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Abstract: Reliable and accurate land-use/land cover maps are vital for monitoring and mitigating
urbanization impacts. This necessitates evaluating machine learning simulations and incorporating
valuable insights. We used four primary models, logistic regression (LR), support vector machine,
random decision forests, and artificial neural network (ANN), to simulate land cover maps for
Tsukuba City, Japan. We incorporated an auxiliary input that used multinomial logistic regression
to enhance the ANN and obtained a fifth model (ANN was run twice, with and without the new
input). Additionally, we developed a sixth simulation by integrating the predictions of ANN and
LR using a fuzzy overlay, wherein ANN had an additional new input alongside driving forces. This
study employed six models, using classified maps with three different resolutions: the first involved
15 m (ASTER) covering a study area of 114.8 km2, for the second and third, 5 and 0.5 m (derived from
WorldView-2 and GeoEye-1) covering a study area of 14.8 km2, and the models were then evaluated.
Due to a synergistic effect, the sixth simulation demonstrated the highest kappa in all data, 86.39%,
72.65%, and 70.65%, respectively. The results indicate that stand-alone machine learning-based
simulations achieved satisfactory accuracy, and minimalistic approaches can be employed to improve
their performance.

Keywords: remote sensing; machine learning simulations; urban land growth modeling; neural
network; logistic regression; fuzzy overlay

1. Introduction

Amid the escalating focus on global environmental change, carbon cycling levels,
and sustainability, land change science has arisen as a specific scientific field dedicated
to grappling with these complex phenomena [1]. The conversion of urban land use rep-
resents a tangible consequence of urbanization, which globally constitutes the second
most significant source of greenhouse gas emissions [2,3]. Since it is considered the pow-
erful propulsion of transformation in ecosystem function, one of the most critical ways
to challenge the status quo in climate change and biodiversity loss is to quantify urban
land dynamics [2,3]. Simulation of land changes underpins a baseline thematic map for
natural resource management, environmental assessment, urban planning, monitoring,
and designing sustainable ecosystem services [4–6].

In the past decades, the synthesis of art, science, and technology in detecting and
classifying objects on Earth culminated in remote sensing. Afterward, geosciences and
computer science intersections guided the development of geographic information systems
(GIS) [7]. GIS provides a platform for managing, analyzing, and visually presenting spatial
data in layered maps, thereby improving data comprehension and supporting more precise,
efficient decision making in a single interface. Satellite remote sensing also enables synoptic
measurements of the worldwide terrestrial surface across various spectral, spatial, and
temporal resolutions [1,8]. Continuous advancements in GIS and sensor technology have
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profoundly augmented our capability to map urbanized regions, permitting accurate
extraction of essential land cover categories, which holds substantial significance for global
land change studies [9].

Scholars have undertaken serious attempts toward the modeling of land-use predic-
tion [5]. Limitations in traditional approaches, like inflexible decision rules and limited
representation of uncertainty, and given that urbanization is a multifaceted process in-
fluenced by various driving factors, have led them to look for more advanced modeling
approaches [10,11].

When it comes to predictive capability and adaptability, machine learning is tak-
ing the simulation of urban growth characteristics to a whole new level in terms of
operation [12,13]. This led to exponential growth in applying the machine learning-
based algorithms individually or integrated with the Markov chain (MC) or cellular
automaton (CA) [14]. Statistical/machine-learning techniques embody methods for
delineating mathematical relationships between inputs (i.e., driving variables such as
topographic slope and road proximity) and outputs (i.e., land-use/land cover (LULC)
changes) [15]. The collected data are employed to create transition potential maps
(TPM), which provide an empirically derived metric for assessing the likelihood of
specific land transitions [15,16]. Several learning-based algorithms have been utilized
to create the TPM, which encompass but are not restricted to support vector machine
(SVM) [17], logistic regression (LR) [18], weighted normalized likelihood (WNL) [19],
random forest (RF) [20], and artificial neural networks (ANN) [21]. One must acknowl-
edge that, despite the rising prominence and accuracy of deep learning, traditional
machine learning methods often provide greater transparency, interpretability, and
computational efficiency. They also exhibit increased resilience against overfitting,
particularly when faced with limited labeled data, and benefit from quicker training
times and simpler architectures, which can minimize potential errors [22].

There is abundant literature on this field, emphasizing their positive performance and
providing detailed information regarding their predictive potency upon review.

For instance, Arsanjani et al. [23] applied a hybrid model that combined LR, MC, and
CA and demonstrated an 89% match between simulated and actual land-use maps for
Tehran, validating its successful calibration and predictive capabilities for urban sprawl in
future years. Moreover, several authors have recognized that, generally, LR presents inter-
pretable results, well-organized missing or unbalanced data, provides probability estimates,
showcases efficient training, and exhibits a lower propensity for overfitting [24–27]. In their
study on enhancing a CA with SVM for urban growth modeling, Rienow et al. [28] found
that SVM-based TPMs exhibit a high certainty. Their basic approach is to map samples as
vectors in a high-dimensional space and classify them by maximizing the margin between
support vectors and the hyperplane. Consequently, it is less interpretable but favored for its
adaptability to complex datasets and nonlinear solid modeling capabilities [29]. Gounaridis
et al. [30] applied a random forest-cellular automaton modeling approach to research future
LULC change in Attica (Greece) under different socioeconomic realities and scales. Their
results showed that the RF model was accurate in allocating the LULC change patterns
within the study area, exhibiting a notably high overall accuracy of 88.36%.

Most early studies, as well as current work, in machine learning-based land transfor-
mation modeling focus on ANNs [31–33]. Neural networks establish representations of the
correlations between land transitions and their associated variables by deploying a network
of weighted connections, which the algorithm iteratively optimizes. Zhang et al. [34] em-
ployed the artificial neural network-cellular automaton-Markov (ANN-CA-Markov) model
to simulate urban sprawl in China. Their findings revealed a suitability score of 0.864 for
the ANN model, underscoring its efficacy in simulating urban sprawl. Moreover, with
a kappa coefficient of 0.78, the ANN-CA-Markov model demonstrated high accuracy in
urban sprawl simulation. In another study, Roy et al. [35] utilized spatio-temporal analysis
and cellular automaton simulations of biophysical indicators under climate change and
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urbanization scenarios, employing an ANN. They achieved an 84% accuracy rate in LULC
from the simulation metrics.

In another recent publication, Cuellar et al. utilized high-resolution WorldView-2
satellite images to model the complex dynamics in urban land change up to 2034 in Bogota
using the MC, future land use simulation (FLUS), and ANN methods. Validation confirmed
a machine learning accuracy with an average value of 0.85 [36].

It is noteworthy to mention that numerous studies have compared land change mod-
eling approaches previously used in separate case studies. Consequently, the specific
application of these models gives their conclusions a comparative bias [37]. Building on
existing knowledge, each model utilizes distinct mechanisms to capture the correlation
between land-use change and its underlying driving forces; hence, diverse simulated maps
and prediction accuracies originate from the model’s assumptions, which necessitates
further comparative analysis. In this relatively understudied topic, Shafizadeh-Moghadam
et al. [37] conducted a comparative study of different models, including ANN, SVR, RF,
decision tree (DT), LR, and multivariate adaptive regression splines (MARS), assessing their
predictive accuracy in urban growth simulation. The study indicated the area under the
curve (AUC) ranging from 67.6% (LR) to 74.7% (ANN), with substantial pattern disparities
in spatial error maps.

However, to the best of our current understanding, there has yet to be comprehensive
research that has simultaneously evaluated the principal machine learning-based urban
growth prediction techniques through an identical region (in two different sizes) and with
diverse satellite imagery across various temporal periods to compare their effectiveness. In
addition, under this circumstance, the critical capability of combining two machine learning
simulations compared to standalone ones has yet to be fully understood. The gap in the
literature confronts us with limitations such as a lack of comprehensive understanding
of different prediction techniques, reduced applicability of the findings, an inability to
generalize results, and a lack of robustness in predictions.

Against the above background, this research aims to assess machine learning methods
in the simulation of urban growth in Tsukuba, Japan, using three different resolution land
cover maps spanning two different sizes and timeframes. Further, we intend to create and
add a new input to the ANN-MC model and use this enhanced model to synergize with an
LR-MC model through fuzzy logic. The ultimate objective is to scrutinize these six models,
SVM-MC, random decision forests (DF)-MC, LR-MC, and two ANN-MC (once with and
once without new input), alongside a hybrid model combining ANN-MC and LR-MC
for their spatial accuracy and predictive capabilities. Our research intends to overcome
existing limitations and would be a significant step toward enhancing the effectiveness and
reliability of machine learning-derived urban growth predictions.

2. Materials and Methods
2.1. Study Area

The study area focused on in this research is Tsukuba City, situated in Ibaraki Pre-
fecture, Japan. In Japan, most urban areas have matured, save for major redevelopments
following significant disasters. However, Tsukuba stands out, showcasing urban expansion.
The location of the study area is illustrated in Figure 1. This city, covering an area of
283.72 square kilometers, witnessed a growth in its population by 26,435 between 2005 and
2015 and further sustained a steady annual increase of 1.3% from 2015 through 2020. Situ-
ated along the Tsuchiura River, with a delightful climate and fertile soil, it provides an ideal
environment for settlement. Tsukuba City, renowned as “Science City”, is well-connected
via multiple train stations on the Tsukuba Express Line, a new railroad line that opened
in 2005, enabling easy access to Tokyo [38]. This urban development and transportation
efficiency attract an educated populace and foster substantial growth. The targeted area
for analysis lies within the geographical coordinates 36.6◦N and 35.58◦N in latitude and
140.01◦E and 140.07◦E in longitude, reflecting Tsukuba City’s unique positioning in the
context of urban growth and scientific advancement.
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Figure 1. Location of the study area.

2.2. Datasets

For historical data about the urban footprint, we utilized remotely sensed ASTER data
satellite images taken between 2003 and 2012, which were captured in August 2003 and
2012. The employed images offer a spatial resolution of 15 × 15 m, effectively facilitating
the classification of the LULC map during the specified period. Furthermore, this study
incorporated high-definition imagery resources such as Maxar’s WorldView-2 and the
GeoEye-1. The WorldView-2 imagery, exhibiting a spatial resolution of 0.46 m, was collected
on 8 May 2010. Subsequently, the GeoEye-1 imagery, demonstrating a superior spatial
resolution of 0.41 m, was captured on 1 April 2015. Utilizing these data sources enabled a
more granular comparison of the subject matter.

The JAXA high-resolution LULC map product was the dataset used as ground
truth [39]. This map was created using a convolutional neural network (CNN) algo-
rithm for pattern recognition in multispectral and time series feature spaces. It was made
using multiple datasets, including (1) Sentinel-2 Level-1C from Google Earth Engine API,
(2) ALOS-2/PALSAR-2 data, (3) 25,000 training data points from the SACLAJ database
including ground surveys and online interpretations, (4) ALOS PRISM Digital Surface
Model, (5) a raster map of slopes from the digital surface model, (6) a vegetation survey
map by the Biodiversity Center for interpreting bamboo forests, (7) data on photovoltaic
power plants from Electrical Japan for interpreting solar cell panels, (8) coastline data from
the Geospatial Information Authority of Japan, and (9) OpenStreetMap’s road network
data for creating raster maps of distances from roads. We used the same data source for the
road map as well.
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We also utilized two distinct digital elevation models (DEMs) as part of our datasets.
The first DEM was sourced from Earthdata, a NASA initiative, with a spatial resolution of
30 m [40]. The second DEM was procured from the Geospatial Information Authority of
Japan (GSI), featuring a more detailed spatial resolution of 5 m [41]. In addition, the spatial
population distribution datasets utilized in this study were sourced from WorldPop, a
project affiliated with the School of Geography and Environmental Science at the University
of Southampton [42].

2.3. Methodology
2.3.1. Overview

The methodology adopted in this study comprises a structured three-data process.
The initial phase involves the supervised classification of pixels in raster datasets. Medium-
resolution data from ASTER at 15 m were obtained for 2003 and 2012, and high-resolution
data from WorldView-2 for 2010 and GeoEye-1 for 2015 at 0.5 m were classified. Addition-
ally, cells of 5 m were extracted from the high-resolution datasets. This process resulted in
the creation of three spatial resolution maps: one with 15 m resolution covering the period
2003–2012, another with 5 m resolution, and a third with 0.5 m resolution, both covering the
period 2010–2015. In the second phase, the focus was on preparing explanatory variables,
including DEM, slope, distance to urban areas, distance to roads, and spatial distribution of
population. Additionally, efforts were made to improve the accuracy of the ANN model by
introducing a new input to enrich the existing data pool. In the third phase, we simulated
urban growth in Tsukuba, Japan, for the years 2020 and 2022. Medium-resolution data
were utilized for the 2020 simulation, whereas high-resolution data were employed for the
2022 projection. Four distinct simulation models were used for this purpose: the SVM, DF,
LR, and ANN-MCs. The ANN model was run twice—once with the new input data and
once without them. Subsequently, the improved ANN-MC was integrated with LR-MC
simulation through fuzzy logic techniques.

In the third phase, the final objective of the study was to evaluate and contrast the
spatial accuracy and predictive power of these six methods. To validate the 2020 prediction,
the ground truth data were sourced from the JAXA LULC map with a spatial resolution of
10 m. For the 2022 prediction validation, Google Earth was employed as the ground truth.
A visual representation of the entire methodological sequence can be found in Figure 2.

2.3.2. Land Cover Classification and Ancillary Data Preparation

In the study, LULC classification was executed using ArcGIS Pro version 10.8.2
software, deploying a classification scheme featuring seven distinctive land-use cate-
gories. These encompass water, urban land, rice paddy, cropland, grassland, trees, and
barren land. The classification was performed on satellite data employing a SVM su-
pervised classification method, a methodology frequently adopted within the scientific
research community.

After the initial classification, corrections were implemented for erroneous pixels
within the generated LULC maps. Based on ASTER and Maxar data, the resultant classified
maps covered areas of 114.8 km2 and 14.8 km2, respectively. Furthermore, classification
maps of 5 m resolution were derived from the Maxar data-based maps through resample
tool in Arc GIS Pro, which changes the spatial resolution of a raster dataset and sets rules
for aggregating or interpolating values across the new pixel sizes. The extent of the raster
dataset will remain the same.

The factors, also known as explanatory variables or drivers, that contribute to alter-
ations in LULC are chosen based on their potential to augment or reduce the suitability
of a particular option for the intended activity [43]. Typically, topographic elements like
the slope and the DEM are seen as the most critical in influencing urban expansion. Other
proximity variables, like the distance from developed areas and the proximity to roads,
are also significant contributors to urban sprawl [44,45]. The principle of neighborhood
effects typically indicates that undeveloped land surrounded by built-up areas is more
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likely to become a developed area eventually [46]. Accordingly, other ancillary data inputs
were prepared, including the DEM, slope (derived from DEM), the spatial distribution of
population, distance from the road, and distance from the built-up area.
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Also, given that GSI provides 5 m DEM XML files [41], we utilized the QuickDEM4JP
tool within the QGIS 3.26 software to convert these files into a more user-friendly DEM
Geo Tiff format. It is worth noting that these ancillary data were extracted at three different
resolutions, like the classification maps, providing a spectrum of granularity for future
modeling and analysis.

2.3.3. New Auxiliary Input for ANN-Multi Layer Perceptron

The variables play a key role in facilitating the solution of complex nonlinearities by
ANN-multi layer perceptron (MLP) and enhancing accuracy [47,48]. In the field of predict-
ing urban expansion, the range of input data is confined explicitly to specific parameters
such as topographical characteristics, accessibility considerations, and demographic factors.
One of the few attempts to use a helpful input besides these parameters is using evidence
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likelihood transformation in the analysis [49]. The information that may be helpful in
training MLP both independently and in interaction with other variables. The bedrock of
our strategy is built precisely upon this foundation. Incorporating a version of the new
input data that contain some useful patterns in the ANN-MLP framework allows for a
more comprehensive understanding of the interplay between various land uses and the
probability of their conversion into urban areas. To accomplish this, first, we extract the
change maps, which represent the pixels transitioned to urban land, for example, “forest
pixels to urban”, “cropland pixels to urban”, and “barren pixels to urban”. In fact, this
multi-categories map consists of changed pixels and their land-use origins before conver-
sion into urban land use. Second, we apply multinomial logistic regression (MLR), wherein
the change maps as dependent variables and driver forces serve as independent variables
within the model.

MLR tries to model the relationship between one dependent variable and independent
variables. The model does this by calculating log odds, also called logits, and these logits
are then transformed into probabilities. Therefore, the output of this model would be a
set of probability maps, which shows the predicted probability that a land-use class has
changed to an urban, given the values of the independent variables at that location. As
an exquisite statistical method, MLR lends itself to GIS, and due to adept management of
multiple-category dependent variables, without requiring assumptions such as linearity,
homoscedasticity, or normally distributed errors, along with its capacity to offer insights
into the effect size through odds ratios, has been gradually popularized as a user-friendly
geospatial modeling technique [50,51].

The logit (lij) represents the logarithmic function of the odds of a pixel (i) belonging to
a class (j). The predictor values can be used to predict its value using a regression function
derived from directly:

lij = ln (Pij/(1 − Pij)) = β0 + β1jx1i + β2jx2i + . . . + βnjxni (1)

Thus, given the independent variable vector X, the conditional probabilities of each
outcome category can be calculated by the following formula [52]:

Pij =
eβ0+β1

jx
1

i+β2
jx

2
i+...+βnjxni

1 + ∑ eβ0+β1jx1i+β2jx2i+...+βnjxn
(2)

MLR utilizes the maximum likelihood estimation (MLE) approach to identify the
most optimal set of parameters, also known as coefficients. In essence, MLR serves as a
maximum entropy solution, as it actively seeks the parameters that best fit the data [53]. We
employ the statistical tool provided by the TerrSet IDRISI 2020 software for this purpose.

To sum up, the modeling of ANN-MLP is based on samples of pixels that underwent
the transition and samples that could have undergone it but did not. Therefore, the
spatially detailed view of how historical land change data are associated with change
agents helps ANN-MLP better understand the distribution of these changes across the
landscape. Because ANN-MLP is mighty in modeling interactions through its hidden layer,
theoretically, by adding an auxiliary input with meaningful information, the model can
understand and use it.

2.3.4. Transition Potential Modeling and Markov Change Model

The transition potential provides invaluable insights into the spatial distribution and
potential of future changes [54]. It can be operationalized in the context of land cover
changes, where different transitions could be classified under specific sub-models, given
that the drivers causing such changes remain consistent across each transition [55]. To pro-
vide an example, the factors that contribute to the conversion of forest lands into urbanized
areas may be the same as those that drive the transformation of forests into croplands. As a
result, changes in LULC influenced by these common variables are combined and analyzed
within specific sub-models [56].



Remote Sens. 2023, 15, 4495 8 of 26

In addition, the polynomial trend surface, which can capture and streamline complex
spatial trends in data, was selected to facilitate interpretation and predict spatially related
outcomes, like transition potentials. The models used in this research consist of: ANN-MLP,
SVM, DF, and LR within the TerrSet IDRISI software.

(1) ANN-MLP

The MLP neural network, a subtype of feedforward neural networks, comprises three
core layers: input, hidden, and output layers. Its operation hinges on the supervised back-
propagation (BP) algorithm, a cornerstone of land change modeling [57]. The MLP employs
feedforward algorithms to assign weights to input values, and nodes across the three layers,
which are then propagated via the hidden layer, a compilation of computational nodes,
to the output layers. The MLP can facilitate multiple transitions concurrently during the
modeling process [58,59]. Data flow within the MLP is unidirectional, progressing from
the input layer through the hidden layers to the output layer. This structure enables the
MLP to establish non-linear relationships within the dataset. Within these layers, nodes are
organized in such a way that each node accepts an input signal from various nodes, applies
a transformation, and then transmits the altered signal to subsequent nodes. Each origi-
nating input layer node is assigned a weight inclusive of a threshold and is subsequently
processed through either a linear or non-linear activation function. They can be expressed
as follows [21]:

The spatial variables are given by:

X = [X1, X2, X3, . . . , Xn]
T , (3)

where Xn is the i-th attribute, and T is transposition.
Neuron j in the receiver layer, the Z input from the collection process is calculated by:

Zj(c, t)= ∑i Wi,cXi(c, t), (4)

where Wi,c is the weight between the input and the hidden layers, and Xi(c, t) is the i-th
scaled attribute associated with the i-th neuron in the input layer with respect to the c-th
cell at time t.

The activation of the hidden layer to the input signal is calculated by:

g (Zj) =
1

1 + e−z , (5)

The following formula calculates the transition probabilities according to the output
function of neural networks:

p (k, t, l) = ∑j Wj,l
1

1 + e−Zj(c,t)
(6)

where p (k,t,l) is the probability of transition from the existing to the l-th type of LULC for
the c-th cell at time t, and Wj,l is the weight between the hidden and the output layers.

The training process, which aims to minimize the discrepancy between observed and
anticipated outcomes, requires fine tuning these weights before the system can be opera-
tional for forecasting purposes [58]. Once the MLP has undergone training, incorporating
many influencing factors for each sub-model, it generates time-explicit transition potential
maps. These maps illustrate the time-explicit change potential, a valuable resource for
understanding temporal dynamics [59].

(2) SVM

In the context of land cover modeling, the process using SVM with the radial basis
function (RBF) kernel begins with the input data. These data are then mapped to a high-
dimensional space using the RBF kernel, adept at handling non-linear data intricacies.
Essentially, the RBF kernel computes a similarity measure or “distance” between each
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pair of data points. Unlike a simple geometric distance, this measure encapsulates the
complex, non-linear relationships among the features [60,61]. For variable evaluation, the
SVM in TerrSet uses a backward stepwise constant forcing strategy, the same as ANN-MLP.
The SVM module will start with all variables and then calculate the decreased 5-folded
cross-validation accuracy by holding constant each variable in turn. The variable with the
most decreased cross-validation accuracy will be taken as the most important variable.
After completing the training of SVM and optimizing its parameters, the model is ready to
be utilized for predicting future transition potential maps.

(3) DF

With the data prepared, the DF algorithm starts building the forest, which is an
ensemble of decision trees. Each tree is built on a bootstrapped subset of the data. For each
node in the tree, a random subset of the predictors (input data) is selected, and the best split
among these predictors is chosen based on a measure like the Gini impurity or information
gain. This process continues until the tree is fully grown and replicated across multiple
such trees forming the “forest” [62,63]. In the context of land cover modeling, each decision
tree in the forest represents a possible sequence of land-use changes based on different
combinations of the input variables. The randomness introduced by bagging and random
feature selection ensures that each tree captures different aspects and complexities of the
land-use transition process [20]. To make a prediction for a new data point, it is passed down
to each tree in the forest, resulting in a series of predictions. The final prediction is typically
the mode (for classification) or mean (for regression) of these individual predictions. This
voting mechanism makes the model robust and less prone to overfitting. Importantly, DF
also provides a way to assess variable importance. This is done by randomly shuffling
each predictor’s values and measuring how much the prediction error increases. This
helps understand the influence of different geographical features and human factors on
land-use changes. The DF model can use this process to predict land-use transitions based
on various environmental and anthropogenic factors.

(4) LR

The binary LR model, a variant of the MLR, has proved to be an effective tool in
modeling urban growth [64]. The cell-based nature LULC falls into two distinct categories:
the presence or absence of urban growth. In binary logic, we can use the value 1 to signify
urban development and 0 to denote the lack of urban growth. It is postulated that the
probability of a cell transitioning to urban use follows a logistic curve as dictated by the
logistic function [65]:

f(z) =
1

1 + e−z (7)

This premise leads us to the LR model, which allows us to estimate the likelihood of a
cell undergoing urbanization. The formula can be represented as follows [25]:

P (Y = 1|X1 , X2, . . ., Xn) =
1

1 + e−(∝+∑n
i=1 βiXi)

(8)

In this equation, P (Y = 1|X1, X2, . . .,Xk) symbolizes the probability of the dependent
variable Y taking the value 1 given (X1, X2, . . .,Xk), essentially the likelihood of a cell
becoming urbanized. Each Xi represents an independent variable that acts as a driving force
of urbanization, capable of being of interval, ordinal, or categorical nature. Correspondingly,
βi is the coefficient attached to variable Xi. This framework enables us to understand
and predict the dichotomous behavior of cells in our land cover model, precisely the
manifestation or lack of urban growth.

Once transition potential maps are generated, they get incorporated into an MC simu-
lation. An MC is a stochastic process that provides a statistical framework for forecasting
events in a sequence, where the probability of evolving into a subsequent state is reliant
solely on the present state and not on the sequence of prior states. Upon the generation of
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transition potential maps, the MC model becomes instrumental for predictive applications.
The Markov process quantitatively anticipates the precise extent of land that is projected
to transition from the later date to the target prediction date based on the extrapolation
of future transition potentials. It is imperative to underscore that this procedure does
not equate to a rudimentary linear extrapolation, as the transition probabilities inherently
exhibit dynamic behavior over time until they arrive at an equilibrium state.

2.3.5. Final Simulation for Tsukuba 2020 and Tsukuba 2022

After extracting transition potential maps, the transition probability matrix of an MC
by defining a final date for prediction is calculated in TerrSet. This enabled us to simulate
Tsukuba City for 2020 using a combination of machine learning models and MC, all with
the ASTER data classification map. The simulation of 2022 will be conducted twice and
over a smaller area. Once with a 5 m resolution, once with a 0.5 m resolution.

After completing these simulations, we import the results from the TerrSet 2020
software into ArcGIS Pro. We then designate these imported data as a conditional raster
and a constant input value in the Con tool of the software. This allows us to execute a
conditional if/else analysis on each cell of the input raster. The final stage of the process
entails converting the analyzed raster into a classification map with seven categories.

2.3.6. Fuzzy Overlay

Fuzzy overlay analysis is a technique used in geographic information systems for
spatial decision-making tasks [66]. It helps to determine the suitability or potential of
different locations based on different criteria [67]. This method can be particularly beneficial
for an exploratory location study where various criteria need to be evaluated to find the
most suitable location [68].

In this study, we employ the fuzzy technique as an easily implementable, flexible
method to develop a straightforward heuristic model for urban pixels. Indeed, the source
maps selected for the fuzzy overlay approach in ArcGIS Pro are based on the machine
learning-based simulators determining the most potential locations of urban areas. In
doing so, upon completion of the simulation, the method of fuzzy overlay was employed
to synthesize two sets of raster simulation maps generated by the ANN-MC (which utilized
novel input) and the LR-MC. The Gaussian function was hired to fuzzify the criteria. Since
the aim was for optimal prediction and distribution of urban (second class) pixels, the
fuzzy AND type was selected as an intersection operator for this purpose. The Gaussian
function, with a spread value of 0.1, was used for the fuzzy overlay membership, and the
software determines its midpoint based on the range of input raster values. Applying the
fuzzy overlay essentially aggregates the predictions from both models, allowing for a more
nuanced prediction.

Given its foundation and purpose, we have aptly named this new approach the ‘neural
logistic fuzzy ensemble method’ (NLFEM).

2.3.7. Validation of Simulation Models

We assessed the performance of six predictive models across all three data using
a comprehensive set of metrics suitable for land-use change simulation science. These
metrics, including kappa coefficients for categorical assessments and sensitivity, specificity,
precision, accuracy, F1 score, Matthew’s correlation coefficient (MCC), and receiver operat-
ing characteristic (ROC) for binary accuracy assessments within urban pixels, allow for a
detailed evaluation of each model’s effectiveness.

To provide some insight, the kappa coefficient, which is based on the confusion matrix
often used to measure the agreement between predicted and observed categorizations, is
employed, with a higher value indicating better performance [69,70].

Kappa =
N ∑r

i=1 Xii −∑r
i=1(Xi+ × X+i)

N2 −∑r
i=1(Xi+ × X+i)

(9)
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where r: number of rows in the error matrix,
Xii: the number of observations in row i and column i (on the major diagonal),
Xi+: total of observations in row i,
X+i: total of observations in column i,
N: total number of observations included in matrix.
The binary metrics focus on urban pixels. Sensitivity (also known as the true positive

rate) measures the proportion of actual positives that are correctly identified. In contrast,
specificity (true negative rate) measures the proportion of actual negatives that are correctly
identified [71].

Sensitivity = TP/(TP + FN) (10)

Specificity = TN/(FP + TN) (11)

where TP represents the true positive, FN represents the false negative, TN represents the
true negative, FP represents the false positive.

Precision, synonymous with the positive predictive value, along with accuracy, in-
dicates the overall trustworthiness of the predictions. A higher precision and accuracy
suggest a reduced occurrence of both false positives (non-urban areas incorrectly identified
as urban) and false negatives (urban areas inaccurately identified as non-urban) [72].

Precision = TP/(TP + FP) (12)

Accuracy = (TP + TN)/(TP + TN) + FP + FN (13)

In assessing land-use simulation accuracy, F1 score [73] and Matthew’s correlation
coefficient (MCC) [74] offer distinct advantages that complement traditional accuracy
metrics. The F1 score, a harmonic mean of precision and recall, provides a balanced measure
of the model’s performance, particularly in situations with uneven class distributions [73].
It ensures that both the model’s precision (how many selected instances are relevant) and
recall (how many pertinent examples are chosen) are considered, thereby reducing the
potential bias towards overrepresented classes. On the other hand, the MCC provides a
robust evaluation metric for binary classifications, offering a more reliable statistical rate of
true and false positives and negatives [74]. Unlike different coefficients, MCC considers
all four values of the confusion matrix, giving a balanced measure even in imbalanced
class distribution. Hence, using these metrics together can help develop a more holistic
understanding of a model’s performance across different land-use categories, considering
both the balance between precision and recall and the true rate of correct and incorrect
classifications.

F1 Score = 2TP/(2TP + FP + FN) (14)

MCC = (TP × TN − FP × *FN)/sqrt ((TP + FP) × (TP + FN) × (TN + FP) × (TN + FN)) (15)

The receiver operating characteristic (ROC) curve, alongside its related part, the
area under the curve (AUC), serves as a robust measure for assessing the efficacy of the
predictive model. These analytical tools were utilized to evaluate the model’s proficiency
in accurately distinguishing between binary categories, specifically urban and non-urban
classifications [75]. The ROC and AUC furnish a quantifiable means to gauge the accuracy
and discriminative capacity of each predictor, thereby facilitating the identification and
prioritization of the most consequential predictors.

3. Results
3.1. Land Cover Change Analysis

The LULC maps, derived from ASTER data for the years 2003 and 2012 spanning areas
of 114.8 km2, and Maxar data for the years 2010 and 2015 covering areas of
14.8 km2, are displayed in Figure 3. As previously elucidated, a five-meter resolution
land-use classification map was extracted from the Maxar 0.5 m data to facilitate the



Remote Sens. 2023, 15, 4495 12 of 26

performance assessment of urban growth predictors, focusing on three distinct spatial
resolutions.
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The outcome of the change analysis reveals a notable expansion in urban land cover.
Specifically, between 2003 and 2012, the urban area experienced an augmentation of
9.49 km2. This increase was fueled by the transition of different land cover types
to urban areas, including 3.57 km2 from rice paddy fields, 2.45 km2 from cropland,
1.04 km2 from tree-covered places, 0.46 km2 from barren lands, and 0.546 km2 from
grasslands. Furthermore, between 2010 and 2015, the urban space extended by an
additional 1.53 km2. This expansion comprised 0.49 km2 from cropland, 0.21 km2

from barren lands, and 0.16 km2 from forested areas. The spatial trend of changes is
illustrated in Figure 4.
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areas between 2010 and 2015.

3.2. The New Input for ANN-MLP

The predominant transitions, as well as the pixel change maps, can be efficiently
extracted from the change analysis tab of the TerrSet IDRISI software suite. These identified
transitioned pixels from 2003 to 2012 and from 2010 to 2015 are specified as dependent vari-
ables. At the same time, the spatial trend of change, DEM, slope, the spatial distribution of
population, proximity to roads, and distance to urban areas are designated as independent
variables for the MLR tool. The default settings of the MLR tool are generally suitable. The
software generates results for each category of the dependent variables and provides them
in the results tab individually.

Figure 5 illustrates the outputs of MLR, which are considered probabilities maps and
are different from TPMs. The MLR function modeled how the previous land-use status,
before being converted to urban land, was influenced by a specific driving force, and
produced logits. These logits were subsequently transformed into probabilities. These
maps offer precise spatial information illustrating how spatial factors influence urban
expansion, specifically about proximity to built-up areas. Additionally, they display clear
patterns of road networks and well-defined outlines of railroads. In other words, they
are an already-interpreted version of the original data, which can potentially augment the
ability of ANN-MLP to pinpoint the pixel with a high propensity to transition.

Assessing the correlation among independent variables is crucial in regression analysis,
where the variance inflation factor serves as a vital measure of multicollinearity. This factor
exceeding 10 typically signifies a multicollinearity issue [76]. Since the factor for all the
explanatory variables was calculated to be one, it suggests the absence of multicollinearity
among these variables. This indicates that these predictors are relatively independent, each
providing unique and valuable information to the model.
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Figure 5. MLR outputs: (a) from cropland to urban in ASTER data; (b) from rice paddy to urban in
ASTER data; (c) from trees to urban in ASTER data; (d) from barren to urban in Maxar data (5 m);
(e) from cropland to urban in Maxar data (5 m); (f) from trees to urban in Maxar data (5 m), (g) from
barren to urban in Maxar data (0.5 m); (h) from cropland to urban in Maxar data (0.5 m); (i) from
trees to urban in Maxar data (0.5 m).

3.3. Accuracy Rate and Skill Measure of ANN-MLP

The skill measure and accuracy rate for each of the two ANN-MLPs are detailed in
Table 1. The skill measure leverages Time 1 and Time 2 land cover maps, contrasting the
number of correct predictions, after subtracting those due to chance, with a theoretically
ideal set of predictions [77]. It is important to note that the skill measure does not project
the model’s future performance; it is a tool for assessing how effectively the explanatory
variables accounted for the historical changes. The accuracy rate and the skill measure
indicate significant variability in the confidence levels for different transition predictions
made by the model. Given that the ANN-MLP was run twice to create possible transition
maps—once including new auxiliary inputs and once without—a comparative analysis
was conducted to understand the performance of these two sub-models.

In the initial phase of the simulation, premised on ASTER-derived data, a notable
enhancement was observed in the accuracy assessment and skill measure for the ANN-MLP
with the addition of additional input. More specifically, these parameters exhibited an
increase of 28.5% and 28.3%, respectively, when contrasted with the ANN that operated
without the new input. However, the second phase of the simulation, grounded in Maxar
data with a spatial resolution of 0.5 m, failed to manifest a substantial augmentation.
Notably, the accuracy assessment and skill measure demonstrated nominal growth, which
increased by 0.68% and 0.93%. As the simulation advanced into its third phase, predicated
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on 5 m data, these performance metrics reported an uptick, rising by 9.6% and 14.2% in the
same order.

Table 1. Performance indicators of two ANN-MLPs in all three data. Numbers in bold indicate the
better values between the two ANN-MLPs.

Data Indicator ANN ANN (+New Input)

ASTER 15 m
Accuracy rate 44.05% 56.62%
Skill measure 0.328 0.421

Maxar 5 m
Accuracy rate 51.76% 56.73%
Skill measure 0.421 0.480

Maxar 0.5 m
Accuracy rate 60.69% 61.10%
Skill measure 0.528 0.533

3.4. Transition Potential Map

The exceptional features of high-quality transition potential maps can be summarized
as follows: a distinct demarcation between cells with high and low potential, precise recog-
nition of gradients that indicate gradual transitions, identification of hotspots representing
areas with significant transition potential, and effective handling of sparsity [78]. In this
section, we explore the analysis of the TPM maps, taking into consideration these specific
characteristics.

Upon completion of the training and evaluation phases, five models, namely (SVM,
DF, LR, ANN, and ANN with new input), were used to project TPMs for two different
expanses of the Tsukuba study region, provided in three varying resolutions. The TPMs
generated by these models are illustrated in Figure 6. For the period spanning from 2003 to
2012 within this region, the majority of land transitions were classified into three primary
categories: from rice paddies to urban, from croplands to urban areas, and from forestlands
(trees) to urban areas. Later, between 2010 and 2015, the primary transitions observed
were from barren lands to urban, along with the sustained change from croplands and
forestlands to urban regions.

During the usage of the ASTER image-based classification maps, the SVM model
demonstrated good sparsity and inclusivity, covering regions with high and low potential
cells throughout the area under consideration. Moreover, distinct transition patterns
are apparent in both ANN-MLP models as well; that is, they provide unique and clear
differentiations between land-use classes and their related transition potentials in their
predictions. Moreover, these models established a clear boundary between high- and low-
potential cells within each of their maps, suggesting that they have successfully learned to
differentiate urban growth features from non-urban growth features.

Regarding using 5 m resolution maps, the LR and both ANN-MLP models exhibited
distinctive patterns in their predictions for the transition categories. Moreover, regarding
spatial detail, gradient quality, and even the sparsity of TPMs, both ANN-MLPs surpassed
the other models. It is worth noting that the ANN-based TPMs did not display any
numerous dense clusters of high-potential cells scattered across different regions, thereby
suggesting the absence of model overfitting.

Using 0.5 m resolution maps, the LR model effectively depicted the transition potential
from barren to urban lands, accurately portraying the gradients and hotspots of these
potentialities. The TPMs predicted by the DF and SVM models were analogous, whereas
the ANN model with the new input data generated a more discernible separation between
high potential and low potential regions at a broad scale than the ANN model just with
standard driving forces. These attributes suggest that the ANN-MLP (with the new input
data) proficiently learned the driving mechanisms of underlying urban growth.
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3.5. Final Simulations

By comparing the LULC maps of 2012 and JAXA 2020, it is evident that the urban pixel
count has risen from 73,000 to 113,000. This number in machine learning-based prediction
maps ranged between 93,000 and 96,000 urban pixels. Notably, when combining ANN and
LR, the count of urban pixels reached 106,000, highlighting that, although there is overlap
in the predicted pixels of urban growth between both models, there are instances where
each model separately identifies distinct areas as urban pixels on the map.

From 2015 to 2022, the growth of urban areas was also evident, albeit on a smaller
scale, and the combination of ANN and LR still showed complementary predictions in
some areas. The resulting output of the combination is shown in Figure 7.
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Figure 7. LULC prediction maps simulated by NLFEM. (a) Prediction of urban growth in Tsukuba
2020 using ASTER data, (b) prediction of urban growth in Tsukuba 2022 using Maxar data (5 m),
(c) prediction of urban growth in Tsukuba 2022 using Maxar data (0.5 m). The urban growth in
Tsukuba during the mentioned periods was characterized by strategic land readjustment projects, the
development of new urban areas around railway stations, and an increase in population. Central to
this urban expansion was the Tsukuba Express Line, which not only enhanced connectivity but also
served as a significant catalyst, steering the trajectory of the city’s urban development.
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3.6. Accuracy Assessment

Multiple aspects were considered in the evaluation of the performance of six different
simulations. These aspects include categorical metrics like kappa coefficients, as well as
binary classification metrics such as sensitivity, specificity, precision, accuracy, F1 score,
and Matthew’s correlation coefficient. The simulations were specifically focused on the
classification of urban cells. Table 2 presents the accuracy levels achieved in six different
simulations, while Table 3 provides the results of binary testing conducted on urban
pixel analysis.

Table 2. Kappa coefficients of the six prediction models for the three data. “+ANN-MC” indicates
the ANN-MLP model with the new input data. Numbers in bold indicate the best values among the
six models.

Data
(Period and Area) SVM-MC LR-MC DF-MC ANN-MC +ANN-MC NLFEM

ASTER 15 m
(2003–2012; 114.8 km2) 0.798 0.782 0.774 0.795 0.812 0.863

Maxar 5 m
(2010–2015; 14.8 km2) 0.678 0.703 0.695 0.668 0.705 0.726

Maxar 0.5 m
(2010–2015; 14.8 km2) 0.693 0.681 0.684 0.659 0.686 0.706

Table 3. Binary testing results for urban pixels from the six prediction models. “+ANN-MC” indicates
the ANN-MLP model with the new input data. Numbers in bold indicate the best values among the
six models.

Data
(Period and Area) Indicator SVM-MC LR-MC DF-MC ANN-MC +ANN-MC NLFEM

ASTER 15 m
(2003–2012; 114.8 km2)

Sensitivity 0.730 0.740 0.721 0.727 0.737 0.849
Specificity 0.822 0.859 0.762 0.821 0.925 0.940
F1 score 78.6% 80.7% 75.0% 78.4% 82.4% 89.5%

Matthews 0.545 0.587 0.482 0.540 0.635 0.784
Accuracy 76.8% 78.8% 74.0% 76.6% 80.4% 89.0%
Precision 0.852 0.887 0.782 0.852 0.946 0.950

Maxar 5 m
(2010–2015; 14.8 km2)

Sensitivity 0.804 0.818 0.842 0.816 0.855 0.869
Specificity 0.809 0.816 0.828 0.780 0.813 0.832
F1 score 81.7% 81.7% 83.3% 79.0% 82.7% 84.5%

Matthews 0.632 0.635 0.671 0.595 0.667 0.700
Accuracy 81.6% 81.7% 83.5% 79.7% 83.3% 84.9%
Precision 0.820 0.815 0.825 0.767 0.801 0.823

Maxar 0.5 m
(2010–2015; 14.8 km2)

Sensitivity 0.800 0.780 0.766 0.775 0.790 0.850
Specificity 0.820 0.789 0.785 0.789 0.811 0.815
F1 score 81.1% 78.6% 77.9% 78.4% 80.3% 82.7%

Matthews 0.618 0.570 0.55.1 0.580 0.601 0.664
Accuracy 80.9% 78.5% 77.5% 78.2% 80.0% 83.2%
Precision 0.825 0.792 0.793 0.794 0.818 0.805

High resolution often means more variability, complexity, and heavy processing, which
can result in models not generalizing well to new data. Furthermore, using a small area for
training may not provide a diverse enough sample for the model to learn effectively. This
lack of representativeness can lead to poorly performing models on unseen data, which
diminishes kappa.

In prediction, urban growth with 15 m classification maps, the NLFEM and the ANN,
which used new auxiliary input, are identical in precision and specificity, which means
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they perform similarly in correctly identifying true negatives (correctly predicted as non-
urban) and avoiding false positives (incorrectly predicted as urban). However, the NLFEM
has a better balance between precision and recall and classifies more instances correctly
overall based on its value in F1 score and accuracy. Moreover, regardless of these two, LR
performed better than the rest, so the effect of using LR and its combination through a fuzzy
overlay with the reinforcement ANN appears here. In addition, a 4% increase in accuracy
and F1 score between two ANNs represents the fact that additional input has valuable
information, making ANN better at handling positive instances (correctly predicted urban
and non-urban cells). The values of the F1 score and MCC for NLFEM were the highest,
implying superior overall performance and quality urban cell classifications among the
simulations examined.

In the subsequent phase, the expanse of the study area was reduced by a factor of eight.
Moreover, the time gap between the two classification maps was shorter. These factors pose
challenges to the machine learning models as the changes within such a brief period are
relatively insignificant, while the smaller area makes it more arduous to identify patterns
of change and predict cells with transmission potential. Additionally, the 5 m resolution
provides excellent spatial clarity, but the increased number of pixels also lengthens the
processing time. The ANN’s performance with the new input was nearly equivalent to
that of NLFEM, and both models outperformed others in accurately simulating urban cells.
The ongoing improvement in ANN’s accuracy, registering a 4% increase with the new
input compared to its performance without it, shows that MLR-derived likelihood maps
have continued to enrich the training of the ANN. In smaller areas, the spatial difference
between the urban cells predicted by the models is less compared to the larger sites, so in
this area, combining ANN with LR only resulted in a 1% increase in accuracy. Overall, the
disparity in the accuracy of the machine learning models only reached a maximum of 5%,
and they demonstrated commendable performance.

The third data remained identical in terms of both expanse and timeframe as compared
to the previous step, though there was an enhancement in the map resolution to 0.5 m. The
accuracy of every model declined, with the exceptions of enhanced ANN, whose perfor-
mance remained stable, and SVM, which demonstrated an improvement. The precision of
SVM surpassed that of NLFEM by 2%. However, when considering the harmonic mean
of precision and recall, the NLFEM outperformed both by a margin of 1.6%. This was
because of the higher value of SVM in the specificity and the higher value of NLFEM in the
sensitivity.

Figure 8 displays the ROC curve, providing a visual depiction that effectively demon-
strates the models’ ability to distinguish urban cells from non-urban ones. In two cases, the
ANN outperformed other stand-alone ML models in AUC when utilizing the helpful and
understandable relationships of land-use change as new input. Furthermore, the highest
AUC across all cases was achieved when its final simulation was combined with the logistic
simulation via a fuzzy overlay.
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4. Discussion

Our study aimed to improve the reliability and effectiveness of machine learning
models used in predicting urban land growth. Four primary machine learning models—LR,
SVM, DF, and ANN—were utilized to simulate the land cover map of Tsukuba, Japan. To
enhance the generalization of the ANN, we incorporated an auxiliary input created by
MLR. We ran ANN twice, with and without the new input, for improved comprehension,
resulting in a fifth simulation model. Additionally, we created a combined model that
merges the simulations of ANN (with the new input) and LR through a fuzzy overlay,
producing a sixth simulation. These six simulation models were tested on three different
classification map resolutions across two different sizes of the study area—one small and
the other eight times larger. We evaluated the performance of the models using various
metrics such as kappa coefficients, sensitivity, specificity, precision, accuracy, F1 score, and
Matthew’s correlation coefficient specifically for urban pixels.

This study provides valuable insights into applying machine learning models in
predicting urban growth patterns across different geographical scales and resolutions.
Results showed that the range of discrepancy between the highest and lowest correct
prediction, as indicated by the kappa coefficient for all stand-alone models, varied slightly
across different data, at approximately 0.037, 0.036, and 0.034, respectively. These slight
variations suggest that the models have almost similar levels of performance variation
across different resolutions and areas. This implies that none of the models significantly
outperforms or underperforms the others consistently. From a closer analysis, we observe
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that kappa values decline from the range of 0.774 to 0.812 in dataset with larger time
differences to the range of 0.668 to 0.705 in the second dataset with shorter time differences.
Therefore, the observed 10% performance decline might be ascribed to limited variation in
the data resulting from the minor urban growth in two near periods with smaller study
areas. Insufficient data diversity constrains model learning capacity, thereby impacting their
ability to generalize across scenarios. Moreover, upgrading the resolution of classification
maps significantly increased computational and processing demands, so that the production
of TPM took a lot of time, and our findings show that elevating resolution from 5 m to
0.5 m resulted in a mean reduction of 1.5% in kappa and 3% in AUC across all models,
except for SVM. This is possibly caused by SVM being more effective in high-dimensional
spaces due to its ability to find optimal hyperplanes that separate data points accurately [79].
Our key findings also indicate that, by considering the past frequencies of transitions and
their connections with the change factors, the ANN-MLP can more accurately reflect the
dynamics of the land-use change. This rationale stems from the inherent workings of
ANN and MLR mechanisms. MLR models the relationships between the type of land
origin (historical transitions) and different change agents and creates maps that depict
transition probabilities. ANN modeling is based on samples of pixels that underwent the
transition and samples that could have undergone it but were not changed. Therefore, the
transition likelihood map, with a spatially detailed view of how historical land change data
are associated with change agents, helps ANN better understand the distribution of these
changes across the landscape. Because ANN is mighty in modeling interactions through
its hidden layer, the model can understand and use it by adding an auxiliary input with
meaningful information. In detailing the performance advancements, the skill measure for
ANN’s enhancements rose from 0.328 to 0.421 when simulating the 2020 LULC with a 15 m
resolution. It further improved from 0.421 to 0.480 when modeling the 2022 LULC with a
5 m resolution and from 0.528 to 0.533 for the same year with 0.5 m data. Concurrently, the
accuracy rates also saw marked growth, registering at 44.05% to 56.62%, 51.76% to 56.73%,
and 60.69% to 61.10% across these scenarios, respectively. Correspondingly, the F1 score
mirrored these improvements, registering increases from 78.4% to 82.4%, 79% to 82.7%,
and 78.4% to 80.3% for each respective scenario. Additionally, to leverage the synergistic
effects of machine learning predictions, ANN, for to its ability to solve complex non-linear
problems [80], and LR, due to its efficiency with small datasets, robustness to outliers, and
being less prone to overfitting [81], were chosen to combine. The fuzzy overlay results
of these two models show an improvement in urban cell location in the final land-use
simulation, which allows for a more nuanced analysis. The ability to differentiate urban
cells from non-urban ones, measured by the AUC, reaches its highest levels in all three
study cases: 0.89, 0.84, and 0.83. Likewise, its F1 score increased by 7.1%, 1.8%, and 2.4%
compared to the second highest F1 score. It can be inferred that each of the ANN and
LR models exhibits accurate urban pixel predictions for some different areas on the map,
thereby demonstrating a complementary relationship that enhances overall performance
when combined.

There is limited comparative research in urban growth utilizing machine learning
models, and Bin Zhang et al. [78] represent one of the few notable studies in this area.
Their study utilized land-use data from GlobeLand30 for the years 2000 and 2020. They
employed LR-CA, ANN-CA, SVM-CA, and MaxEnt-CA models to simulate urban growth
in Beijing, Tianjin, and Wuhan, and the performance of these models was evaluated based
on various factors, including training, testing, projection accuracy, computational efficiency,
simulation accuracy, and the simulated urban landscape. The disparity between the
highest and lowest kappa values was 4.2, 3.4, and 5.9, respectively, slightly more than our
results but still highlights the nearby degrees of performance variation. Moreover, ANN
demonstrated superior computational efficiency by effectively learning and discerning
distinctive class features, mirroring our research findings. In another study, Wang et al. [82]
demonstrated promising outcomes by integrating historical data into a cellular automaton
model to simulate the expansion of urban land. While their approach differed from the
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one employed in the present study, both investigations revealed the beneficial influence
of incorporating historical transitions on enhancing accuracy. Furthermore, despite the
increase in accuracy after adding the new input, ANN (without new input) still had the
highest kappa compared to the SVM-MC, LR-MC, and DF-MC in the first step, with a
larger area and more noticeable urban growth, while this was not the case in the smaller
size. Therefore, our research corroborates previous studies indicating the ANN is a data
hungry model; when the dataset is small or biased, the network might struggle to grasp the
fundamental patterns and connections among the data points [83,84]. In Pir Mohammad
et al.’s [85] research, a CA model based on ANN was employed to forecast future LULC,
and the model achieved an overall accuracy of 89.2% which was higher than our results.
This was while we were using the JAXA LULC map as the ground truth with a 10 m
resolution which is higher than ASTER.

Our key methodological contributions enhance urban growth prediction accuracy,
showcasing the adaptability of machine learning. The primary innovation is elaborating
an underlying driver as a new input for ANN in urban dynamics modeling. This input
unravels the spatial ties between historical data and change agents using MLR. Our findings
reveal that the ANN forges interactions by effectively channeling this auxiliary information
in its hidden layer. Quantitatively, the performance leaps in ANN’s accuracy rate and skill
measure are notable and resonate with the F1 score’s upward trajectory. Additionally, the
amalgamation of ANN and LR through fuzzy overlay shows their synergistic effectiveness
in the outcomes. Our methods offer increased flexibility relative to current literature, setting
a refined precedent for subsequent studies. These techniques are appropriate for cities
undergoing land-use transformations and urban growth. They are adaptable to various
urban patterns and can be generalized to different scales, making them relevant for most
urbanized regions. However, despite this study’s valuable findings, certain limitations
need to be addressed. Firstly, evaluating the four models has primarily focused on their
effectiveness with MC models, and their ability to predict urban growth in a broader
context accurately requires further investigation. Secondly, the impact of high-resolution
data in a larger study area, where urban growth is more evident, may yield different results
for the model’s performance. Therefore, conducting additional research to examine these
influences more comprehensively is crucial. Lastly, while our approach in creating new
input for ANN and fuzzy overlay-based combination of this ANN and LR shows promise
in enhancing accuracy, its reliability should be further validated. Future analyses could
apply these simulations to different regions to corroborate the findings of this study and
ensure their generalizability.

5. Conclusions

This research study aimed to improve the reliability and effectiveness of machine
learning models used in predicting urban land growth. Six simulation models, including
LR, SVM, DF, and ANN, once with the new auxiliary input and once without, and lastly, a
combined ANN and LR model through a fuzzy overlay, were evaluated and tested with
three different classification map resolutions and two study area sizes.

The results show that the performance of the stand-alone machine learning models
produced an acceptable level of accuracy, and the disparity between the highest and lowest
levels of kappa varied slightly across different data. However, there was a kappa deteriora-
tion due to limited urban changes from 2010 to 2015 in smaller study areas. Therefore, area
size and amount of urban change impact the models’ ability to generalize across scenarios.
On the other hand, increasing the resolution of classification maps from 5 to 0.5 m led to
longer simulation times and slightly decreased accuracy measures. Moreover, our approach
to creating maps using MLR that offer precise spatial information illustrating how spatial
factors influence urban expansion enriched the training ANN process. Consequently, the
enhanced ANN with the new input yielded F1 score improvements of 4%, 3.7%, and 1.9%
across the three simulations, compared to the ANN without it. Moreover, integrating
the ANN (with MLR-based new input) and LR models through fuzzy overlay improved
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urban cell location and enhanced overall performance, achieving the highest F1 scores
of 89.5%, 84.5%, and 82.7%. These highlight MLR and fuzzy overlay capacities in land
change science.

Further research is recommended to examine these influences more comprehensively
and validate the reliability of the proposed approaches. Applying these simulations to
different regions can corroborate the findings and ensure their generalizability. Overall,
this research provides valuable insights into the application of machine learning models
in predicting urban growth patterns, showcasing the potential of these models across
different scales and resolutions. The proposed approaches and their promising results open
avenues for future research and offer a foundation for advancing urban growth prediction
methodologies.
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