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Abstract: The role of intraspecific trait variation in functional ecology has gained traction in recent
years as many papers have observed its importance in driving community diversity and ecology. Yet
much of the work in this field relies on field-based trait surveys. Here, we used continuous canopy
trait information derived from remote sensing data of a highly polymorphic tree species, Metrosideros
polymorpha, to quantify environmental controls on intraspecific trait variation. M. polymorpha, an
endemic, keystone tree species in Hawai’i, varies morphologically, chemically, and genetically across
broad elevation and soil substrate age gradients, making it an ideal model organism to explore
large-scale environmental drivers of intraspecific trait variation. M. polymorpha canopy reflectance
(visible to shortwave infrared; 380–2510 nm) and light detection and ranging (LiDAR) data collected
by the Global Airborne Observatory were modeled to canopy trait estimates of leaf mass per area,
chlorophyll a and b, carotenoids, total carbon, nitrogen, phosphorus, phenols, cellulose, and top of
canopy height using previously developed leaf chemometric equations. We explored how these de-
rived traits varied across environmental gradients by extracting elevation, slope, aspect, precipitation,
and soil substrate age data at canopy locations. We then obtained the feature importance values of
the environmental factors in predicting each leaf trait by training random forest models to predict leaf
traits individually. Of these environmental factors, elevation was the most important predictor for
all canopy traits. Elevation not only affected canopy traits directly but also indirectly by influencing
the relationships between soil substrate age and canopy traits as well as between nitrogen and other
traits, as indicated by the change in slope between the variables at different elevation ranges. In
conclusion, intraspecific variation in M. polymorpha traits derived from remote sensing adheres to
known leaf economic spectrum (LES) patterns as well as interspecific LES traits previously mapped
using imaging spectroscopy.

Keywords: imaging spectroscopy; leaf economic spectrum; intraspecific trait variation; Metrosideros
polymorpha; Hawai’i

1. Introduction

Community ecology and metrics for assessing functional diversity have traditionally
focused on interspecific trait variation and species turnover along environmental gradi-
ents [1–3]. For example, the leaf economic spectrum (LES), which describes how plant
traits covary, primarily describes interspecific trait variation [2]. Since the theory was de-
veloped, the role of intraspecific variation in the LES has been investigated with conflicting
results [4–7]. For example, intraspecific variation patterns in montane boreal forests were
contrary to community-level interspecific patterns that followed the LES [5]. In contrast,
intraspecific variation in temperate rainforests did follow LES and contributed to overall
trait variation within the community [4]. Moreover, quantifying the functional diversity
of forest communities often ignores intraspecific variation by using species trait means
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despite the importance of intraspecific trait variation in driving functional diversity—about
25% according to one meta-analysis [8]. Many studies agree that our understanding of
functional diversity and community ecology could be enhanced by better incorporating
intraspecific trait diversity [1,9–12].

Quantifying intraspecific trait variation on large geographic scales is possible with
remote sensing, specifically imaging spectroscopy. Imaging spectroscopy is a remote
sensing technique that captures a continuous portion of the electromagnetic spectrum from
the visible (~380 nm) to the shortwave infrared (~2510 nm) at short (~5–10 nm) wavelength
intervals. By sampling the spectra at high spectral resolution, these data capture surface
chemistry [13,14], and when applied to vegetation, canopy traits (e.g., leaf mass per area,
leaf nitrogen, lignin, etc.) can be estimated with demonstrable accuracy [15–17]. These data
have been used to quantify functional diversity [18] and interspecific leaf trait patterns [19]
at the landscape and regional levels.

Metrosideros polymorpha (‘ōhi’a lehua) on Hawai’i Island is an ideal model canopy
tree species to study intraspecific trait variation. M. polymorpha spans the entirety of
Hawai’i Island across recent (<50 years) lava flows to older soils (~325,000 years old) and
from sea level to the tree line (~9000 m). This species is highly polymorphic and has
differentiated into four distinct genotypes that self-sort along elevation and soil substrate
age gradients [20,21]. By quantifying canopy traits of M. polymorpha across Hawai’i Island
using imaging spectroscopy data, we can observe intraspecific trait variation of continuous
canopies across broad environmental gradients on a large spatial scale (~10,000 km2).
While prior studies have confirmed that interspecific and community-scale trait patterns
follow LES across large spatial scales using imaging spectroscopy data [19], we investigated
intraspecific variation with regard to the LES using the M. polymorpha model system across
Hawai’i Island.

2. Materials and Methods
2.1. Data Collection

M. polymorpha canopy spatial data were developed by Seeley et al. [22] using 2019
Arizona State University Global Airborne Observatory (GAO) data. The GAO houses
a high-fidelity imaging spectrometer (380–2510 nm) and a boresight-aligned dual-laser
light detection and ranging (LiDAR) scanner, which was used to develop island-wide
visible to shortwave infrared (VSWIR) surface reflectance and top of canopy height (TCH)
mosaics [23]. Between the summer of 2022 and winter of 2023, canopy location data of
5366 crowns were collected, and crowns were identified as either M. polymorpha or “other.”
An island-wide support vector machine (SVM) model was trained using 70% of these
crown data and a 96.0% accuracy was achieved when tested on the remaining 30%. The
SVM was then used to classify all pixels with vegetation over one meter tall as either M.
polymorpha or other vegetation. The model output was compared to a Bayesian Gaussian
process classification (GPC) trained using the spatial information from the training crown
data, and the results were spatially accurate according to the Bayesian GPC. Due to the
large dataset size, ~152,000 pixels representing M. polymorpha canopies were selected from
across Hawai’i Island using systematic random sampling. To extract canopy height and
trait data, we used GAO TCH from light detection and ranging (LiDAR) and canopy trait
estimations were developed by applying universal chemometric algorithms to VSWIR
reflectance data [15]. These algorithms have been used to quantify M. polymorpha canopy
traits at six locations on Hawai’i Island [24]. Note that the chemometric equations result in
estimates of canopy trait information, so we focus on the relative values rather than the
absolute values. The canopy traits estimated from VSWIR data included: leaf mass per area
(LMA), total carbon (C), phenols, chlorophyll a and b (a+b), foliar nitrogen (N), cellulose,
carotenoids, and phosphorus (P).

We next obtained environmental data on elevation, slope, aspect, precipitation, and
soil substrate age (Figure S1). Spatial elevation data were collected from the Shuttle Radar
Topography Mission (SRTM) digital elevation model (DEM) [25]. Slope and aspect spatial
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data were derived from the SRTM DEM using the QGIS Terrain Analysis toolbox. Annual
precipitation data (30-year normal from 1991 to 2020) were developed by the PRISM
Climate Group [26], and soil substrate age datasets were produced by the U.S. Geological
Survey [27]. To co-align the environmental conditions and M. polymorpha canopy trait data,
we extracted environmental information from the center of each 2 m × 2 m M. polymorpha
pixel in the Seeley et al. [22] M. polymorpha spatial distribution dataset.

2.2. Analysis

We first investigated the relative importance of environmental factors (elevation, slope,
aspect, precipitation, and soil substrate age) in driving M. polymorpha canopy traits. The
relative contribution of the environmental factors in driving canopy trait variation was
assessed by training a random forest classifier for each canopy trait. Models were developed
using the scikit learn Python package (version 1.1.3) [28] with standardized environmental
data as the predictor variables and each canopy trait as the response variable. Predictor
importance was calculated using the feature importance method built into the scikit-learn
random forest model. The feature importance method calculates how often each predictor
was used in the trees developed by the model.

Next, we compared the relationship between canopy traits and environmental fac-
tors. As prior studies have described elevation and soil substrate age as being primary
drivers of genotypic variation in M. polymorpha [20,24,29–31], our analyses focused on
these variables. Linear regression models were fit for each canopy trait–environmental
factor (elevation, soil substrate age) pairing to understand their relationship. Addition-
ally, linear regressions were fit and boxplots were developed to assess the relationship
between canopy traits and soil substrate age at each elevation range. The slope and r2

of each model were recorded. To visualize how canopy traits varied across elevation
gradients, box plots of canopy traits grouped according to elevation alone and soil sub-
strate age alone were developed. Boxplots were developed using the seaborne Python
package (v. 0.11.2) [32]. For both the linear models and visualizations, elevation and soil
substrate age were grouped into categories representing elevation (0–150, 150–300, 300–600,
600–900, 900–1200, 1200–1500, 1500–1800, 1800–2100, 2100–3000 m) and age ranges (0–500,
500–1000, 1000–5000, 5000–15,000, 15,000–50,000, 50,000–400,000 years). Elevation and
soil substrate age were modeled using categories as a means of standardizing the data to
better compare the trait–environment relationships between the environmental factors. For
nonlinear canopy traits–environment relationships, as determined by checking residual
normality and homoscedasticity, canopy traits were log-transformed. Dataset ranges were
chosen to ensure a more even spread of canopy data within each range. To maintain a
consistent group size, 57 pixels within each elevation–soil substrate age category were
randomly selected.

To understand how environmental factors mediated trait relationships described by
the LES, we developed paired plots between the foliar N and LMA, chlorophyll a+b, and
P. Data were first grouped according to elevation and then soil substrate age range. Next,
a regression line for paired traits within each elevation or soil substrate age range was
calculated and plotted using the scikit learn Python package (version 1.1.3) [28].

3. Results
3.1. Canopy Trait Variation across Environmental Gradients

Intraspecific variation of canopy traits primarily followed elevation gradients. The
random forest feature importance indicated that elevation is the primary diver of all M.
polymorpha canopy traits. Precipitation was the second most important factor in predicting
trait estimates. For chlorophyll a+b, carotenoids, total C, and nonstructural carbohydrates,
soil substrate age was the third most important predictor, and for all other traits, soil
substrate age was the least important predictor. Slope and aspect had similar levels of
importance, with slope being the more informative variable in most cases (Figure 1).
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iability peaked at middle elevations, and variability of cellulose increased positively with 
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Figure 1. Random forest feature importance rankings of environmental factors in predicting
canopy traits.

Except for TCH, elevation and soil substrate age had opposite relationships with
M. polymorpha canopy traits. LMA was positively associated with elevation while all
other traits were negatively associated with elevation. TCH was positively related to both
elevation and soil substrate age. The relationship between elevation and all canopy traits,
except phenols and TCH, was stronger than that of soil substrate age, as determined by
the slope and r2. LMA had the strongest relationship with both environmental factors,
followed by phenols and total C (Figure 2; Table 1). Across the elevation gradient, total
C, phenols, cellulose, and TCH either peaked or had a minimum around 1200–1800 m.
Chlorophyll a+b, carotenoids, and N variability decreased with increasing elevation, TCH
variability peaked at middle elevations, and variability of cellulose increased positively with
elevation (Figure 2). Canopy trait variability did not vary greatly with soil substrate age,
and the relationship between traits and soil substrate age was primarily linear (Figure 2).
When grouped according to elevation, the relationship between soil substrate age and
canopy traits becomes more variable. While few consistent patterns emerged regarding
the slope and r2, canopies at 150–300 m had larger slopes for many of the traits than those
at other elevations (Table 1). Variability of the chlorophyll a+b, carotenoids, and N was
higher on older soils (15,000–40,0000 years) at low elevations (0–300 m). Visually, the
relationship between soil substrate age and canopy traits appeared more parabolic in at
some elevation ranges, while it remained more linear at others. For example, median N
values peaked around 5000–50,000 years at most elevations, but the relationship remained
linear at 1200–1500 m (Figure 3).

Table 1. Slope and r2 of linear regression between Metrosideros polymorpha canopy traits and environ-
mental factors. Rows below the elevation range title represent the relationship between soil substrate
age and leaf traits within each elevation range. Elevation and soil substrate age were both treated
as categorical rather than continuous variables. Elevation ranges were: 0–150, 150–300, 300–600,
600–900, 900–1200, 1200–1500, 1500–1800, 1800–2100, and 2100–3000 m. Age ranges were grouped as
follows: 0–500, 500–1000, 1000–5000, 5000–15,000, 15,000–50,000, and 50,000–400,000 years.

Leaf Mass
per Area

Chlorophyll
a+b Carotenoids Total

Carbon Nitrogen Phosphorus Phenols Cellulose Top of Canopy
Height

Elevation
Slope 16.972 −0.118 −0.095 −2.256 −0.074 −0.037 −5.179 −0.500 0.121

R2 0.282 0.162 0.166 0.205 0.157 0.039 0.055 0.160 0.003

Soil
Substrate

Age

Slope −6.908 0.098 0.083 1.702 0.073 0.027 6.934 0.443 0.437
r2 0.021 0.051 0.057 0.053 0.070 0.010 0.045 0.057 0.015
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Table 1. Cont.

Elevation Ranges:
Leaf Mass
per Area

Chlorophyll
a+b Carotenoids Total

Carbon Nitrogen Phosphorus Phenols Cellulose Top of Canopy
Height

0–150
Slope −6.950 0.132 0.090 2.291 0.056 0.097 4.563 0.162 0.190

r2 0.032 0.086 0.061 0.131 0.042 0.108 0.028 0.014 0.003

150–300
Slope −15.161 0.222 0.178 2.047 0.129 0.021 6.740 0.587 −0.110

r2 0.133 0.198 0.197 0.107 0.191 0.008 0.059 0.160 0.001

300–600
Slope −8.200 0.141 0.116 1.254 0.097 0.000 4.973 0.449 0.576

r2 0.051 0.108 0.116 0.043 0.131 0.000 0.028 0.084 0.026

600–900
Slope −7.346 0.095 0.082 2.063 0.069 0.033 9.178 0.552 0.397

r2 0.042 0.069 0.082 0.108 0.084 0.016 0.086 0.104 0.013

900–1200
Slope −9.884 0.060 0.065 1.780 0.065 0.012 9.219 0.556 0.595

r2 0.074 0.034 0.058 0.097 0.076 0.002 0.099 0.119 0.024

1200–1500
Slope −5.906 0.098 0.091 2.133 0.097 0.020 11.209 0.708 0.883

r2 0.028 0.091 0.123 0.137 0.176 0.008 0.151 0.196 0.068

1500–1800
Slope −7.701 0.096 0.076 1.620 0.066 0.065 5.534 0.314 0.879

r2 0.047 0.091 0.092 0.074 0.098 0.066 0.034 0.041 0.067

1800–2100
Slope −5.669 0.099 0.083 2.295 0.088 0.076 10.107 0.659 0.482

r2 0.013 0.060 0.068 0.118 0.113 0.068 0.085 0.117 0.020

2100–3000
Slope −11.126 0.009 0.025 1.380 0.044 -0.062 3.900 0.357 0.186

r2 0.056 0.001 0.010 0.037 0.039 0.040 0.010 0.030 0.007Remote Sens. 2023, 15, x FOR PEER REVIEW 6 of 13 
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Figure 3. Metrosideros polymorpha canopy traits grouped according to elevation across a soil substrate
age gradient.

3.2. Canopy Trait Relationships as Mediated by Environmental Factors

M. polymorpha canopy LMA and N were negatively correlated. High LMA and low N
were most often observed at higher elevations while low LMA and high N were observed
at low elevations. Further, there was a constriction of trait variability at higher elevations,
as can be observed in coordinate space when LMA and N are plotted against each other
(Figure 4). The slope of the relationship between LMA and N increased positively with
elevation from −62.6 to −151.9. Soil substrate age had a smaller effect on the relationship
between these variables, though the slope decreased across soils of different geologic ages.
M. polymorpha inhabiting soils aged 0–500 had a larger slope (−111.4) while M. polymorpha
on older soil ages was the lowest (−86.6; Figure 5; Table S1).
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Figure 5. Linear regression plots where three canopy traits (leaf mass per area, chlorophyll a+b, and
phosphorus) are plotted separately against canopy nitrogen. Colors in the left column represent
elevation ranges while those in the right column represent soil substrate age ranges. See Table S1 for
the slope and r2 of each relationship.
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The effect of elevation and soil substrate age on the relationship between chlorophyll
a+b and N was like that of LMA and N. The slope between chlorophyll a+b and N de-
creased from 4.3 to 2.2 as elevation increased while that for soil substrate age peaked at
15,000–50,000 years old. The slope range was smaller for soil substrate age (2.8–4.0) than
that for elevation. There were no consistent patterns between P and N for either elevation
or soil substrate age. The slope for this relationship was near zero, and r2 was consistently
low (0.0001–0.102). Further, the relationship between P and N switched from negative to
positive (Figure 5; Table S1).

4. Discussion

Intraspecific canopy traits of M. polymorpha across Hawai’i Island followed the global
LES. Like the LMA-N relationship described by the LES [2], M. polymorpha exhibited a
strong LMA-N relationship. Intraspecific variation is an important driver of community-
level LMA-N relationship [4], and here we contribute to the body of literature describing
intraspecific LMA-N relationships [4,33,34]. The M. polymorpha LMA-N relationship on
Hawai’i Island was consistently negative, yet the slope decreased as elevation increased.
Soil substrate age did not have a similar systematic effect on the LMA-N relationship.
Further, the trait space occupied by M. polymorpha LMA-N variability constricted as el-
evation increased. This pattern of trait space constriction was observed using canopy
traits estimated from imaging spectroscopy across elevation gradients in diverse Peruvian
forests [19].

Intraspecific variation of M. polymorpha canopy traits was largely determined by ele-
vation. Prior studies have observed strong morphological and physiological responses of
M. polymorpha to elevation, describing differences in leaf size, shape, pubescence, stature,
nitrogen use efficiency, and LMA, among others [29,35–41]. These traits have been shown
to follow not only elevation but also soil substrate age gradients [37,38,42]. Further, M. poly-
morpha genotypes and their hybrids, many of which have unique chemical fingerprints [43]
exist on specific elevation–soil substrate age combinations [20,21,44]. Prior studies focusing
on M. polymorpha intraspecific variation used geographically separate sites or elevation
gradients along a single slope [24,31]. Using data randomly sampled from across Hawai’i
Island, we observed that elevation has the primary effect on M. polymorpha canopy traits,
followed by precipitation. While soil substrate age was often the least important determi-
nant of M. polymorpha canopy traits, the degree of leaf trait response to soil substrate age
depended on elevation.

Elevation is a strong driver of plant traits globally and is thus a major component
of the LES. Canopy traits such as LMA, specific leaf area, N, and δ13C respond to eleva-
tion [2,19,45,46]. Canopy trait responses to elevational changes have been attributed to light
availability, harsher environmental conditions at high elevations, growing season length,
and temperature, among others [45,47,48]. Not only does elevation affect canopy traits
directly, but it also mediates the effect of other environmental drivers. Here, we observed
that the response of M. polymorpha canopy traits on soil substrate age differed based on
elevation. Slope and aspect, which often mediates the effect of elevation on tempearure
and growing season length, had a lesser effect on canopy traits. Using six M. polymorpha-
dominated sites on Hawai’i Island, Seeley et al. [24] reached the same conclusion as they
determined that both canopy traits and VSWIR reflectance spectra were driven primarily
by elevation, with soil substrate age being a secondary driver. While the occurrence of M.
polymorpha across large environmental gradients allows for an investigation of intraspecific
trait variation, this species has few analogs globally, and therefore, more work is needed to
determine if the LES holds for intraspecific traits of other species.

5. Conclusions

Determining the drivers of intraspecific trait variation on large geographic scales
allows us to better understand functional diversity, community ecology, and evolution, and
manage for future climate scenarios [8–10,46,49–51]. As imaging spectroscopy coaligned
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with LiDAR data [23] allows for accurate species classifications [52–58] and the estimation
of canopy traits [15–17], it is a tool with which we can quantify intraspecific variation.
Using imaging spectroscopy data from a model system, we demonstrated that intraspecific
variation follows LES across broad environmental gradients. In the M. polymorpha model
system, as with many systems, elevation was the primary driver of canopy trait variation.
This work suggests that highly polymorphic species like M. polymorpha will adapt to
environmental drivers like how trait selection and environmental filtering of diverse tree
communities result in trait convergence based on site conditions.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs15194707/s1, Figure S1: Spatial data of the soil substrate age,
annual precipitation, aspect, slope, elevation, and Metrosideros polymorpha presence for Hawai’i Island;
Table S1: Slope and r2 of the linear regression models between nitrogen and three canopy traits (leaf
mass per area, chlorophyll a+b, and phosphorus) modeled separately for each trait.
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