
Citation: Jiang, L.; Li, F.; Huang, L.;

Peng, F.; Hu, L. TTNet: A

Temporal-Transform Network for

Semantic Change Detection Based on

Bi-Temporal Remote Sensing Images.

Remote Sens. 2023, 15, 4555.

https://doi.org/10.3390/rs15184555

Academic Editor: Silvia Liberata Ullo

Received: 25 August 2023

Revised: 12 September 2023

Accepted: 13 September 2023

Published: 15 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

TTNet: A Temporal-Transform Network for Semantic Change
Detection Based on Bi-Temporal Remote Sensing Images
Liangcun Jiang 1 , Feng Li 1, Li Huang 2,3, Feifei Peng 4,5,* and Lei Hu 2

1 School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China;
jiangliangcun@whut.edu.cn (L.J.); licfeng@whut.edu.cn (F.L.)

2 School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, China;
huangli72@huawei.com (L.H.); geohl@whu.edu.cn (L.H.)

3 Huawei Cloud & AI, Beijing 100085, China
4 Key Laboratory for Geographical Process Analysis & Simulation of Hubei Province,

Central China Normal University, Wuhan 430079, China
5 College of Urban and Environmental Sciences, Central China Normal University, Wuhan 430079, China
* Correspondence: feifpeng@ccnu.edu.cn

Abstract: Semantic change detection (SCD) holds a critical place in remote sensing image interpreta-
tion, as it aims to locate changing regions and identify their associated land cover classes. Presently,
post-classification techniques stand as the predominant strategy for SCD due to their simplicity and
efficacy. However, these methods often overlook the intricate relationships between alterations in
land cover. In this paper, we argue that comprehending the interplay of changes within land cover
maps holds the key to enhancing SCD’s performance. With this insight, a Temporal-Transform Mod-
ule (TTM) is designed to capture change relationships across temporal dimensions. TTM selectively
aggregates features across all temporal images, enhancing the unique features of each temporal image
at distinct pixels. Moreover, we build a Temporal-Transform Network (TTNet) for SCD, comprising
two semantic segmentation branches and a binary change detection branch. TTM is embedded
into the decoder of each semantic segmentation branch, thus enabling TTNet to obtain better land
cover classification results. Experimental results on the SECOND dataset show that TTNet achieves
enhanced performance when compared to other benchmark methods in the SCD task. In particular,
TTNet elevates mIoU accuracy by a minimum of 1.5% in the SCD task and 3.1% in the semantic
segmentation task.

Keywords: semantic change detection; change relationship; siamese convolutional neural network;
deep learning

1. Introduction

Change detection in remote sensing is a significant and challenging task that involves
identifying differences in land cover or land surface using multi-temporal images of the
same geospatial area [1]. It is widely used across various applications, including agricul-
tural land use activities, urban planning, and disaster assessment [2–4]. Over the past
decade, deep learning has revolutionized remote sensing applications, encompassing tasks
like image fusion, land cover classification, and object detection [5–9]. This revolution has
spurred a surge of interest among researchers in integrating deep learning methodologies
into change detection tasks, leading to substantial scholarly endeavors [10–13]. Existing
deep-learning-based methods for change detection mainly focus on binary change detection
(BCD), which generates a binary change map where 0 and 1 correspond to unchanged and
changed regions, respectively, by inputting a pair of registered bi-temporal images. How-
ever, BCD solely pinpoints areas of change, lacking the ability to furnish comprehensive
“from–to” change type information, which limits their broader applicability. Consequently,
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the research focus has shifted towards semantic change detection (SCD), which repre-
sents an emerging research frontier [12–15]. SCD not only identifies altered regions, but
also provides specific “from–to” change-type details extracted from bi-temporal remote
sensing images.

There are mainly two paradigms for SCD: the direct-classification method and the
post-classification method. In the direct-classification approach, each change type is treated
as an independent class and predicted using semantic segmentation [16–20]. However, this
method has two drawbacks: (1) the number of change types increases quadratically with
the number of land cover classes, leading to class-imbalance problems and greater training
sample requirements; (2) overlaying land cover maps can produce excessively fragmented
regions, often overlooked [21]. Thus, the post-classification method is increasingly favored
for SCD [22–25]. Seen from a perspective other than the direct-classification method,
SCD can be decomposed into semantic segmentation and binary change detection tasks.
The post-classification method typically employs two identical semantic segmentation
branches and a binary change detection branch to predict land cover maps and a binary
change map, respectively. The SCD results are then derived by multiplying these outputs.
However, most post-classification methods treat the two semantic segmentation branches
independently, disregarding the change relationship, a crucial prior knowledge, during
land cover map prediction.

This paper contends that considering change relationships can enhance the perfor-
mance of the semantic segmentation branch within post-classification methods. Land cover
changes, unless triggered by abrupt natural events, follow certain patterns due to factors
like urban planning. These patterns are defined as change relationships in this paper. We
conducted a statistical analysis of different “from–to” change types based on the SECOND
dataset [22], depicted in Figure 1, revealing inconsistent change-type probabilities and, con-
sequently, change relationships among land cover classes. For instance, Figure 1a indicates
that pixels classified as water in T1 (image taken at the 1st timestamp) transform to low
vegetation (42%) more often than to trees (8%) in T2 (image taken at the 2nd timestamp).
This underscores the value of the change relationship as an auxiliary predictor for land
cover classes. Notably, the change relationship is bidirectional, as evident in Figure 1a,b.
We interpret the change relationship from T1 to T2 as a probability distribution representing
the shift from one land cover class to others. Conversely, the change relationship from T2
to T1 signifies the probability distribution of other land cover classes “transitioning into” a
specific category. While temporal relationships have proven effective in multi-temporal
image land cover class and video semantic segmentation [26–29], the method described
earlier only considers one-way temporal relationships.

Building on the concept of change relationships in semantic change detection, we
introduce the Temporal-Transform Module (TTM), inspired by spatial self-attention mech-
anisms [30–32]. TTM captures these relationships bidirectionally by evaluating feature
similarities across temporal images. It enhances features in each temporal image by selec-
tively integrating them with others, boosting mutual improvement. TTM can be seamlessly
integrated into post-classification networks, enhancing performance without significant
computational burden. Moreover, we present the Temporal-Transform Network (TTNet)
founded on TTM for SCD, delineated in Figure 2. TTNet comprises three key components:
two semantic segmentation branches (depicted in Figure 2a,c) and a binary change detec-
tion branch (Figure 2b). Each semantic segmentation branch, equipped with the feature
pyramid decoder, incorporates three TTM layers to link the other semantic segmentation
branch and capture bidirectional change relationships.
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Figure 1. The proportions of different change types within the SECOND dataset: (a) The proportions
from T1 (image taken at the 1st timestamp) to T2 (image taken at the 2nd timestamp); and (b) the
proportions from T2 to T1. This graph illustrates the proportions of different land cover classes
appearing in another temporal image when the corresponding land cover class disappears in a
specific temporal image. The X-axis represents the land cover class, while the Y-axis indicates
the proportion.

Figure 2. An overview of the proposed Temporal-Transform Network.

The contributions of this study are summarized as follows:

1. We identify a two-way change relationship between “from-to” change types and
analyze its significance in the semantic change detection task, deepening our compre-
hension of semantic change detection.
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2. Grounded in the concept of change relationships, we introduce the innovative Temporal-
Transform Module to dynamically model these relationships, amplifying the discrimina-
tive capacity of feature maps.

3. Integrating several TTMs into the semantic segmentation branch, augmented by
the feature pyramid decoder, we devise a fresh Temporal-Transform Network for
SCD. TTNet encompasses twin semantic segmentation branches and a binary change
detection branch, predicting two land cover maps and a binary change map.

4. Comprehensive experiments and analyses affirm the effectiveness of our approach,
with comparisons showcasing TTNet’s superior performance on the SEONCD dataset
in comparison to several benchmark methods.

2. Related Work

We categorize semantic change detection methods into two paradigms: the direct-
classification method and the post-classification method. This section provides an overview
of the relevant literature on these two approaches.

2.1. Direct-Classification Method

Direct-classification methods tackle semantic change detection by treating each de-
tailed “from-to” change type as an independent class, and predict it with one or more
classification strategies. In [33], a single input vector was formed by stacking bi-temporal
remote sensing images. Subsequently, multi-class Support Vector Machines (SVMs) were
employed for semantic change detection. Volpi et al. tried to incorporate both the stacked
bi-temporal images and spatial context information into the SVM classifier [34], leading
to improved performance. More recently, the integration of deep learning concepts into
direct-classification methods has gained traction. In the realm of natural images, Lamb-
daNet [35] was proposed to address multi-class directional change detection. LambdaNet
employed a Siamese Convolutional Network to extract features from bi-temporal images,
followed by feature concatenation and decoding to generate semantic change maps. A
different approach was taken in [16], where bi-temporal street view images were mapped
into two multi-scale feature spaces using a Siamese convolutional network. These feature
maps were then up-sampled to the original image resolution, concatenated, and fed into a
softmax classifier for semantic change map generation. To restore spatial detail in changed
regions, Varghese et al. [16] and Prabhakar et al. [19] introduced UNet-like structures that
employ skip-connections to fuse low-level and high-level features.

In remote sensing, Ref. [20] proposed a recurrent convolutional neural network
(ReCNN) to learn combined spectral-spatial features. The ReCNN employed convolutional
networks to transform bi-temporal images into high-level feature maps containing rich
semantic information. These feature maps were then fed into a recurrent network to
extract change information by modeling temporal dependencies. Moreover, unsupervised
methods have also been applied to the direct-classification approach for semantic change
detection, based on difference representation learning [36,37].

2.2. Post-Classification Method

In contrast to direct-classification methods, post-classification methods assume that
each “from–to” change type is a combination of any two land-cover classes. Hence, these
methods typically entail forecasting the two land-cover maps of bi-temporal images indi-
vidually and subsequently identifying change regions. The final SCD outcomes arise from
the multiplication of the binary change map and the two land-cover maps. Categorized by
the manner of binary change map generation, post-classification methods can be grouped
into two classifications: comparison methods and independence methods. Comparison
methods predominantly hinge on the comparison of two land-cover maps to generate a
binary change map. For instance, in [38], a convolutional neural network was initially
deployed to generate urban distribution maps from bi-temporal Synthetic Aperture Radar
(SAR) images. A subsequent mesh analysis was employed to derive an object-level semantic
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change map from these urban distribution maps. This straightforward approach has gained
prominence as a benchmark for many semantic change detection tasks [25,39]. However,
a notable drawback of comparison methods resides in the propensity for accumulating
misclassification errors from land-cover maps, thereby leading to an increased occurrence
of mis-detection in the resulting binary change map.

To address the issue of error accumulation, independent methods adopt the principle
that predicting the binary change map should ideally remain unaffected by land-cover
map considerations. In the work of [24], a model named HRSCD.str3 was introduced,
incorporating two land-cover mapping branches and a binary change detection branch to
jointly perform SCD. Here, the land-cover mapping branch network predicted the land-
cover map for each temporal image using a Siamese Network framework. Simultaneously,
pairs of images were processed through the binary change detection branch network to
produce a binary change map. Seeking to enhance the accuracy of the binary change map
by leveraging land-cover information, Ref. [24] extended this concept to HRSCD.str4. In
HRSCD.str4, features extracted from the encoders of the two land-cover mapping branches
were integrated into the binary change detection branch. Likewise, Ref. [22] introduced an
Asymmetric Siamese Network (ASN) to extract feature pairs in an asymmetric manner.

3. Methodology

The architecture of the proposed TTNet is presented in Section 3.1. In Section 3.2,
we provide the details of the key network module, i.e., the Temporal-Transform Mod-
ule. Further elaboration on the utilized loss functions for model training is presented in
Section 3.3.

3.1. Network Architecture

In this study, a Temporal-Transform Network is proposed for semantic change de-
tection using bi-temporal remote sensing images. The overall architecture of TTNet is
depicted in Figure 2, comprising three components: two semantic segmentation branches
(Figure 2a,c) and a binary change detection branch (Figure 2b). Taking a pair of bi-temporal
remote sensing images as input, the semantic segmentation branches generate two land
cover maps (LCMs) for the respective bi-temporal images. Subsequently, the feature maps
extracted from the semantic segmentation branches are fed into the binary change detection
branch to generate a binary change map (BCM). Finally, the BCM is multiplied individually
with the two LCMs to derive two semantic change maps.

3.1.1. Semantic Segmentation Branch

As depicted in Figure 2, we employ a Siamese convolutional neural network with
shared weights for semantic segmentation. The structure of the semantic segmenta-
tion branch follows an encoder–decoder framework. The encoder comprises a bottom-
up pathway designed to extract features, where our encoder backbone utilizes a pre-
trained ResNet34 [40] from ImageNet. Given a high-resolution remote sensing image
It ∈ RH×W×3 as the input, with H and W denoting height and width, respectively, a set of

multi-scale feature maps
{

Ft
l ∈ R

H
2l+1×

W
2l+1×Cl

}
l=1,2,3,4

are extracted through the encoder.

Here, t corresponds to the temporal dimension, and Cl signifies the channel number of the
lth layer feature map.

In the decoder, which involves a top-down pathway for upsampling, feature maps are

transformed to
{

Ft
l ∈ R

H
2l+1×

W
2l+1×Cl

}
l=4,3,2,1

using skip connections to amalgamate multi-

scale features from the encoder. As emphasized in Section 1, the utilization of the change
relationship can enhance the semantic segmentation branch’s performance. Consequently,
within the decoder, we initially incorporate a Temporal-Transform Module to capture the
change relationship between T1 feature maps F1

4 and T2 feature maps F2
4 . Subsequently, the

TTM is sequentially cascaded three times to refine the feature representation and restore
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the feature map resolution to ( H
4 , W

4 ). Ultimately, the resulting feature map Ft
1 ∈ R

H
4 ×

W
4 ×C1

is passed through a 1× 1 convolution layer to generate the land cover map. Detailed
information regarding the TTM is elaborated in Section 3.2.

3.1.2. Binary Change Detection Branch

Differing from the binary change detection branch present in the prevailing SCD meth-
ods [22,24], we depart from the use of an additional encoder module to capture features
from both changed and unchanged areas. Instead, we directly harness the features derived
from the semantic segmentation branches to yield the difference features. Given that the
land cover map labels have more abundant semantic category information compared to the
binary change map label, concatenating the feature maps from the two semantic segmenta-
tion branches to generate the difference feature maps facilitates a clearer distinction between
changed and unchanged regions. Meanwhile, removing the feature encoder in the binary
change detection branch simplifies the network parameters and reduces computational
load without sacrificing performance.

As there is no need for an encoder, the binary change detection branch exclusively
integrates a decoder. Analogous to the semantic segmentation branch, the decoder employs
skip-connection operations to restore boundary information within the changed area. Com-
mencing with the top-level feature maps F1

4 and F2
4 from the two semantic segmentation

branches, we concatenate these as the initial input Fd
4 for the decoder. Subsequently, this

initial input is subjected to a 2× upsample via standard bilinear interpolation and then
combined with the low-level difference feature maps Fd

3 , obtained by concatenating F1
3 and

F2
3. After two iterations of this process, a classifier incorporating a 1× 1 convolution layer

and a 4× bilinear upsampling layer is employed to predict the binary change map.

3.2. Temporal-Transform Module (TTM)
3.2.1. Design Motivation

The current approach in semantic change detection involves the prediction of distinct
land cover maps and a binary change map using bi-temporal images. As highlighted in
Section 1, past research has ignored the significance of the change relationship within land
cover classification. Consequently, the primary objective of this research is to grasp the
change relationship’s importance and enhance the performance of the semantic segmenta-
tion branch. Guided by the notion of the change relationship, our focus shifts to the impact
of feature information from one image on another. This naturally directs us toward the
spatial attention mechanism. Traditionally utilized in semantic segmentation tasks, the
spatial attention mechanism serves to comprehend the interdependence of feature maps’
positions within the spatial dimension. Drawing inspiration from this spatial attention
mechanism, we capture the change relationship through evaluating the similarity between
feature maps of bi-temporal images across the temporal dimension.

3.2.2. Module Details

The structure of the Temporal-Transform Module can be observed in Figure 3. To
elaborate on the influence of the T2 image on the T1 image, let us consider two equi-
dimensional feature maps: F1 ∈ RC×H×W and F2 ∈ RC×H×W , which are extracted from
the bi-temporal images. Feeding F1 into a 1× 1 convolutional layer results in two novel
feature maps, A1 and B, both belonging to RK×H×W . Meanwhile, applying feature map
F2 to a 1× 1 convolutional layer produces a new feature map, A2, within RK×H×W . The
probability map representing the change relationship, denoted as S and within R2×H×W ,
can be computed as follows:

Si
t =

exp
(

Ai
t · Bi)

∑N=2
t=1 exp

(
Ai

t · Bi
) (1)
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where Si
t signifies the influence of feature Ft on feature F1 at position i. When the feature rep-

resentations of the bi-temporal images mutually affect each other at position p, it enhances
the correlation between them. Subsequently, we conduct an element-wise multiplication
for the input features Ft and Ft to selectively retain information. Ultimately, we employ
an element-wise summation to aggregate the features of bi-temporal images and yield the
ultimate output E ∈ RC×H×W as follows:

Ei = ∑N=2
t=1 (Si

t Ai
t) + F1 (2)

where Ei represents the weighted summation of features at position i. Hence, the final
output map E encapsulates the bi-temporal image information acquired through the TTM.

Figure 3. The structure of Temporal-Transform Module (TTM).

3.3. Loss Function

We utilize the binary cross-entropy loss function to optimize the binary change de-
tection branch and the cross-entropy loss function to optimize the semantic segmentation
branch.

The binary cross-entropy loss is defined as follows:

LBCE = − 1
N

N

∑
i=1

(yilog(ŷi) + (1− yi)log(1− ŷi)) (3)

where yi ∈ {0, 1} represents the ground truth label (1 for the changed class and 0 for the
unchanged class). ŷi ∈ [0, 1] indicates the predicted probability of the ith pixel belonging to
the changed class. N denotes the total number of pixels in the ground truth label.

The cross-entropy loss for the semantic segmentation branch is defined as follows:

LCE = − 1
N × T

T

∑
t=1

N

∑
i=1

C

∑
c=1

yticlog ŷtic (4)

where C denotes the number of land cover classes, and T represents the number of temporal
dimensions. yic ∈ {0, 1} stands for the ground truth label, while ŷic ∈ [0, 1] represents the
predicted probability of the ith pixel belonging to the cth class.

The final loss function used to end-to-end train TTNet is defined as

L = λ1LBCE + λ2LCE (5)

where λ1 and λ2 represent the loss weights for balancing LBCE and LCE, respectively. They
are both set to 1 in this study.
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4. Experiment and Analysis
4.1. Dataset and Metric

The benchmark dataset chosen for our experiments is the SECOND dataset [22].
Figure 4 presents several samples from the SECOND dataset. This dataset encompasses
4662 pairs of aerial images with spatial resolutions varying from 0.5 m to 3 m. It is
further divided into training and testing subsets, with 2968 pairs allocated for training and
1694 pairs for testing. Each sample comprises two images from distinct time phases and
corresponding land cover classification labels. Each image is sized at 512 × 512 pixels,
with pixel-wise annotations belonging to one of the 7 classes (no change, water, surface,
low vegetation, tree, building, and playground). Considering that only 2968 sample pairs
from the SECOND dataset were available for training, we allocated 2000 and 968 sample
pairs for training and testing, respectively. To gauge performance, we employed the mean
Intersection over Union (mIoU) metric.

Figure 4. A selection of samples from the SECOND dataset.

4.2. Implementation Details

Our method and benchmark methods were implemented using the PyTorch frame-
work. We employed the Adam optimizer with a batch size of 8 for network optimization
over 80 epochs. The initial learning rate was set to 1× 10−4 and was adjusted to 1× 10−5

after 50 epochs. Data augmentation techniques included random horizontal and vertical
flips, scaling between 1 and 2, and random rotations at 0, 90, 180, and 270 degrees. All
experiments were conducted on a single Tesla P40 GPU under consistent settings. The TTM
utilized 1 × 1 convolutional layers with 256 output channels.

4.3. Benchmark Methods

To assess the effectiveness of our proposed method, we conducted a comprehen-
sive comparison with six prominent benchmark methods designed for semantic change
detection. These methods include:

1. HRSCD.str1 [24]: This method employs a direct comparison strategy for land cover
maps. It trains a network to generate the LCMs of bi-temporal images and then
compares these maps pixel by pixel to derive the semantic change maps.

2. HRSCD.str2 [24]: This approach adopts a direct semantic change detection strategy,
treating each change type as a distinct and independent class. For instance, a pixel
transitioning from water to surface is labeled as class A. This transforms the SCD
problem into a semantic segmentation task.

3. HRSCD.str3 [24]: Using a different approach, this method predicts the LCMs and
the BCM separately. It employs two semantic segmentation branches to predict the
LCMs of the bi-temporal images, while the binary change detection branch predicts
the BCM.
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4. HRSCD.str4 [24]: Similar in architecture to HRSCD.str3, this method differentiates
itself by fusing features from the encoder of the semantic segmentation branches
during the BCM prediction.

5. Deeplab v3+ [41]: This approach replaces the semantic segmentation branch of
HRSCD.str4 with Deeplab v3+, a model utilizing an Atrous Spatial Pyramid Pooling
(ASPP) module with different rates to capture spatial contextual information.

6. PSPNet [42]: In this method, the semantic segmentation branch of HRSCD.str4 is
substituted with PSPNet. PSPNet employs a multi-scale pyramid pooling module
(PPM) to capture scene context in the spatial dimension.

4.4. Comparison with Benchmark Methods

In our comparison with benchmark methods, we present results for both semantic
change detection and semantic segmentation. The semantic change detection results
are obtained using the predicted binary change map from the binary change detection
branch, allowing for an evaluation of the overall method performance. Moreover, to
specifically showcase the effectiveness of the Temporal-Transform Module in enhancing
the semantic segmentation branch, we also present semantic segmentation results based on
labeled binary change maps. This approach eliminates the influence of the binary change
detection branch.

4.4.1. Assessment of Semantic Change Detection

Quantitative Analysis: Table 1 showcases the quantitative outcomes of semantic
change detection for TTNet in comparison with six benchmark methods on the SECOND
dataset. The optimal performance is highlighted in bold. From the table, it is evident that
TTNet achieves the highest performance in terms of mIoU and per-class semantic IoU,
excluding the “no change” class. HRSCD.str1, HRSCD.str2, and HRSCD.str3 exhibit the
lowest mIoU, all falling below 40%. By incorporating land cover label information into the
binary change detection branch, HRSCD.str4 achieves a notable mIoU of 43.45%, marking
an 8.15% improvement. In contrast, PSPNet, which emphasizes capturing spatial context,
marginally improves mIoU by 0.91%, while Deeplab v3+ slightly reduces mIoU by 0.47%.
This indicates that the stability of capturing spatial context for SCD is uncertain. In stark
comparison, TTNet, which focuses on capturing change relationships, enhances mIoU by
2.46% compared to HRSCD.str4. These quantitative results underscore the remarkable
performance of TTNet in semantic change detection.

Table 1. The quantitative results for semantic change detection achieved by TTNet and six benchmark
methods on the SECOND dataset. The best values are marked in bold.

Method Backbone mIoU(%) No
Change Water Surface Low

Vegetation Tree Building Playground

HRSCD.str1 ResNet34 29.75 62.15 18.42 26.53 24.67 14.36 33.23 28.87
HRSCD.str2 ResNet34 33.20 85.73 0.00 32.78 28.53 7.00 47.00 30.59
HRSCD.str3 ResNet34 35.30 84.47 17.11 30.18 30.12 16.70 43.07 25.44
HRSCD.str4 ResNet34 43.45 87.20 23.42 39.18 34.51 21.50 55.15 43.19
Deeplab v3+ ResNet34 42.98 87.01 23.55 37.91 33.40 20.60 55.01 43.40

PSPNet ResNet34 44.36 87.01 25.96 39.92 34.33 22.77 56.04 44.48
TTNet ResNet34 45.91 87.18 29.59 40.82 35.11 22.81 56.26 49.61

4.4.2. Assessment of Semantic Segmentation

To provide further insight into TTNet’s superior performance, we initially present the
outcomes of binary change detection in Table 2. Subsequently, we present the quantitative
results for semantic segmentation obtained by multiplying the predicted land cover maps
with the labeled binary change map, as showcased in Table 3. It is important to note that
HRSCD.str2, due to its direct-classification method, is excluded from Tables 2 and 3.
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Table 2. The quantitative results for the binary change detection branch, comparing TTNet with five
benchmark methods. The best values are marked in bold.

Method mIoU(%) No Change Change

HRSCD.str1 48.31 62.15 34.47
HRSCD.str3 63.59 84.47 42.71
HRSCD.str4 70.28 87.20 53.36
Deeplab v3+ 70.13 87.01 53.25

PSPNet 70.49 87.01 53.97
TTNet 70.51 87.11 53.91

Table 3. The semantic segmentation quantitative results of TTNet and five benchmark methods on
the SECOND dataset. The best values are marked in bold.

Method Backbone mIoU(%) No
Change Water Surface Low

Vegetation Tree Building Playground

HRSCD.str1 ResNet34 60.95 100.00 38.06 61.37 50.22 45.98 76.47 54.58
HRSCD.str3 ResNet34 61.44 100.00 39.34 61.41 51.65 45.95 76.33 55.42
HRSCD.str4 ResNet34 61.46 100.00 39.17 62.06 52.35 45.19 77.44 56.12
Deeplab v3+ ResNet34 60.02 100.00 38.30 60.32 50.93 42.55 76.42 52.02

PSPNet ResNet34 62.18 100.00 41.13 62.83 52.39 46.58 77.39 54.95
TTNet ResNet34 65.36 100.00 45.76 67.99 56.77 48.24 79.71 59.08

Quantitative Analysis: Analyzing the initial three rows of Table 3, we observe that
HRSCD.str1 and HRSCD.str3 yield similar semantic segmentation outcomes as HRSCD.str4.
While, referring to Table 2, it becomes evident that HRSCD.str4 attains a significantly
improved mIoU of 70.28%, marking an enhancement of 21.97% and 6.69% over HRSCD.str1
and HRSCD.str3 in terms of binary change detection outcomes, respectively. This highlights
that the integration of semantic segmentation branch features into the binary change
detection branch notably enhances binary change map predictions.

In the last four rows of Table 2, the binary change detection branch displays a fairly
consistent performance among the four methods, with TTNet achieving the highest mIoU
of 70.51% and the lowest being 70.13% (a gap of 0.38%). Conversely, it is worth noting that
the performance variations within the semantic segmentation branch among these methods
become evident when referring to Table 3. When compared to HRSCD.str4 and PSPNet,
TTNet stands out by enhancing the mIoU from 61.46% and 62.18% to 65.36%. This contrast
in semantic mIoU significantly widens to 5.34% when compared to Deeplab v3+.

These outcomes indicate that TTNet’s enhanced performance in semantic change
detection arises from its improved semantic segmentation accuracy. This is primarily
attributed to TTNet’s utilization of TTM to comprehend the change relationships within
bi-temporal images. This understanding of change relationships assists the model in
identifying altered regions and characterizing their change types, thereby mitigating issues
of un-detection and mis-detection.

4.4.3. Visualization Comparison

Figures 5 and 6 offer a visual comparison of the un-detection and mis-detection prob-
lems, respectively, based on the predicted binary change map. Meanwhile,
Figures 7 and 8 provide visualization comparison results based on the labeled binary
change map. Across all these visualizations, it is evident that the proposed TTNet outper-
forms the six benchmark methods.
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Figure 5. Visual comparison of undetected changes using the predicted binary change map on
SECOND 968 test set. Enhanced regions highlighted with red and yellow dashed boxes. Yellow
signifies regions where all methods exhibit correct detection, whereas red highlights regions where
the benchmark methods yield inaccurate predictions.

Figure 6. Visual Comparison of mis-detected changes based on the predicted binary change map on
SECOND 968 test set. Improved areas marked with red and yellow dashed boxes. Yellow represents
areas where all methods correctly detect changes, whereas red indicates areas where the benchmark
methods’ predictions are incorrect.
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Figure 7. Visual comparison of undetected changes with labeled binary change map on SECOND
968 test set. Enhanced regions highlighted with red and yellow dashed boxes. Yellow signifies regions
where all methods correctly detect changes, while red represents regions where the benchmark
methods’ predictions are incorrect.

Figure 8. Visual comparison of mis-detected changes with labeled binary change map on SECOND
968 test set. Improved areas marked with red and yellow dashed boxes. Yellow represents areas where
all methods correctly detect changes, whereas red indicates areas where the benchmark methods’
predictions are incorrect.
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In Figures 5 and 7, the benchmark methods exhibit significant un-detection issues,
particularly in cases where the spectral features of change regions bear resemblance. No-
tably, HRSCD.str4 exhibits shortcomings in identifying certain conspicuous change types,
such as the “surface-to-building” change and “low vegetation-to-water” transition. Even
with spatial context information capture, PSPNet and Deeplab v3+ still struggle with un-
detection problems. In contrast, TTNet significantly mitigates un-detection problems even
when dealing with similar spectral features in bi-temporal images.

Moreover, all benchmark methods encounter mis-detection problems when the spec-
tral features of change regions diverge. As observed in Figures 6 and 8, HRSCD.str4
inaccurately predicts surface as water or vegetation. This misclassification is more pro-
nounced in PSPNet and Deeplab v3+, suggesting that context information might introduce
noise in bi-temporal semantic segmentation. TTNet effectively curbs the influence of noise
by learning the change relationship between bi-temporal images, accurately determining
the current land cover class of change regions.

4.5. Ablation Study

To comprehensively analyze and discuss the performance of our proposed method,
with a specific emphasis on exploring why certain TTM configurations outperform others,
we have conducted several ablation studies. These studies are designed to delve into
critical aspects such as the insertion positions, architectural design, and weight-sharing
mechanisms of the TTM, aiming to analyze the rationale behind TTM configurations and
their strategic placement within the model architecture.

4.5.1. Positions for TTM Insertion

To assess the impact of inserting the TTM at different layers, we experiment with plac-
ing the TTM at various stages within the decoder of the semantic segmentation branch.
We conduct comparisons across seven different network configurations: TTNet.baseline,
TTNet.TTM2, TTNet.TTM3, TTNet.TTM4, TTNet.TTM42, TTNet.TTM43, and TTNet.TTM432.
Similar to Section 4.4, we present the results of this ablation study for different TTM in-
sertion positions, considering both the predicted and labeled binary change maps. These
results are detailed in Tables 4 and 5, which evaluate the performance of both semantic
change detection and semantic segmentation, respectively.

Starting with the overall performance of semantic change detection, the results in
Table 4 show that TTNet.baseline attains a 44.43% mIoU. Then, we progressively incorporate
the TTM along the decoder’s top-down pathway after F4, F3, and F2. It can be observed that
TTNet.TTM4 and TTNet.TTM43 achieve 44.85% mIoU and 44.97% mIoU, respectively, thus
enhancing TTNet.baseline by 0.42% and 0.54%. By introducing TTM across all feature layers,
TTNet.TTM432 achieves the most favorable outcome at 45.91%, elevating TTNet.baseline
by 1.48%. Furthermore, applying TTM to HRSCD.str4 increases mIoU to 44.76, resulting in
a 1.31% enhancement over the basic HRSCD.str4.

Table 4. Ablation study on different TTM insertion positions based on predicted binary change map.
The “

√
” symbol denotes the insertion of TTM at the current layer. The best values for TTNet and

HRSCD.str4 are marked in bold.

Method F4 F3 F2 mIoU(%) ∆a(%)

TTNet.baseline 44.43 -
TTNet.TTM2

√
44.41 −0.02

TTNet.TTM3
√

44.40 −0.03
TTNet.TTM4

√
44.85 0.42

TTNet.TTM42
√ √

44.79 0.36
TTNet.TTM43

√ √
44.97 0.54

TTNet.TTM432
√ √ √

45.91 1.48

HRSCD.str4 43.45 -
HRSCD.str4.TTM432

√ √ √
44.76 1.31
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Table 5. Ablation study on different TTM insertion positions based on labeled binary change map.
The “

√
” symbol denotes the insertion of TTM at the current layer. The best values for TTNet and

HRSCD.str4 are marked in bold.

Method F4 F3 F2 mIoU(%) ∆a(%)

TTNet.baseline 62.28 -
TTNet.TTM2

√
61.55 −0.73

TTNet.TTM3
√

61.61 −0.67
TTNet.TTM4

√
63.58 1.30

TTNet.TTM42
√ √

64.66 2.38
TTNet.TTM43

√ √
64.70 2.41

TTNet.TTM432
√ √ √

65.36 3.08

HRSCD.str4 61.76 -
HRSCD.str4.TTM432

√ √ √
65.17 3.41

Next, we explore TTM’s impact on the performance of the semantic segmentation
branch. As detailed in Table 5, TTNet.TTM432 outperforms all other network configura-
tions, showcasing a remarkable 65.36% mIoU and a significant 3.08% enhancement over
TTNet.baseline. Notably, TTNet.TTM42 and TTNet.TTM43 also contribute improvements
of 2.38% and 2.41%, respectively. Similarly, the inclusion of TTM in HRSCD.str4 leads
to a 3.41% enhancement in mIoU. This observation is further supported by the visual
comparison examples presented in Figures 9 and 10, where TTNet.TTM432 effectively
mitigates issues of un-detection and mis-detection.

Figure 9. Visual comparison examples based on the labeled binary change map for the un-detection
problem. Enhanced regions highlighted with red and yellow dashed boxes. Yellow represents
areas where all network configurations yield comparable results, whereas red indicates areas where
TTNet.TTM432 outperforms others.
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Figure 10. Visual comparison examples based on the labeled binary change map for the mis-detection
problem. Improved areas marked with red and yellow dashed boxes. Yellow represents areas
where all network configurations yield comparable results, whereas red indicates areas where
TTNet.TTM432 outperforms others.

In summary, the consistent improvement trend observed in both label-based and
prediction-based experimental results, as depicted in Tables 4 and 5, underlines TTM’s
capacity to achieve enhanced outcomes by capturing change relationships and displaying
robust generalization performance.

Furthermore, the above ablation studies show that the TTNet.TTM 432 configuration
outperforms others. As shown in Tables 4 and 5, inserting TTM only after F2 or F3 yields
negative impacts. This phenomenon can likely be attributed to the absence of comprehen-
sive guidance from high-level semantic information. F4, with its broader receptive field and
richer semantic features, appears to play a pivotal role. Skipping F4 and directly placing
TTM after F2 or F3 might introduce noise due to the lack of substantial semantic context
in the corresponding phase’s features. Consequently, this could lead to a degradation in
TTM’s performance. This interpretation gains further substantiation from the observations
in rows 5 and 6 of both Tables 4 and 5. The noticeable improvements in TTNet.TTM42 and
TTNet.TTM43 upon inserting TTM after F4 underscore the irreplaceable role of high-level
semantic information in effectively capturing change relationships.

In Figure 11, we have illustrated the semantic metric curves derived from the seven
ablation experiments during the training and validation phases. Observing Figure 11a,c, it
becomes apparent that when compared to TTNet.baseline, both the training and valida-
tion semantic losses of TTNet.TTM432, TTNet.TTM43, and TTNet.TTM42 exhibit steeper
descents with lower values as these models converge. In line with this trend, the vali-
dation semantic mIoU of these three models is higher. Furthermore, TTNet.TTM2 and
TTNet.TTM3 exhibit performance comparable to TTNet in terms of both mIoU and loss.
The insights drawn from the semantic metric curves align with our experimental findings
and the preceding analysis.
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Figure 11. Comparison of the training and validation semantic metric curves on the SECOND dataset:
(a) training semantic loss; (b) training semantic mIoU; (c) validation semantic loss; and (d) validation
semantic mIoU.

4.5.2. Evaluation of TTM Design

We conducted a more in-depth exploration of the TTM architecture design, as pre-
sented in Table 6. An intuitive approach to capturing the change relationship is through
Concatenation (CAT), wherein feature maps from the two bi-temporal images are concate-
nated and processed through a 1 × 1 convolutional layer to reduce channel dimensions.
The results depicted in the last three rows of Table 6 reveal that both the CAT and TTM
designs significantly enhance the baseline’s performance when semantic change maps are
derived from the actual labels of binary change maps. Notably, the integration of TTM
boosts the baseline’s mIoU by 3.08%. This emphasizes the significance of capturing change
relationships through the fusion of bi-temporal image features, ultimately improving the
accuracy of land cover classification for individual temporal images.

Table 6. Ablation experiment results on TTM design based on SECOND 968 test set. The “
√

” symbol
indicates whether actual labels of changed areas were used to derive the semantic change results.
The best values are marked in bold.

Method Label mIoU(%) ∆

TTNet.baseline 44.43 -
+CAT 44.49 0.06
+TTM 45.91 1.48

TTNet.baseline
√

62.28 -
+CAT

√
65.04 2.76

+TTM
√

65.36 3.08
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When actual labels of binary change areas are not employed to generate semantic
change detection results, the performance of the CAT structure closely aligns with the
baseline. This might be due to the fact that the CAT structure concatenates dual-temporal
features, which does capture change relationships between the two temporal phases. How-
ever, this approach might inadvertently reduce the distinctiveness between these features,
thereby diminishing the binary change detection branch’s performance. On the other hand,
the TTM structure captures change relationships by calculating the similarity between dual-
temporal features. This approach enables raw features to complement change information
while better retaining feature differences.

4.5.3. TTM Weight Sharing Analysis

Given that TTM must be inserted into two separate semantic segmentation branches
to capture the enhancements associated with the bidirectional change relationship, we
examine whether TTM should share its weight across both branches. We present the
findings of our ablation experiments in Table 7. The results from Table 7 clearly demonstrate
that TTM with shared weights outperforms its counterpart with non-shared weights in both
overall semantic change detection performance and semantic segmentation performance.
This suggests that TTM with shared weights across both semantic segmentation branches
can acquire more robust and representative features, benefiting from the simultaneous
consideration of the bidirectional change relationship.

Table 7. Ablation experiment results on TTM weight sharing on the SECOND 968 test set. The “
√

”
symbol in “Share” column indicates the utilization of identical weights for TTM in both semantic
segmentation branches. The “

√
” symbol in “Label” column indicates whether actual labels of

changed areas were used to derive the semantic change results. The best values are marked in bold.

Method Share Label mIoU(%) ∆

TTNet.baseline 44.43 -
+TTM 44.70 0.37%
+TTM

√
45.91 1.48%

TTNet.baseline
√

62.28 -
+TTM

√
64.57 2.29%

+TTM
√ √

65.36 3.08%

5. Conclusions

This paper argues that the change relationship among distinct temporal remote sensing
images holds a pivotal role in the context of semantic change detection. It can significantly
improve the distinguishability of raw features and effectively mitigate the mis-detection
and un-detection challenges encountered in conventional post-classification techniques.
To address this, we introduced the Temporal-Transformation Module designed to capture
the change relationship through similarity calculations between features extracted from bi-
temporal images. Concurrently, we devised a novel end-to-end fully convolutional network
named TTNet, integrating multiple TTMs with shared weights into two semantic segmenta-
tion branches to effectively model bi-directional change relationships. The experimentation
conducted on the SECOND dataset has demonstrated the superior performance of TTNet
over several benchmark methods in semantic change detection tasks, underscoring the
efficacy of incorporating change relationships in SCD methodologies.

The proposed approach, with its focus on capturing bi-directional change relationships
in remote sensing imagery, holds promising implications for various applications. By
refining the TTM design, optimizing TTNet architecture, and exploring multi-source data
integration, this approach could be tailored to diverse environmental monitoring scenarios,
from tracking urban development to detecting changes in agricultural landscapes. The
implications also extend beyond the realm of remote sensing. For instance, the ability to
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capture intricate change relationships between images has potential applications in fields
such as medical imaging, security surveillance, and autonomous systems.

However, it is important to acknowledge that while our approach shows promise,
it is not a one-size-fits-all solution. The effectiveness of TTNet may vary across different
datasets, geographical regions, spectrum bands, or types of land cover changes. Different
datasets may yield varying results, as TTNet’s effectiveness is tied to the types of land
cover changes within the dataset. For instance, it may excel in detecting certain change
patterns, such as urban development, but its performance might be less optimal when
confronted with other types of changes. A broader exploration of diverse change pat-
terns is needed to comprehensively evaluate its capabilities. Additionally, the study’s
robustness to noisy input data should be further examined to assess its applicability in less
controlled environments. TTNet’s performance may be influenced by factors such as image
quality, cloud cover, and seasonal variations, all of which can impact the effectiveness of
SCD algorithms.

Our work opens several promising avenues for future investigations. First, refining
the TTM design and further optimizing TTNet architecture can potentially enhance its
performance in various remote sensing applications. Second, incorporating advanced
machine learning techniques, such as deep reinforcement learning or domain adaptation,
could lead to even more robust SCD models. Third, exploring the integration of multi-
source data, including SAR and optical imagery, could expand the applicability of our
approach to diverse environmental monitoring scenarios.
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