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Abstract: Accurate retrieval of ice surface temperature (IST) over the Arctic ice-water mixture zone
(IWMZ) is significantly essential for monitoring the change of the polar sea ice environment. Previous
researchers have focused on evaluating the accuracy of IST retrieval in pack ice regions, possibly on
account of the availability of in situ measurement data. Few of them have assessed the accuracy of IST
retrieval on IWMZ. This study utilized Landsat 8/TIRS and Operation IceBridge observations (OIB)
to evaluate the accuracy of the current IST retrieval method in IWMZ and proposed an adjustment
method for improving the overall accuracy. An initial comparison shows that Landsat 8 IST and
OIB IST have minor differences in the pack ice region with RMSE of 0.475 K, MAE of 0.370 K and
cold bias of −0.256 K. In the thin ice region, however, the differences are more significant, with
RMSE of 0.952 K, MAE of 0.776 K and warm bias of 0.703 K. We suggest that this phenomenon is
because the current ice-water classification method misclassified thin ice as water. To address this
issue, an adjusted method is proposed to refine the classification of features within the IWMZ and
thus improve the accuracy of IST retrieval using Landsat 8 imagery. The results demonstrate that
the accuracy of the retrieved IST in the two cases was improved in the thin ice region, with RMSE
decreasing by about 0.146 K, Bias decreasing by about 0.311 K, and MAE decreasing by about 0.129 K.
After the adjustment, high accuracy was achieved for both pack ice and thin ice in IWMZ.

Keywords: ice surface temperature (IST); Landsat 8/TIRS; Operation IceBridge (OIB); ice-water
classification

1. Introduction

During the past 40 years, the extent, thickness, and volume of Arctic sea ice have
declined, while the ice surface temperature (IST) has been consistently rising [1–3]. IST is
one of the crucial factors for evaluating climate change, reflecting alterations in the surface
energy balance that control ice formation rates, ice melting, and heat exchange between
the ocean and atmosphere [4,5]. Owing to the extreme cold and complex environmental
conditions in the Arctic, few in situ measurements are available [6,7]. Compared with
traditional in situ measurements, remote sensing technology has the advantages of low
cost, wide coverage, and rapid updating. The emergence of remote sensing techniques
has facilitated the detection of changes occurring on the Earth on a steady basis, such as
monitoring the variation of Arctic sea ice and providing an opportunity to gain a deeper
insight into surface temperature changes in the Arctic [8–11].

Many scholars have studied surface temperature retrieval within the Arctic sea ice
region utilizing thermal infrared imagery acquired by satellite-borne thermal infrared

Remote Sens. 2023, 15, 4577. https://doi.org/10.3390/rs15184577 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs15184577
https://doi.org/10.3390/rs15184577
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0009-0003-3729-1673
https://orcid.org/0000-0002-9539-705X
https://orcid.org/0000-0003-2274-891X
https://doi.org/10.3390/rs15184577
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs15184577?type=check_update&version=2


Remote Sens. 2023, 15, 4577 2 of 14

sensors, such as Terra and Aqua/moderate resolution imaging spectroradiometer (MODIS),
advanced very high-resolution radiometer (AVHRR), and advanced spaceborne thermal
emission and reflection radiometer (ASTER), etc., to improve the understanding of climate
change in the Arctic [9,11–14]. Surface temperature quantification in the Arctic ice-water
mixture zone (IWMZ) faces several challenges due to large inter-annual and intra-annual
fluctuations in sea ice coverage and the complexity of the sea ice and water mixture [15,16].
Mixed pixels in MODIS or AVHRR imagery (coarser spatial resolution) may cover sea ice
and open water near the sea ice edge, leads, or melt ponds (in summer), diminishing the
precision of IST retrieval in the IWMZ [14]. Hence, it is crucial to develop appropriate IST
retrieval methods in the IWMZ from images with finer spatial resolution. Hall et al. [17]
and Son et al. [18] assessed the accuracy of IST retrieval approaches by utilizing Landsat
7 and ASTER in Greenland and the Arctic Ocean coast. The Landsat 8 is equipped with
two thermal infrared bands (bands 10 and 11) on a thermal infrared sensor (TIRS), which
is anticipated to outperform its predecessor. Yet, the understanding of the accuracy of
IST retrieval using Landsat imagery in the IWMZ is still limited due to the difficulty of
collecting time-matched in situ measured data.

Different surface temperature retrieval algorithms based on satellite-based thermal
infrared images have been developed [19–27]. Among them, the split-window algorithm
(SW) is more extensively employed than the single-channel algorithm (SC) to retrieve
surface temperature because it is simple to operate and necessitates fewer supportive
parameters to correct atmospheric influences. The SW algorithm has become the standard
IST retrieval method for low- and moderate-resolution images such as AVHRR and MODIS
data [13,28,29]. Many previous studies have addressed the issue of IST product validation
by comparing them with in situ observed surface temperatures. These satellite ISTs gen-
erally exhibit good agreement with in situ IST observations, with overall accuracy better
than 3 K in most situations [8,14,18]. Fan et al. [8] quantified the overall accuracy of IST
retrieved by five commonly used SW and SC methods according to Landsat 8 images in
the Arctic and found that the SW algorithm proposed by Du et al. [22] (SW-Du) method
performed the best. Therefore, this study utilized the SW-Du algorithm for IST retrieval
from Landsat 8/TIRS images.

Previous researchers have demonstrated that in situ IST observations in the Arctic
Ocean, such as ice mass balance buoy and automatic weather station data, are susceptible to
environmental variations such as solar heating and snow cover [6]. The Operation IceBridge
(OIB) project has acquired valuable surface temperature data through conducting airborne
surveys in the Arctic during the years 2012–2014 and 2017–2019, providing an unprecedented
opportunity to perform the validation of thin ice IST retrieval. Fan et al. [30] compared
four dominant recording methods for Arctic IST and found that the airborne IST had the
best accuracy. Whereas previous validation results based on buoys and automatic weather
stations represent the accuracies mainly for the pack ice zone and seldom in the IWMZ.

The crucial objective of this study is to verify the accuracy of surface temperature
retrieval for various typical surface features (pack ice, thin ice, and open water) in the IWMZ
by integrating Landsat 8/TIRS and airborne surface temperature from OIB observations.
In addition, we proposed an adjusted ice-water classification method to improve the
accuracy of the thin ice temperature retrieval. The following sections of the manuscript
are structured as follows. Section 2 describes the collection of Landsat 8 images and OIB
IST observations matching the data in IWMZ. Section 3 explains the problems of thin ice
temperature retrieval in IWMZ. Section 4 introduces the improvements in ice classification
and the IST algorithm. The discussion and conclusions are in Sections 5 and 6.

2. Data and Preprocessing
2.1. Landsat 8 Imagery

Landsat 8 is an Earth observation satellite launched on 11 February 2013, carrying the
Operational Land Imager and the Thermal Infrared Sensor (TIRS) [31]. The Operational
Land Imager consists of nine bands (B1 to B9), including panchromatic band B8 (15 m) and
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other bands of 30 m, while TIRS includes two 100 m TIR bands with wavelengths between
10.60 µm and 12.51 µm (B10 to B11). To match the Operational Land Imager images, the
existing publicly accessible TIRS images were resampled to 30 m using a cubic convolution
method [32]. The resampling operation of the TIRS band in Landsat 8 images is processed
by the United States Geological Survey. In this work, two scenes of Landsat 8/TIRS imagery
were used to evaluate the accuracy of satellite-based IST retrieval in IWMZ.

2.2. Airborne Surface Temperature from OIB Observations

OIB IST was gathered by a Heitronics KT-19.85 Series II Infrared Radiation Pyrometer
aboard the airplane, which was observed at infrared frequency intervals similar to AHVRR
Channel 4 (9.6–11.5 µm) [33]. The accuracy of the IST retrieved by OIB observations
(typically with a resolution of 0.01 ◦C) may be affected due to error sources such as cloud
cover beneath the aircraft (OIB campaigns did not screen out potential cloud cover) and
variations of ice emissivity. The OIB IST records were stored by the National Snow and Ice
Data Center.

2.3. Matching of OIB Observations Data and Landsat 8 Imagery in IWMZ

This study thoroughly examined all airborne IST records (293 tracks) acquired by the
OIB project within 2012–2014 and 2017–2019 to match intersected Landsat 8 imagery in
IWMZ. In total, 45 scenes of Landsat 8 images intersected with OIB tracks. Ultimately,
two OIB IST tracks that intersected Landsat 8 were selected to quantify the performance of
Landsat 8 in retrieving IST in IWMZ, based on image quality (clear and cloud-free) and
the time interval between Landsat 8 and OIB data (<3 h). The selected OIB satisfied the
comparison and verification of various features in the IWMZ through pack ice and thin
ice. Because OIB IST is point data and one pixel of a Landsat 8 image may correspond
to 2–3 points, we made direct point-pixel matching and did not use the average process.
Figure 1 shows the track of the airborne IST records obtained from OIB campaigns and the
location of the Landsat 8 image used for this study.
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Figure 1. Spatial distribution of Landsat 8 imagery and OIB tracks (black is the OIB track, and red is
the OIB track intersecting Landsat 8 image). (a) Landsat 8 image dated on 18 March 2014; (b) Landsat
8 image dated on 14 April 2018.

3. Methods
3.1. Split-Window (SW) Algorithm

The SW algorithm adopts different atmospheric absorption of two adjacent thermal
infrared channels in the 10–12.5 µm window region to remove the atmospheric effect and
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then utilizes the linear or non-linear combination of brightness temperature to achieve
the retrieval of the surface temperature when the atmospheric profile is unknown [34].
Currently, the SW algorithm is recommended for retrieving land/sea/ice temperatures
from infrared sensors aboard various satellite platforms. In this research, IST is derived
from Landsat 8/TIRS images using the SW-Du algorithm. The SW-Du approach utilizes
the MODIS surface temperature product model (Equation (1)), but with adjustments for
specific constant parameters. Fan et al. [8] have recommended the SW-Du algorithm as the
preferred method for estimating IST after comparing it with other temperature retrieval
algorithms against in situ measurements from buoys and automatic weather stations. The
constant bi in Equation (1) is obtained by simulation with the help of MODTRAN software
5.2 and thermodynamic initial guess retrieval of the atmospheric profile, as described in
Table 1. Further details of the SW-Du algorithm can be seen in Du et al. [22].

Ts = b0 +

(
b1 + b2

1 − ε

ε
+ b3

∆ε

ε2

)
T10 + T11

2
+

(
b4 + b5

1 − ε

ε
+ b6

∆ε

ε2

)
T10 − T11

2
+ b7(T10 − T11)

2 (1)

where T10 and T11 are the two thermal infrared channels (band 10 and band 11) in the Landsat
8 image, respectively; ε means the average emissivity of two channels (i.e., ε = 0.5 × (εi − εj));
∆ε represents the difference of channel emissivity (i.e., ∆ε = εi − εj); bi (i = 0, 1,... 7) values
are shown in Table 1.

Table 1. The constant bi employed by SW-Du in Equation (1).

b0 b1 b2 b3 b4 b5 b6 b7

−0.41165 1.00522 0.14543 −0.27297 4.06655 −6.92512 −18.27461 0.24468

The channel-effective emissivity is derived from the TIRS spectral response function
and the ASTER spectral library (accessed at http://speclib.jpl.nasa.gov/ (accessed on
8 July 2023)) [35]. Table 2 shows the emissivity of various features that may be present
in the IWMZ for IST retrieval. Notably, snow utilizes the average emissivity of different
snow types because the type of snow on the ice surface is unclear [8]. According to
Table 2, the ε and ∆ε of different types for IST retrieval in Equation (1) can be obtained in
the IWMZ.

Table 2. Emissivity values for IST retrieval derived from ASTER spectral library.

TIRS Channel Sea Water Coarse Snow Medium Snow Fine Snow Bare Ice

Band 10 0.991 0.9851 0.9907 0.9951 0.987
Average of

Snow: 0.990

Band 11 0.986 0.963 0.98 0.9896 0.954
Average of

Snow: 0.978

3.2. The Traditional Ice-Water Classification Method

This study first adopted a combination of the normalized difference snow index (NDSI)
and the reflectance of the near-infrared band (NIR) for snow/ice and water classification,
as used in Macander et al. [36] and Fan et al. [8]. Before calculating the NDSI index, we
converted the digital number values to reflectance values. According to Landsat 8 images,
the top of the atmosphere reflectance of channel 3 (green band) and channel 6 (SWIR band)
are selected to calculate NDSI: NDSI = (b3 − b6)/(b3 + b6). Pixels with NDSI values greater
than 0.4 and NIR values greater than 0.11 are categorized as snow/ice, whereas pixels with
positive NDSI values but not classified as snow/ice were classified as water (such as open
water, ice-free leads, or waterlogged ice surfaces) [8,37,38].

http://speclib.jpl.nasa.gov/
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3.3. The Adjusted Ice-Water Classification Method

In the IWMZ, thin ice was misclassified as water based on the ice-water classification
by the combination of NDSI and NIR, resulting in the emissivity of water being used for
IST retrieval in thin ice regions. As shown in Section 4, this situation affects the accuracy
of the IST calculation and increases the error in the thin ice zones (refrozen ice, newly
formed ice, etc.). To more accurately extract “true water” in the IWMZ and reduce the
probability of misidentifying thin ice as water, the ice-water classification method needs to
be adjusted. We propose to introduce the normalized difference water index (NDWI) to
address this issue.

The NDWI index utilizes a combination of near-infrared and green bands to enhance
the information for water bodies in the green band while minimizing non-water bodies in
the NIR band [39]. For Landsat 8 images, channel 3 (green band) and channel 5 (NIR band)
were selected to calculate NDWI: NDWI = (b3 − b5)/(b3 + b5). In most cases, NDWI has
been proven to be effective in enhancing water-related information [40,41]. This study used
the classification algorithm combined by NDSI and NDWI, which is called the adjusted
ice-water classification method. The specific thresholds of NDSI and NDWI in the adjusted
ice-water classification method were determined in Sections 4.2 and 4.3.

4. Results
4.1. Accuracy Assessment of Surface Temperature Retrieval Based on Landsat IST and OIB IST
in IWMZ

We compared the Landsat 8 IST retrieved via the SW-Du algorithm with the OIB IST.
The differences are estimated by using three evaluation metrics, namely root mean square
error (RMSE), mean predictive bias (Bias), and mean absolute error (MAE), to investigate
the performance of IST retrieval. Figure 2 shows the difference in visualization and
residual histograms for the IST of pack ice (a and b) and thin ice (c and d). The Landsat
8 IST and OIB IST in pack ice exhibited high consistency (Figure 2b), with RMSE, Bias,
and MAE reaching 0.475 K, −0.256 K, and 0.370 K, respectively. Whereas the deviation
is relatively large in the thin ice region (Figure 2d), with RMSE, Bias, and MAE of
0.952 K, 0.703 K, and 0.776 K, respectively. Therefore, we further explore why the IST
retrieval error of thin ice is more significant in the IWMZ and attempt to improve the IST
retrieval accuracy.

Accurate emissivity estimation is essential for obtaining reliable surface temperature
results. The emissivity of water, snow, and ice within the IWMZ has specific differences in
the thermal infrared band, and the emissivity of ice resembles that of snow in the thermal
infrared band. Thus, the surface type classification before the IST retrieval should be as
accurate as possible. According to OIB IST and the synchronous high-resolution optical
image from the digital mapping system (DMS) acquired by OIB flights, we found that a
large amount of thin ice in the Landsat 8 image in winter was misclassified as water based
on the traditional ice-water classification method (Figure 3).
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Figure 2. Deviation visualization and histograms for the IST of pack ice (a,b) and thin ice (c,d). The
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4.2. Improvement of Ice Classification Case 1: Landsat 8 Image Dated 14 April 2018

We took the matching data from OIB IST and Landsat 8 images on 14 April 2018 as the
first case. Firstly, Landsat 8 image pixels were randomly sampled from three categories
classified in Section 3: Pack ice, thin ice, and water by visual interpretation. Next, for
these samples, a scatter density plot was created to determine the distinguishability of
three categories in the space of NDSI and NIR. Results show that the previous algorithm
using NDSI (with a threshold of 0.4) and NIR (threshold of 0.11) tends to classify both
thin ice and water as water (Figure 4a,b). In Case 1, pack ice was well extracted using a
NIR threshold greater than 0.11, but less than this threshold, both thin ice and water were
classified as water (Figure 4a). However, the proximity of bimodal distribution intervals
(Figure 4b) made it challenging to differentiate between thin ice and water using NIR.
Figure 4c shows the density scatter plot constructed by the combined NDSI and NDWI
indices, and the points on this scatter plot correspond to the same sampling pixels as before,
with three distinct clusters corresponding to pack ice, thin ice, and water, respectively.
Compared with Figure 4a, the three types of pack ice, thin ice, and water have a higher
degree of discrimination in Figure 4b. Figure 4d has three distinct peaks. The first peak
corresponds to pack ice, and the thin ice and water below correspond to the remaining
two peaks, respectively. The thin ice and water can be differentiated based on the distance
between the two peaks, utilizing the NDWI threshold of 0.3. Combined with the threshold
for NIR extraction of pack ice (NIR greater than 0.11), this study classified pixels with NIR
less than 0.11 and NDWI greater than 0.3 as thin ice. Figure 5 presents the classification
results of Landsat 8 imagery on 14 April 2018, as well as the temperature estimations for
water and thin ice using the adjusted ice-water classification method. Comparisons show
that applying NDWI to ice-water classification significantly reduces the extent of the water
body while accurately distinguishing thin ice (as shown in Figure 5b,c). Furthermore, the
surface temperature retrieved by the adjusted ice-water classification method based on
Landsat 8/TIRS ranges from 256 K to 274 K (Figure 5d), which is highly consistent with the
ice-water classification results (Figure 5c).
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classification result.

After correcting the misclassified water body as thin ice, the thin ice temperature at
the OIB track improved (Figure 6), consistent with the surface temperatures detected by
the OIB observations (259–262 k). According to the DMS image in Figure 2, thin ice does
not belong to bare ice, so the emissivity of snow is used for temperature retrieval instead
of water, which was initially adopted. The improved Landsat 8 IST has better consistency
with OIB IST, with an RMSE of 0.749 K (21% better than 0.952 K), a Bias of 0.333 K (52%
better than 0.703 K), and an MAE of 0.586 K (24% better than 0.776 K), as shown in Table 3.
The consequences indicate that the proposed new approach increases the accuracy of IST
retrieval from Landsat 8 images, especially for the non-thick ice regions (such as thin ice
and leads) in IWMZ.
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ice-water classification method (d–f).
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Table 3. Accuracy of IST retrieved using Landsat 8 images based on different ice-water classification
methods compared with OIB IST.

Landsat IST vs. OIB IST

RMSE (K) Bias (K) MAE (K)

Landsat IST obtained from the old
ice-water classification method 0.952 0.703 0.776

Landsat IST derived from the adjusted
ice-water classification method 0.749 0.333 0.586

4.3. Improvement of Ice Classification Case 2: Landsat 8 Image Dated 18 March 2014

To verify the generalizability of the adjusted ice-water classification algorithm, matching
data from another scene of Landsat 8 imagery (dated on 18 March 2014) and OIB IST were
selected for validation analysis as Case 2. Figure 7 shows the density scatter plot and probabil-
ity density plot for the three types of features: Pack ice, thin ice, and water. Three types of
features (water, thin ice, and pack ice) all clustered (as shown in Figure 7a) with a high degree
of separability, consistent with Case 1 (Figure 4c). Three peaks in the probability density
plot, which correspond to the three clustered regions on the density scatterplot, indicate that
utilizing 0.3 as the threshold of NDWI to delineate thin ice and water is reliable. Applying a
combined classification method with NDSI greater than 0.4 and NDWI greater than 0.3 again
effectively extracts water. The ice-water classification results in IWMZ obtained by applying
different parameter combinations and the corresponding IST derived from Landsat 8/TIRS
are shown in Figure 8. By comparing the near-infrared images in Figure 8, we can see that
the water extracted based on the previous method misclassifies thin ice into water, whereas
our proposed method made a significant improvement in the ice-water classification. The
proposed method further distinguishes thin ice from water, and the estimated water surface
temperature is above 270 K. From the visual interpretation of Figure 8, it can be found that the
temperature distributions of water and thin ice are in high agreement with the classification
results of ice-water, which is consistent with the conclusion from Case 1.
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Figure 8. Classification results for thin ice and water in the non-thick ice area on 18 March 2014
using different combinations of NDSI, NDWI, and NIR ice-water classification methods (a–c) and the
surface temperature maps derived from Landsat 8/TIRS (d), which were retrieved by (c) adjusted
classification result.

For Case 2, the deviation histogram obtained by comparing the IST retrieved from the
Landsat 8 image with the OIB IST is shown in Figure 9. Landsat 8 IST has a minor error
compared to OIB IST for thick ice, with an RMSE of 0.584 K, an MAE of 0.458 K, and a Bias
of −0.133 K (Figure 9a). On thin ice, the IST estimated using Landsat 8 imagery based on
the previous method has higher accuracy than the IST based on the adjusted method, with
an RMSE of 0.918 K, an MAE of 0.713 K, and a Bias of 0.392 K. The Bias of IST retrieval
using either water or snow emissivity is positive in thin ice regions, indicating that Landsat
8 IST overestimates surface temperature compared to validation data (OIB IST).
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Figure 9. Histogram of difference between the surface temperature retrieved by Landsat 8 and the
temperature measured by OIB. (a) The deviation between OIB IST and Landsat 8 IST estimated by
the snow emissivity for pack ice; (b) deviation between OIB IST and Landsat 8 IST estimated by the
water emissivity for thin ice (based on the previous method); (c) deviation between OIB IST and
Landsat 8 IST estimated by the snow emissivity for thin ice (based on the adjusted method).

5. Discussion
5.1. Comparison of Different Algorithms for IST Retrieval

The SC algorithm is also widely used for IST retrieval. For satellite images with one
thermal infrared channel, surface temperature retrieval can only be performed through
the SC algorithm. In this research, we applied SC presented by Barsi et al. [42] (SC-
Barsi) to retrieve IST from Landsat 8 images employing Band 10 or Band 11 imagery
for comparison with the IST estimated by the SW-Du algorithm. Barsi et al. [42] and
Barsi et al. [43] contributed the online atmospheric correction website (https://atmcorr.
gsfc.nasa.gov/ (accessed on 8 July 2023)) to dwindle the laborious operation of estimating
atmospheric parameters based on Landsat series images in the case of a small amount of
data. SC-Barsi supposes that the atmospheric parameters of the whole image do not change

https://atmcorr.gsfc.nasa.gov/
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significantly and then calculates atmospheric parameters based on satellite elapsed time
and the position of the image with the help of atmospheric global profiles simulated by
the National Centers for Environmental Prediction and the MODTRAN code. We selected
pixels in the two Landsat 8 images that matched the OIB IST point data to evaluate the IST
retrieval accuracy of SW-Du and SC-Barsi in thin ice and thick ice. Results indicate that
the IST derived from the SW-Du algorithm and the OIB IST have higher consistency (as
illustrated in Figure 10), with RMSE, Bias, and MAE of 0.971 K, 0.224 K, and 0.754 K on thin
ice and RMSE, Bias, MAE of 0.841 K, −0.399 K, and 0.694 K on pack ice. In other words,
the SW algorithm shows better accuracy than the SC method at our experiment sites.
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for thin ice and pack ice.

Regarding the selection of emissivity for the thin ice, we checked the ice types in
the thin ice regions passed by the two OIB tracks based on airborne DMS digital imagery
and found no bare ice present. Nonetheless, we also tested the emissivity of bare ice on
thin ice for comparison. The difference between Landsat 8 IST and OIB IST presents a
significant cold bias (Figure 11), with RMSE, Bias, and MAE of 1.069 k, −0.836 k, and 0.919 k,
respectively. Because bare ice seldom occurs in the Arctic winter, the combined NDSI and
NDWI ice-water classification method is recommended for the IWMZ in Arctic winters to
categorize thin ice and pack ice as one category and water as another. In summary, IST
retrieval results calculated using snow emissivity for thin and pack ice are more accurate.
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5.2. Comparison of the IST Retrieval with Previous Relevant Studies

Based on multi-source remote sensing imagery, many prior studies have used dif-
ferent IST retrieval algorithms to elucidate the IST variation characteristics in the Arctic
region [8,13,18,30,44,45]. For example, Li et al. [26] proposed an improved SC algorithm
based on the radiative transfer equation for IST retrieval derived from band 10 of Landsat-8
images. Fan et al. [8] evaluated the accuracy of three SW and two SC methods based
on Landsat 8/TIRS imagery over the Arctic sea ice region. However, owing to the high
variability of sea ice coverage and the complexity of the ice-water mixture within the
IWMZ, there is still a lack of assessment of the accuracy of IST retrieval in the IWMZ. By
integrating Landsat 8/TIRS and airborne IST obtained from OIB observation data, this
research evaluated the accuracy of surface temperature retrieval of various typical ground
objects in the IWMZ and found that the accuracy of IST retrieval in the thin ice region
was relatively low. To improve the accuracy of IST retrieval on thin ice, we proposed the
adjusted ice-water classification method. The adjusted ice-water classification method
combines NDSI and NDWI to correctly distinguish thin ice from IWMZ. This classification
method requires images with an SWIR band, NIR band, and green band, which can be
applied to commonly used MODIS and Sentinel-2 images.

Along with the IST retrieval deviation caused by ice-water classification error, the
selection of the IST retrieval algorithm, image spatial resolution, and atmospheric envi-
ronment are also crucial factors affecting the accuracy of IST retrieval [8,45]. Using this
classification method at a relatively coarse spatial resolution (250 m or 1 km) may lead to
biased mapping results due to the mixed-pixel problem. Clouds and sea ice have similar
reflective characteristics at visible wavelengths, which makes it difficult to remove small
clouds and fog, thus affecting the accuracy of sea ice classification [18]. In this study, we
selected clear and cloudless Landsat 8 images with high spatial resolution for IST retrieval
by visual interpretation.

6. Conclusions

This study compared OIB IST data and Landsat 8/TIRS IST data to evaluate the current
IST retrieval method. We found that there is good uniformity between the satellite-retrieved
IST and the airborne IST, and the Bias, RMSE, and MAE between the Landsat 8 IST and
the OIB IST are all within 1 K. The IST of pack ice has higher accuracy than that of thin
ice, possibly because the current method misclassifies the thin ice regions as water and
assigns the emissivity of water in the IST retrieval. The adjusted ice-water classification
method combining NDWI and NDSI was proposed in this study. Open water and frozen
sea ice can be classified utilizing the adjusted algorithm with NDSI greater than 0.4 and
NDWI greater than 0.3. Based on the corrected classification results, the emissivity of water
was assigned for the water body region, and the emissivity of snow was assigned for thin
ice and pack ice. The IST accuracy of the thin ice region retrieved from the two Landsat
8 images in Case 1 and Case 2 was improved, with RMSE decreasing by about 0.146 K,
Bias decreasing by about 0.311 K, and MAE decreasing by about 0.129 K. The method of
introducing NDWI for ice-water classification presented in this research can be generalized
to other satellite images to correctly classify ice and water and enhance the accuracy of IST
retrieval using remote sensing images in polar regions.
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