of Category
3 being misclassified as Category 2, making it one of the highest inter-category error rates.
Additionally, Category 4 was erroneously identified as Category 1 at a rate of 11.5%, with
no instances of Category 1 being mistaken for Category 3.

Figure 10c depicted the generally unsatisfactory outcomes when employing the BCSI
for homestead shape differentiation, yielding an average accuracy of 58%. Square-like
shapes were recognized with the highest accuracy of 75%, while Categories 3 and 4 had
lower accuracy rates. Regarding inter-category accuracy, Category 4 was frequently con-
fused with Category 1, and Category 3 was often misclassified as Category 2 with a
high probability.

Figure 10d presents the recognition result of combining FFT with the BCSI. Categories
1 and 3 were frequently confused with Category 2, with probabilities of 12.9% and 14.7%,
respectively, while 8.6% of Category 4 was erroneously classified as Category 1. Misidenti-
fications occurred among the remaining categories, but the misidentification rates were all
below 5%, resulting in an overall satisfactory outcome.

Figure 10e displayed the results of combining HIM and the BCSI, showing significant
confusion within each category. Notably, 12.8% of Category 1 was mistakenly identified
as Category 2, 9.3% of Category 2 was misclassified as Category 3, 20.1% of Category 3
was erroneously identified as Category 2, and 11.8% of Category 4 was misclassified as
Category 1.
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Figure 10f illustrated recognition using FFT combined with HIM. It is evident that
that the distinction between Categories 1 and 3 was improved, with no mutual confusion.
Specifically, 12.8% of Category 1 was classified as Category 2, and 14.8% of Category 3 was
mistakenly labeled as Category 2, while the remaining inter-category recognition error rate
was minimal.

Figure 10g presents the confusion matrix for identification when combining with
FFT, Hu invariant movements, and the BCSI. It could be seen that whether the BCSI was
added to FFT and HIM had little effect on the recognition. Categories 1 and 3 were clearly
distinguished from each other; however, the identification error rate was higher when
Category 1 was mistakenly classified as Category 2 and when Category 3 was erroneously
labeled as Category 2, both exceeding 10%.

Figure 10h displayed the results of recognition using the AlexNet model. Notably, the
most significant recognition error occurred when Category 3 of homesteads was incorrectly
identified as Category 2, accounting for 34.9% of the errors. Category 4 was erroneously
classified as Category 1 or Category 3, with both errors exceeding 10%. The recognition
error rate for the remaining categories was minimal, and Category 2 exhibited superior
recognition and classification, with a correct recognition rate of 91.5%.

In terms of inter-category accuracy for homesteads (Table 3): when considering indi-
vidual methods, the FFT algorithm outperformed HIM and the BCSI across all categories.
The first and second categories exhibited minimal differences, whereas the latter two cat-
egories had significant differences. FFT achieved classification accuracy of 10.1% higher
in the third category and 9.6% higher in the fourth category compared to HIM. However,
the BCSI had low category accuracy rates across all four categories. Within the AlexNet
model, only the second category boasted a higher accuracy rate than FFT, reaching 91.5%,
while the remaining three categories fell short of FFT’s performance. Regarding recall,
the FFT algorithm also exhibited a higher proportion of correct predictions compared to
HIM, with gains of 0.2%, 0.7%, 18%, and 17.8% across the four categories. The FFT algo-
rithm outperformed the AlexNet model in recall, while the BCSI had the lowest recall rate.
Concerning combination methods, aside from HIM when combined with the BCSI, which
showed lower performance, the categories did not differ significantly in terms of precision
and recall. Overall, the FFT algorithm demonstrated superiority over the combination of
individual indices and the AlexNet model.

Table 3. Classification accuracy of FFT and HIM.

Homestead Shape Category Classification Accuracy Category 1 Category 2 Category 3 Category 4

FFT
Accuracy (%) 84.6 91.3 83.5 89.3

Recall (%) 84.9 90.7 83.9 91.4

HIM
Accuracy (%) 79.5 87.7 73.4 79.7

Recall (%) 84.7 90 65.9 73.6

BCSI
Accuracy (%) 75 58.2 48.1 47.2

Recall (%) 66.7 79.4 33 31.2

FFT + BCSI
Accuracy (%) 85.4 91.7 82.2 87

Recall (%) 86 90.7 83.4 88.5

HIM + BCSI
Accuracy (%) 80.6 87.8 73.1 79.6

Recall (%) 84.9 90 66.1 74.4

FFT + HIM
Accuracy (%) 85.4 91.5 81.7 85.9

Recall (%) 85.7 90.8 82.4 87.9

FFT + HIM + BCSI
Accuracy (%) 84.6 91.7 80.6 86.8

Recall (%) 86.9 90.5 82.5 85.7

AlexNet
Accuracy (%) 77.6 91.5 60.0 61.2

Recall (%) 76.0 84.0 74.9 70.6

In summary, when comparing the two shape feature classification algorithms, FFT
proved to be more adept at describing the shape features of homesteads.
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3.3. Shape Spatiotemporal Evolution Characteristics of Homesteads in Yangdun Village

Employing the combination of FFT and the RF method to identify the shapes of the
homesteads in Yangdun Village for the years 2015 and 2020, the statistical results are
presented in Table 4. The findings revealed the following: (1) The predominant shape of
homesteads in Yangdun Village was primarily rectangular-like, constituting over 50% of the
total. There is a minor variation in the number of square-like and irregular rectangular-like
homesteads. Except for 2020, homesteads with irregular shapes were the least common,
accounting for 10% of the total. (2) Prior to the “homesteads reform”, there was minimal
change in the shape of homesteads. Following the reform, the demolition of the northern
part of Yangdun Village resulted in a significant reduction in homesteads. Notably, square-
like homesteads witnessed a substantial increase in vacancy rates, dropping from 16.6% to
8.1%. Meanwhile, the proportion of irregular rectangular-like and irregular homesteads
experienced a slight uptick.

Table 4. Statistics on the shape of homesteads in Yangdun Village from 2010 to 2020.

Shape Category Number of Homesteads
Year 2010 Year 2015 Year 2020

Square-like 144 145 48
Rectangular-like 490 472 316

Irregular rectangular-like 154 160 152
Irregular 89 94 73

Total number 877 871 589

Figure 11a–c illustrate the spatial distribution of homestead shapes in Yangdun Village
in 2010, 2015, and 2020, respectively. Figure 11d shows the changes in the homesteads over
the past 10 years, revealing that homesteads of diverse shapes were interspersed throughout
the village. Among the four shape categories, rectangular-like homesteads predominantly
manifested in clustered formations, with fewer instances of isolation. Between 2010 and
2015, the number of square homesteads in the northern region of Yangdun Village was
approximately twice that in the southern region. The majority of the homesteads featuring
irregular graphics were solitary, and instances of two irregular homesteads positioned
adjacent to one another were rare. Furthermore, the southern villages in Yangdun Village
were characterized by a prevalence of rectangular-like homesteads along their borders,
with square-like homesteads comprising a minimal proportion.
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4. Discussion

Feature extraction methods such as FFT and HIM are widely employed in object
recognition and classification [43]. What accounts for the significant disparity in homestead
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shape classification? These algorithms operate on distinct principles: the former excels
at extracting boundaries and outlining features, while the latter specializes in capturing
regional characteristics of research objects [44]. Homesteads contained no texture, color, or
additional data, and the parcel areas lacked voids or complex structures, so recognition
accuracy and stability were superior with FFT as opposed to HIM. Furthermore, while
the BCSI method demonstrated superior performance in urban shape classification [31],
its effectiveness in homestead classification was notably diminished. The reasons for the
substantial difference were as follows: (1) Urban outlines exhibited considerable disparities,
resulting in a wide range of BCSI values [31]. Consequently, the BCSI values for homesteads
were more concentrated, posing challenges in differentiation. (2) Previous research on cities
often had small sample sizes, with many studies having fewer than 100 samples [13,45,46].
In contrast, our dataset comprised 877 homesteads, making it challenging to extrapolate
patterns that cover such a diverse range of shapes. (3) The BCSI served as an approximate
measure of two-dimensional graphic shapes and did not provide precise identifications [31].

In most studies, a single feature extraction method was utilized to assess classifica-
tion performance through comparisons with multiple classifiers [20,47–49]. Our research
primarily centered on evaluating the impacts of various feature extraction methods and
their combinations within the context of a single classifier. For example, Yang et al. [50]
conducted a comparison between the RF method and other widely-used ML classifica-
tion algorithms, demonstrating that the RF method yielded superior classification results
compared to the decision tree, support vector machine, and naive Bayesian methods. Refer-
ence [47] reported that the combination of FFT and the RF method exhibited exceptional
pothole detection capabilities, achieving an accuracy rate as high as 96.5%, aligning with
our study’s findings. However, Yang et al. [50] did not elaborate on the process of selecting
key RF parameters, despite achieving high accuracy with default settings. In our study,
we optimized the key parameter (Ntrees), resulting in improved classification accuracy
and reduced algorithm runtime. Additionally, Yang et al. [50] exclusively compared three
common ML algorithms, overlooking the comparison between ML and DL. Our study, on
the other hand, delved into the impact of both ML and DL approaches on homestead shape
classification. Our classification accuracy stood at 88.6%, which was lower than the 96.5%
reported by Yang et al. [50]. This discrepancy can be attributed to our limited set of standard
classifications, making it challenging to categorize a few unique homesteads effectively.
Yan et al. [20] employed DL for classifying urban building graphics and noted that GCNN
performed well in distinguishing between regular and irregular buildings. However, its
classification was limited to these two categories. Building upon their work, we extended
the classification criteria by including two additional categories, thus enriching the classifi-
cation process. We also analyzed the spatiotemporal variation characteristics of the shape
of the case village homesteads. Due to the limited availability of detailed spatial data for
village homesteads, it remains challenging to acquire a sufficient sample size for model
training and testing. Additionally, the range of shape categories defined for homesteads in
this research may require enrichment. In future studies, we plan to expand the variety of
standard types, increase the sample size, and diversify the comparison methods.

Building on the preceding discussion, this study incorporated established methods
from other domains in the realm of homestead classification. Our proposed method effec-
tively categorizes homestead shapes, reducing the need for time-consuming manual evalu-
ations and mitigating the variability introduced by cognitive differences. This approach
facilitates managers in promptly understanding and adjusting homesteads regularities,
with broad applications in rural homesteads investigation and management. Moreover, it
holds significance as a reference for international rural planning.

5. Conclusions

The conclusions are as follows: First, we found that the method combining fast
Fourier transform (FFT) and the random forest (RF) method proved to be more suitable for
homestead shape classification, achieving an average accuracy rate of 88.6%. Second, the
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combination of multiple feature extraction methods did not lead to improved recognition
accuracy. Specifically, the accuracy of the FFT + HIM combination was 88.4%, while the
accuracy of FFT + HIM + BCSI was 88%. Third, it should be noted that the BCSI, although
commonly used in urban contour classification, proved unsuitable for homesteads, yielding
an average accuracy rate of only 58%. There was no precise numerical correlation between
the category and shape index in homesteads. Fourth, it is worth noting that over half of
the homesteads in Yangdun Village had a rectangular shape. In the five years preceding
and following the “homesteads reform”, there was a significant increase in the number of
regular-shaped homesteads being vacated, while irregular-shaped homesteads exhibited
an upward trend. The method we have proposed has the potential to assist villages in
China and globally in swiftly assessing the level of homestead regulation.
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