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Abstract: Weeds have a significant impact on the growth of rice. Accurate information about weed
infestations can provide farmers with important information to facilitate the precise use of chemicals.
In this study, we utilized visible light images captured by UAVs to extract information about weeds
in areas of two densities on farmland. First, the UAV images were segmented using an optimal
segmentation scale, and the spectral, texture, index, and geometric features of each segmented
object were extracted. Cross-validation and recursive feature elimination techniques were combined
to reduce the dimensionality of all features to obtain a better feature set. Finally, we analyzed
the extraction effect of different feature dimensions based on the random forest (RF) algorithm to
determine the best feature dimensions, and then we further analyzed the classification result of
machine learning algorithms, such as random forest, support vector machine (SVM), decision tree
(DT), and K-nearest neighbors (KNN) and compared them based on the best feature dimensions.
Using the extraction results of the best classifier, we created a zoning map of the weed infestations in
the study area. The results indicated that the best feature subset achieved the highest accuracy, with
respective overall accuracies of 95.38% and 91.33% for areas with dense and sparse weed densities,
respectively, and F1-scores of 94.20% and 90.57. Random forest provided the best extraction results
for each machine learning algorithm in the two experimental areas. When compared to the other
algorithms, it improved the overall accuracy by 1.74–12.14% and 7.51–11.56% for areas with dense
and sparse weed densities, respectively. The F1-score improved by 1.89–17.40% and 7.85–10.80%.
Therefore, the combination of object-based image analysis (OBIA) and random forest based on UAV
remote sensing accurately extracted information about weeds in areas with different weed densities
for farmland, providing effective information support for weed management.

Keywords: UAV remote sensing; weeds; random forest; object-based image analysis

1. Introduction

China is the world’s largest producer and consumer of rice, and rice production is
tightly linked to the food security of 60% of the country’s population. Weeds growing
in rice fields compete with rice for water, nutrients, and growing space, resulting in a
decline in rice yields and favorable conditions for the growth of rice viruses [1,2]. Asian
sprangletop is one of the most harmful weeds, which grows fast and is widely distributed
in all the provinces of China, so how to effectively control its growth has become a complex
problem. At present, spraying chemicals over large areas has become the primary weed
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control method, but it is untargeted and inefficient, not only causing much pollution to
the ecological environment but also affecting farmers’ health. Therefore, it is important to
adopt intelligent equipment to automate farmland management.

Obtaining information on weed growth in rice fields is a precondition for automated
farmland management. The acquisition of large-scale data has become possible with
the development of remote sensing technology and has been widely used in geological
disaster monitoring [3,4], environmental monitoring [5], and resource monitoring, such
as for crops and forests [6–10]. Although technologies such as satellite and space remote
sensing have been the primary methods for observing plant optical features, the images
obtained by these technologies can be affected by clouds and have low temporal and spatial
resolution. Even high-resolution satellite remote sensing images may not be sufficient
for obtaining accurate weed growth information from farmland. On the contrary, as a
new low-altitude remote sensing platform, UAVs have the advantages of portability, high
resolution, reduced effects from weather, and lower cost when compared to high-altitude
remote sensing technology [11–13]. Thus, UAVs are better suited for acquiring information
about weed growth. In fact, research results on UAV remote sensing in various fields have
been promising, including crop monitoring [14,15], nitrogen content estimation [16], and
the extraction of urban impervious surfaces [13].

Two approaches currently exist for traditional remote sensing image processing: pixel-
based and object-based. The pixel-based classification method is commonly used for low-
and medium-resolution remote sensing images because it can produce excessive noise when
applied to high- or ultra-high-resolution remote sensing images. Therefore, many researchers
have favored the object-based classification method as an alternative [13,17–19]. The object-
based classification method is based on mutually disjointed regions that exhibit consistent or
similar features, such as spectral, geometric, and textural features, after image segmentation
has been carried out. This method can extract a wide range of features in greater depth,
resulting in improved classification accuracy compared to the pixel-based method. Therefore,
the OBIA method is particularly well-suited for the classification of digital orthophoto maps
generated from UAV images [19–22]. The traditional machine learning algorithms represented
by support vector machines [23], K-nearest neighbors [24], and decision tree [25] have their
advantages and limitations for object-oriented image analysis: support vector machines can
solve classification problems with small samples, K-nearest neighbors has a simple algorithm
and is easy to understand and implement, and the decision tree algorithms require fewer
training samples, but the K-nearest neighbors perform poorly in the face of sample imbalance,
the decision tree algorithm tends to produce an overly complex model, which is poorly
generalized to the data, and the support vector machine algorithm has difficulty in finding
a suitable kernel functions for the nonlinear complementarity problem. However, as the
feature dimension increases, features of lower importance act as noise, so the traditional OBIA
classification algorithm becomes limited; therefore, it is especially important to choose a suitable
classification algorithm. The random forest algorithm has been widely used in previous studies
for feature extraction and the classification of remote sensing images due to its high accuracy,
strong generalization ability, and superior resistance to overfitting [26–28]. Moreover, this
algorithm has been shown to perform well in high-dimensional feature spaces, leading to
better classification accuracy [29,30].

Many researchers have recently focused on developing accurate methods for identi-
fying and locating weeds in farmland, using both OBIA classification [31–33] and deep
learning techniques [34–36]. Although these studies have made progress in the field of
agriculture, further research to improve the accuracy and applicability of weed identifi-
cation results is still necessary. For example, while there have been several studies on
weed information extraction using OBIA methods, few have focused on determining the
optimal segmentation scale and feature subsets or investigating the relationship between
the spatial distribution of weeds and the accuracy of the extraction results [33]. In studies
that use deep learning methods to extract information about weeds, most focus on detecting
individual weeds in farmland using object detection algorithms. While such studies have
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demonstrated high levels of accuracy, they may not fully meet the practical requirements
for weed management [34–36]. Therefore, in this study, images of areas with different weed
densities are segmented according to the optimal segmentation scales, and we manage to
obtain the optimal subset of features and analyze the relationship between the extraction
effects and the spatial distribution of weeds based on the UAV visible images, and then the
extraction results were used to partition the degree of weed infestation so as to obtain a
practical and efficient method for weed identification at different weed densities, with the
aim of improving weed control efficiency and reducing the use of chemicals.

2. Materials and Methods
2.1. Study Area

The study area was farmland located in Wenjiang District, Chengdu City, Sichuan
Province (103◦50′51′′E, 30◦44′42′′N), as shown in Figure 1 (The map is made based on
the standard map downloaded from the standard map service website of the National
Bureau of Surveying, Mapping and Geographic Information. http://bzdt.ch.mnr.gov.cn/
(accessed on 20 December 2022)). The total area was 150.56 m2 and flat, was located in
the hinterland of the Chengdu Plain, and had a simple geomorphology. Wenjiang District
is contained in the subtropical humid climate zone and has four distinct seasons, a mild
climate, and an annual average temperature of 16.0 ◦C, a climate suitable for rice growth.
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Figure 1. Location of the study area.

2.2. Method

Figure 2 shows the protocol for this study. First, the UAV was used to collect images of
the study area, and then the Pix4Dmapper was used to build a full-area Digital Orthophoto
Map (DOM). Secondly, weed-dense (Dense) and weed-sparse areas (Sparse) were selected in
the DOM of the study area, and then eCognition9.0 combined with ESP2 (Estimation of Scale
Parameter 2) (Trimble Germany GmbH, Munich, Germany) [37] was used to determine the
best segmentation scale for the two weed-dense areas to segment the images and calculate
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the spectral, index, texture, and geometric feature values of each object after segmentation.
Schemes S1–S4 were constructed based on these results, and scheme S5 was constructed by
combining recursive feature elimination and cross-validation methods. The random forest
method was used to classify the five schemes; then, the classification results and classification
accuracy were compared to choose the best feature combination scheme. The classification
results of the random forest, decision tree, K-nearest neighbor, and support vector machine
methods based on the selected best feature combination scheme are shown. Furthermore, we
analyzed the applicability of the best classification method in the experimental area for two
weed densities.
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2.2.1. Data Acquisition and Preprocessing

Tillering stage, booting stage, heading stage, and ripening stage are the major stages
in the growth of rice, and rice is formed during the heading stage and ripening stage.
The tillering stage is the period from the beginning of tillering to the beginning of young
spikelets, and rice starts fruiting at the booting stage [38]. Rice in the Chengdu Plain is
in the max tillering number stage in mid-May, and farm management can avoid weeds
competing with rice for nutrients in the next booting stage and heading stage, which is
favorable to the growth of rice nutrient organs in May. In this study, the DJI Air 2S was
used to collect visible light images from the study area. The UAV has a 1-inch CMOS visible
sensor with a pixel size of 2.4 µm, a pixel value of 20 million, and a camera equivalent focal
length of 22 mm. To avoid the shadows affecting detection results, we performed aerial
photography on a day when it was cloudy and had good lighting conditions, so we chose
to acquire images of the study area on 15 May 2022. When performing aerial photography,
the flight altitude was 30 m, the overlap rate in the side direction and the overlap rate in
the heading were both 80%, the speed was set to 5 m/s, and the shooting method was
hover shooting to avoid blurring the photos due to a slow shutter speed during the flight.
A total of 515 images of the study area were collected, and the size of each image was
5472 × 3648 pixels. The original images collected by UAV were stitched together using
Pix4Dmapper (Prilly, Switzerland) [39] to generate a DOM with a resolution of 0.55 cm.
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2.2.2. Image Segmentation

OBIA classification mainly includes image segmentation, feature extraction, and
image classification, and image segmentation directly affects classification accuracy. If
the segmentation scale is too large, some of the smaller objects will be segmented into
other ones. If the segmentation scale is too small, a more “broken segmentation” result
will be produced [40]. Therefore, we used eCognition 9.0 and ESP2 to determine the best
segmentation scale for the image. After testing, the weights of shape and spectrum were
determined to be 0.1 and 0.5, respectively. ESP2 was used to quantitatively evaluate the
homogeneity of pixels in the segmented object by calculating a local variance (LV) and
rates of change (ROC). The changes in LV and ROC under different scale parameters are
shown in Figure 3. The optimal scale is the local optimal scale when the ROC reaches its
peak; therefore, in this study, the alternative scales for the dense area are 28, 48, 61, 81, 96,
107, and 118; the alternative scales for the parse area are 31, 44, 64, 86, 95, 105, and 118.
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The different scale segmentation effects are shown in Figure 4. It has been shown that
weeds are more likely to be under-segmented when using larger scale parameters (i.e., a
segmentation scale larger than 61 in dense areas and larger than 44 in sparse areas), resulting
in the detection of more weeds and rice in the same patch. If the scale parameter is small
(i.e., a segmentation scale of less than 61 in dense areas and less than 44 in sparse areas),
the weeds are more likely to be over-segmented, resulting in the weed object being too
fragmented. On the contrary, weeds can be clearly segmented and conform to homogeneity
when the scale parameter is 61 for dense areas and 44 for sparse areas.
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2.2.3. Feature Extraction

The features selected in this study primarily include spectral, index, geometric, and
texture features. The details are shown as follows:

(1) Spectral features (SPEC): The mean and standard deviation of three bands in the
visible image (mean_R, mean_G, mean_B; Std_R, Std_G, Std_B), band maximum
difference (Max_diff), and brightness [41];

(2) Index features (INDE): Difference enhanced vegetation index (DEVI), excess red index
(EXR), excess green index (EXG), excess green minus excess red (EXGR), green to blue
ratio index (GBRI), greenness vegetation index (GVI), modified green-red vegetation
index (MGRVI), normalized green-blue difference index (NGBDI), normalized green-
red difference index (NGRDI), red-green-blue vegetation index (RGBVI), and visible-
band difference vegetation index (VDVI). The vegetation indices and formulas are
shown in Table 1;

Table 1. Vegetation indices and formulas.

Vegetation Index Formulas Reference

DEVI (G + R + B) / 3 × G [42]
EXG 2 × G− R− B [43]

EXGR 2 × G − R − B− (1 .4 × R − G) [44]
EXR 1.4 × R − G [45]
GBRI B / G [46]
GVI G / (R + G + B) [47]

MGRVI
(

G2 − R2
)

/
(

G2+R2
)

[48]

NGBDI (G − B) / (G + B) [49]
NGRDI (G − R) / (G + R) [50]
RGBVI

(
G2 − B × R

)
/
(

G2+B × R
)

[51]

RGRI R / G [52]
VDVI (2 × G − R − B)/(2 × G + R + B) [53]

Note: R, G, and B represent the mean values of the red, green, and blue bands, respectively.

(3) Geometric features (GEOM): Area, length, length/width, width, border length, num-
ber of pixels, volume, asymmetry, border index, compactness, density, elliptic fit,
shape, index, roundness, and rectangular fit [54];

(4) Texture features (GLCM): It contains the mean, standard deviation, entropy, homo-
geneity, dissimilarity, contract, correlation, and angular second moment [55]. The
texture features and formulas are shown in Table 2.

Table 2. Texture features and formulas.

Texture Feature Formulas

Mean N
∑

i=1

N
∑
j=1

iPi,j

Standard Deviation
√

N
∑

i=1

N
∑
j=1

Pi,j × (i−Mean)2

Entropy N
∑

i=1

N
∑
j=1

Pi,j×lnPi,j

Homogeneity N
∑

i=1

N
∑

j=1
Pi,j × 1

1+(i+j)2

Dissimilarity N
∑

i=1

N
∑
j=1

Pi,j ×|i− j|

Contract N
∑

i=1

N
∑
j=1

Pi,j × (i− j)2

Correlation N
∑

i=1

N
∑
j=1

(i−mean)×(j−mean)×P2
i,j

Variance2

Angular Second Moment N
∑

i=1

N
∑
j=1

P2
i,j

Note: where I and j are the rank co-ordinates of the element in the image, p (i, j) is the gray joint probability matrix, N
is the order of the gray-level co-occurrence matrix, Mean is the mean value, and Variance is the standard deviation.
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2.2.4. Sample Selection

The experimental sample selection included a training sample and test samples. To
accurately assess the extraction performance of the method at different weed densities, a
6:4 ratio of training-to-test samples was selected for both the dense and sparse weed areas
using ArcGIS10.8 (ESRI Inc., Redlands, CA, USA) [56]. Firstly, a 3× 3 fishnet was separately
created for each area, then 200 sample points were randomly generated in each fishnet unit
(1800 random points were included in each area). Secondly, 173 points were randomly selected
as test samples for each area (i.e., 72 weed samples and 101 non-weed samples in the dense area
and 80 weed samples and 93 non-weed samples in the sparse area). Finally, 240 sample points
were selected as training samples based on the area ratio of weed-to-non-weed areas from the
remaining sample points (1370 points) for each area (114 weed samples and 126 non-weed
samples in the dense area; 100 weed samples and 140 non-weed samples in the sparse area) to
prevent imbalance between the weed and non-weed training samples.

2.2.5. Feature Selection

Feature selection, also known as attribute selection, is the process of selecting N
features from an existing feature set, M, to optimize specific evaluation metrics. It is also a
process of selecting the most effective subset of features from the original set to reduce the
dimensionality of the dataset, which is crucial for improving algorithm performance.

Due to the high feature dimensionality, recursive feature elimination (RFE) [57] can
be used to grade the importance of all features, and cross-validation (CV) [58] can be used
to obtain the optimal number of features, as shown in Figure 5 (here, all the image objects
are used as samples for feature dimensionality reduction in order to obtain an accurate
feature set in each area). The process of RFE and CV achieve feature selection and are
shown below (RFECV): (1) Stages of RFE: (a) Model the current subset of 43 features and
calculate the importance of each feature; (b) remove the least important feature or features
and update the feature set; (c) repeat steps (a) and (b) until the importance rating of all
features is complete. (2) Stages of CV: (a) Select the different number of features by the
importance of the features in the RFE stage; (b) cross-validate the selected feature set; (c)
determine the highest-rated feature number and complete feature selection.
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The dense area and sparse area feature subsets were reduced from 43 to 17 and 19,
respectively, after the feature optimization was completed, as shown in Figure 6. The
importance of the preferred features in the different density areas is shown in Figure 7.
The common features of the two areas are MGRVI, RGRI, NGRDI, EXR, EXGR, DEVI, GVI,
GLCM_Angular Second Moment (GLCM_A2M), GLCM_Entropy, GLCM_Dissimilarity,
Area, Number of pixels, Volume, and Border length.
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2.2.6. Constructing the Experimental Scheme

Further research on the number of trees in the random forest model can help improve
its classification performance. In this study, we tested from 1 to 500 trees under different
schemes and evaluated their performance using various scores for each number of trees
under the same scheme.

In this study, we designed four additional schemes to validate the effectiveness of the
selected feature set. In addition, we created three schemes using the decision tree, K-nearest
neighbors, and support vector machine algorithms based on the selected feature set to test
the performance of different classifiers in the study areas. The details of the experimental
schemes and the number of trees used for each scheme are presented in Table 3. After
testing, the depth of both the random forest and the decision tree was 3, the type of the
decision tree was “CART”, the c-value, gamma, and the kernel in SVM were set to “3”,
0.05, and “rbf”, respectively, and the K-value in the KNN was set to “2”. The relationship
between the classification accuracy and the number of trees is illustrated in Figure 8.

Table 3. Experimental scheme and optimal number of trees.

Scheme Classifier Features Number of Features
(Sparse/Dense)

Number of Trees
(Sparse/Dense)

S1 Random Forest SPEC 8/8 135/105
S2 Random Forest SPEC + INDE 20/20 65/106
S3 Random Forest SPEC + INDE + GLCM 28/28 9/175

S4 Random Forest SPEC + INDE + GLCM
+ GEOM 43/43 125/121

S5 Random Forest RFECV 19/17 26/26
S6 SVM RFECV 19/17 —
S7 Decision Tree RFECV 19/17 —
S8 KNN RFECV 19/17 —
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2.2.7. Accuracy Evaluation Index

A confusion matrix was used to evaluate the performance of the algorithms and visualize
the classification accuracy for supervised classification. In this paper, we combine overall
accuracy (OA) and the F1-score coefficient to analyze the classification results due to the
presence of dataset imbalances. Here, metrics such as OA (presented in Equation (1)) and
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the F1-score (presented in Equation (2)) are used to evaluate the classification. The OA is the
ratio of test points correctly classified to all test points, and the F1-score can be viewed as a
weighted average of the precision and recall of the model, which takes into account both the
precision and recall of the classification model [59,60]. By comparing the real category of the
samples with the model’s predicted results, the results can be classified into the following four
cases: true positive (TP), where the predicted value of weeds is consistent with the real value;
false positive (FP), where the actual situation is the non-weeds but is incorrectly predicted as
weeds; false negative (FN), where the predicted value of non-weeds is consistent with the real
value; true negative (TN), where the actual situation is the weeds but is incorrectly predicted as
non-weeds.

OA =
TP + TN

TP + FP + TN + FN
(1)

F1− Score = 2 ×
TP

TP + FP ×
TP

TP + FN
TP

TP + FP + TP
TP + FN

(2)

3. Results
3.1. Results of the Different Feature Schemes

The density results based on the various schemes and the random forest are shown
in Figure 9. There are obvious misclassifications in the classification results obtained by
training the model using only scheme S1. This shows that weeds and non-weeds cannot
be clearly distinguished using only spectral features, such as Figure 9(c1,c2). Therefore,
we randomly counted the distribution of values with the same four index features in
different areas (as shown in Figure 10) to determine whether the index features are useful
for distinguishing weeds from non-weeds. The weed and non-weed values for each
index showed large differences in different areas. So, the index features were applied in
the experimental area to construct scheme S2, and the results for scheme S2 showed a
more noticeable decrease in misclassifications, such as Figure 9(d1,d2). For the S3 and
S4 schemes, we sequentially added texture features and geometric features to investigate
whether the classification effect is affected by increasing feature dimensionality. In scheme
S3, such as Figure 9(e1,e2), the spectral, index, and texture features were combined, and
the extraction effect was further improved compared to schemes S1 and S2. In scheme S4,
such as Figure 9(f1,f2), the high-dimensional features achieved a better extraction effect
in a dense area but not in a sparse area. The reason is that in dense areas, the spatial
distribution of weeds is denser, and the difference in features between the weed patches
and their surroundings is more obvious, allowing the weeds to be recognized more easily.
However, in areas with a sparse spatial distribution, the weed patches are scattered, and
the difference between the features and the surroundings is less obvious, greatly reducing
the effectiveness of the weed map extraction. In the S5 scheme, such as Figure 9(b1,b2), we
obtained the preferred subset of features by performing feature dimensionality reduction
through RFECV; the S5 scheme obtained better classification results than the S4 scheme in
different areas, which indicates that high-feature dimensions are not necessarily conducive
to improving the weed extraction results.

The classification accuracy of each scheme in areas of different densities is shown in
Figure 11. When comparing the classification results of the various feature schemes (i.e., S1–S5),
scheme S1 (only SPEC) had the lowest accuracy for both the dense and sparse areas. The
feature subset preferred by RFECV in scheme S5 had the highest accuracy (i.e., the overall
accuracy in an area of dense weeds was 95.38% and the F1-score was 94.20%; the overall
accuracy in an area of sparse weeds was 91.33% and the F1-score was 90.57%), the overall
accuracy and F1-score in those areas with dense and sparse weeds increased by 9.83% and
12.72% and 12.72% and 11.71%, respectively, when compared to the S1 scheme. In the study
of schemes S1 to S4, features were added to each scheme in turn (e.g., scheme S2 had an
index feature added compared to S1; S3 had texture features added compared to scheme S2).
The OA and F1-score of most schemes improved in turn; however, the accuracy of the S4
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scheme decreased when compared to S3 in two areas; this indicates that the high-dimensional
feature sets are not conducive to weed extraction. In the study of scheme S5, all features were
inputted into the RFECV algorithm to obtain a subset of preferred features with relatively low
dimensionality. The OA and F1-score of scheme S5 improved by 1.74% and 2.00% and 0.58%
and 0.33% when compared to scheme S4 in areas with dense and sparse weeds, respectively.
Adding all features did not improve the accuracy; the increase in the number of features would
have resulted in the phenomenon of feature redundancy, which is not beneficial to the training
of the model. According to the visual evaluation and the results of accuracy verification, we
concluded that scheme S5, constructed by the subset of features optimized by RFECV, had
little misclassification in the sparse area, but the misclassification was reduced significantly by
scheme S5 compared with the other schemes, and this classification effect was closest to the
true results.
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3.2. Results of the Different Machine Learning Algorithms

In this study, information about weeds was extracted for areas of different densities
based on the preferred feature subset using random forest, decision tree, K-nearest neighbor,
and support vector machine algorithms and eCognition 9.0 software, and the extraction
results for each algorithm are shown in Figure 12. The results show that the extraction
effect of random forest was best; the less broken patches are evident in the dense area,
and similar broken patches occur in the sparse area due to its spatial distribution, but the
weeds and non-weeds can be completely distinguished in the areas of different densities,
which is more consistent with the true results. The decision tree algorithm was slightly
less effective than random forest for weed information extraction, with a small number of
misclassifications in the dense areas and more misclassifications in the sparse areas; the
KNN and support vector machine algorithms showed poor extraction results, with many
misclassifications.
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The classification accuracy of the various algorithms based on the preferred feature
subset is shown in Figure 13. The random forest algorithm achieved the highest extraction
accuracy, and the OA and F1-score were as high as 95.38% and 94.20% for the dense area
and 91.33% and 90.57% for the sparse area. When compared to the other three algorithms,
the OA for dense and sparse areas improved by 1.74–12.14% and 7.51–11.56%, respectively,
while the F1-score improved by 1.89–17.40% and 7.85–10.80%, respectively. According to
the visual evaluation and accuracy validation results, the random forest algorithm based
on the preferred feature subset showed the best weed information extraction results. The
classification results for the dense area were better than those for the sparse area for the
four different algorithms because the spatial distribution of weeds results in strong or
weak differences in the image features (i.e., when the spatial distribution is dense, the
image features are strongly different, and when the spatial distribution is sparse, the
image features are weak), and the random forest has an optimal performance in the case
of an unbalanced dataset classification when compared to the other algorithms. This is
because the sample features are preferred in this paper, and the features that are beneficial
for extracting weeds are selected to optimize the sample set; secondly, random forests
are composed of many decision trees, and the classification results are also voted by the
individual trees, which can effectively balance the error in the classification of unbalanced
datasets.



Remote Sens. 2023, 15, 4696 14 of 20Remote Sens. 2023, 15, x FOR PEER REVIEW 17 of 23 
 

 

 
Figure 13. Extraction accuracy of different algorithms based on the preferred feature subset. RF rep-
resents the random forest algorithm; SVM represents the support vector machines algorithm; DT 
represents the decision tree algorithm; KNN represents the K-nearest neighbor algorithm. 

4. Application of Classification Results 
Although the random forest algorithm showed excellent results for weed infor-

mation extraction from farmland, no clear direction about how to use the results to achieve 
accurate application of weeding was evident. Therefore, we used ArcGIS10.8 to analyze 
the classification results and calculate the proportion of the number of weed grids in each 
fishnet, and then the degree of weed infestation in each fishnet was partitioned according 
to the proportion of the number of weed grids in the fishnet, as shown in Figure 14. 

 
Figure 14. Weed infestation level zoning. 
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decision tree algorithm; KNN represents the K-nearest neighbor algorithm.

4. Application of Classification Results

Although the random forest algorithm showed excellent results for weed informa-
tion extraction from farmland, no clear direction about how to use the results to achieve
accurate application of weeding was evident. Therefore, we used ArcGIS10.8 to analyze
the classification results and calculate the proportion of the number of weed grids in each
fishnet, and then the degree of weed infestation in each fishnet was partitioned according
to the proportion of the number of weed grids in the fishnet, as shown in Figure 14.
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5. Discussion

It is difficult to ensure the quality of the images collected by traditional remote sensing
by satellites because of the significant effects of weather and the high costs, but UAVs are
advantageously unaffected by cloudy weather and can acquire images with higher spatial
resolution. With the increasing use of UAV automation, UAV remote sensing also plays an
important role in applications such as disaster monitoring, resource investigation, terrain
mapping, etc. Recently, machine learning algorithms have appeared in the public eye as
representatives of intelligent data processing algorithms, which allow for the processing
of large amounts of remote sensing data and solve the problem of the low efficiency of
OBIA technology in image processing. At the same time, weed detection in each farmland
area is very important, so in this study, we used UAV images to map the weed information
extraction and the degree of weed infestation in areas with different weed densities in the
same farmland. Farmers can apply herbicides based on a zoning map of weed infestation
to reduce expenses and minimize environmental impact.

Weed information extraction in farmland using deep learning algorithms requires
many labeled datasets to train the network. However, it can be challenging to obtain
high-quality datasets in real life. Additionally, deep learning algorithms can struggle to
effectively merge the multiple features of training samples. Therefore, in this study, we
used random forest, decision tree, K-nearest neighbor, and support vector machine to
extract information about weeds in farmland areas of different weed densities based on
the object and optimal feature subsets, respectively. Currently, some researchers have
studied combining OBIA with machine learning algorithms [13,61,62]. The high-accuracy
extraction of urban impervious surfaces can be achieved by extracting various features such
as nDSM, spectral features, index features, geometric features, and texture features [13].
Shrubs are extracted by combining OBIA with different algorithms and different feature
sets, and the results show that the random forest algorithm with the best feature subset
achieves the best classification accuracy [61]. In the accurate extraction of weeds, weeds in
multiple Minnesota wetlands were identified through a combination of OBIA and three
machine learning algorithms (i.e., artificial neural networks, random forests, and support
vector mechanisms), and each showed an extraction accuracy of 91% [62]. Pena realized
the high-accuracy extraction of weeds in maize fields using UAV images and the OBIA
method [63]. However, their study did not address the redundancy of high-dimensional
features. In our study, we managed to verify that increasing feature dimensionality does
not necessarily improve weed extraction accuracy, and RFECV was used to address the
redundant features from the feature set; the optimal number of base classifiers in the
random forest is obtained experimentally.

For the extraction results of the several machine learning algorithms in the different
weed densities we studied, the random forest algorithm achieved the best extraction
accuracy. The reasons for this will be discussed below: (1) We used the ESP2 algorithm to
achieve the accurate segmentation of the study area image. Systematic evaluations of the
segmentation effects at different scales were performed, which enabled the determination
of the optimal segmentation scale. This approach ensured that the coverings located in
the object were homogeneous and maximized the differences in features within the object
of different coverings. (2) We used RFECV to eliminate redundant features. The features
are the direct criteria for classification in this paper, while the number of features and the
determination of the feature set can directly affect the extraction effect of the algorithms. In
view of this, the commonly used RFECV method was used to eliminate redundant features
from the feature set; the feature sets in the dense area and sparse area were reduced from
43 to 17 and 19, respectively, and the extraction accuracy of the dense area and sparse area
showed that the feature set with its redundant features removed (i.e., scheme S5) performed
better than the full feature set (scheme S4). In this study, eliminating redundant features
improved the accuracy of the random forest algorithm. (3) We optimized the number of
base classifier parameters in the random forest algorithm. The number of base classifiers is
the most important parameter in the random forest algorithm. In this study, the number of
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base classifiers was iterated from 1 to 500 with an optimal feature subset, and the prediction
scores of the model were calculated after each training session. Then, the highest prediction
score corresponding to the number of base classifiers was used as the final parameter.

While the accuracy achieved in this study was sufficient for practical applications,
some limitations and possible errors that hinder the wider application of the research results
still exist: (1) The alternative scales were selected based on ESP2; however, manual visual
interpretation was still required to select the optimal scale from the alternative scales, which
seriously affected the level of automation in removing weeds from farmland. Therefore,
the question of how to automatically obtain the optimal scale for image segmentation is
an important direction for subsequent research. Additionally, the process of selecting the
optimal scale from the alternative scales through manual visual discrimination cannot
completely avoid subjectivity, which may bring some errors to selecting the segmentation
scale, which may influence the classification result. (2) Weed is an invasive species in
farmland, which means that it is not allowed to grow in large numbers, and this limits the
selection of weed samples during model training. At the same time, due to the scarcity
of weed samples, this may lead to a poorer classification result. (3) The images in this
paper were collected in mid-May and were limited to the period when the rice and weed
growth in the farmland was in full bloom, and the features differed greatly, whereas in the
early stage of weed and rice growth, the features were less different, and it was difficult to
determine whether the method was still applicable.

In combination with the tested classifiers and optimized feature sets (by RFECV), the
application of OBIA and random forest was able to achieve high OA and F1-scores, and this
was used to explore whether the increase in feature dimension is beneficial for the extraction
of weeds. Currently, there are several feature downscaling methods that exist. For example,
Jing Xia et al. [64] used the max-relevance and min-redundancy algorithms for feature
dimensionality reduction; Hongda Li et al. [65] used the unified manifold approximation
and projection method and support vector machine to achieve high-precision terrain
classification. An improvement in the method may be able to achieve higher extraction
accuracy. Another approach that may improve the classification results is the use of boosting
algorithms; the core of the boosting algorithm is that the training set remains the same for
each round, yet the weight of each sample in the training set changes in the classifier. The
representative classifiers of the boosting algorithm are XGBoost, Catboost, gradient boosting
decision tree, etc. Among them, the XGBoost algorithm performs well in the application of
deforestation trace monitoring [66] and maize lodging detection [67]. However, finding
the suitable ensemble classification method for a particular dataset remains a burdensome
task because multiple arrangements of classifiers and feature reduction methods can be
coupled. Therefore, it is worth exploring this to test the classification effectiveness of the
ensemble approach in order to perform weed extraction from UAV images.

6. Conclusions

In order to control farmland weeds, the presented method makes full use of the
spectral features, index features, texture features, and geometric features of UAV visible
images to combine with an OBIA-random forest algorithm to extract information about
weeds from experimental farmland areas with different weed densities. In the study, the
random forest algorithm was used to test five schemes to select the most accurate one, and
based on that scheme, four machine learning algorithms, i.e., random forest, K-nearest
neighbor, support vector machine, and decision tree, were used to extract weed information.
The extraction results were compared, and weed infestation degree partition mapping was
performed based on the best classification results. The following conclusions were drawn:
(1) The method using a UAV and the OBIA-random forest algorithm to achieve the accurate
and automated management of weeds for farmland is feasible, and the strength of image
feature difference is affected by its spatial distribution; the denser the spatial distribution,
the better the algorithm extraction effect; the sparser the spatial distribution, the worse
the extraction effect for farmland. (2) In the study of the S1–S4 schemes, increasing the
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dimensionality of the feature can improve the accuracy of weed information extraction,
but the high dimensionality of the feature will lead to less accuracy, and using a feature
elimination method, such as RFECV, can effectively eliminate features of low importance in
the feature set to obtain the optimal subset of features (S5 scheme). The OA and F1-scores of
the preferred feature subset reached 95.38% and 94.20% in the dense areas and 91.33% and
90.57% in sparse areas. (3) With the optimized feature subset, the random forest algorithm
was clearly superior when compared to machine learning algorithms such as KNN, support
vector machine, and decision tree, and the OA of the dense area and sparse area improved
by 1.74–12.14%, and 7.51–11.56%, respectively, and the F1-scores improved by 1.89–17.40%
and 7.85–10.80%, respectively. The results show that the RFECV method can effectively
remove redundant features and improve the accuracy of model weed extraction.
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