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Abstract: Peatlands in Southeast Asia have been undergoing extensive and rapid degradation in
recent years. Interferometric Synthetic Aperture Radar (InSAR) technology has shown excellent
performance in monitoring surface deformation. However, due to the characteristics of high vegeta-
tion cover and large dynamic changes in peatlands, it is difficult for classical InSAR technology to
achieve satisfactory results. Therefore, an adaptive high coherence temporal subsets (HCTSs) small
baseline subset (SBAS)-InSAR method is proposed in this paper, which captures the high coherence
time range of pixels to establish adaptive temporal subsets and calculates the deformation results in
corresponding time intervals, combining with the time-weighted strategy. Ninety Sentinel-1 SAR
images (2019–2022) in South Sumatra province were processed based on the proposed method. The
results showed that the average deformation rate of peatlands ranged from approximately −567 to
347 mm/year and was affected by fires and the changes in land cover. Besides, the dynamic changes
of peatlands’ deformation rate a long time after fires were revealed, and the causes of changes were
analyzed. Furthermore, the deformation results of the proposed method observed 2 to 127 times as
many measurement points as the SBAS-InSAR method. Pearson’s r (ranged from 0.44 to 0.75) and
Root Mean Square Error (ranged from 50 to 75 mm/year) were calculated to verify the reliability
of the proposed method. Adaptive HCTSs SBAS-InSAR can be considered an efficient method for
peatland degradation monitoring, which provides the foundation for investigating the mechanisms
of peatland degradation and monitoring it in broader regions.

Keywords: tropical peatlands; adaptive HCTSs; SBAS-InSAR; Sentinel-1; peatland degradation

1. Introduction

Peatlands are widely distributed across the globe and play an important role in miti-
gating and adapting to climate change, which has attracted significant attention in recent
years [1–4]. There are about 500–600 Pg organic carbon stored in the peatlands ecosystems,
which have significantly higher carbon sequestration rates and effective storage capacity
per unit area than tropical rainforests, mineral soil, and ocean ecosystems [5–8]. Southeast
Asia has the largest tropical peatlands in the world, covering about 24.8 million hectares,
and although this represents only a small fraction of the global peatlands area (about 6%),
it stores about 68.5 billion tonnes of carbon, equivalent to 11–14% of the global total [9,10].
In recent years, peatlands of Southeast Asia have experienced extensive and intensive de-
forestation, drainage operations, forest fires, and plantation construction, which resulted in
the extensive damage and degradation of peatlands [11–13]. Peatland degradation results
in the release of significant amounts of carbon dioxide, which severely disrupts the global
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carbon cycle and causes drastic changes to the global climate environment. Therefore, it is
crucial to monitor peatland degradation in Southeast Asia [14,15].

Peatland degradation was divided into three distinct parts: oxidation, consolidation,
and compaction or shrinkage in [16]. Previous field observations have shown that these
processes were frequently accompanied by the change of peatlands’ elevation [17–19].
Therefore, it is possible to calculate the rate of degradation and extrapolate the state
of peatland degradation by monitoring the change of peatlands’ elevation. Traditional
methods to monitor the elevation of peatlands include anchoring the perforated polyvinyl
chloride (PVC) tubes as poles into the substrate underlying the peat [20], as well as geodetic
methods such as levelling survey [21] and Global Navigation Satellite System (GNSS) [22],
and the rod surface-elevation table-marker horizon (RSET-MH) method [23]. However,
traditional field-based techniques for measuring deformation are not cost-effective and are
difficult to achieve when it comes to large-scale and long-term monitoring requirements.
Interferometric Synthetic Aperture Radar (InSAR) technology has developed rapidly in
recent years, which provides a wide range of millimeter-level deformation results based
on a series of revisited SAR images. InSAR has been widely applied and contributed
significantly to various studies, including the study of permafrost degradation, urban
subsidence, seismic monitoring, landslide detection, and others [24–29].

In recent years, some researchers have extended the application of InSAR technology
to monitor the deformation of peatlands [13,30–37]. For instance, Khakim et al. discovered
that the deformation rate of the peatlands in the South Sumatra province after EI Nino in
2015 was 6.4 times greater than before [36]. L-band has a longer wavelength compared with
the C-band, which reduces the risk of spatial and temporal decorrelation. Therefore, Zhou
et al. revealed the peatland degradation and the effectiveness of restoration in Kalimantan,
Indonesia, from 2006 to 2010, with ALOS PALSAR data [30]. In another study, Hoyt
et al. utilized the small baseline subset (SBAS)-InSAR method to process ALOS PALSAR
data (2007−2011) of Southeast Asia and observed a general subsidence trend of tropical
peatlands [13].

The main problem in monitoring peatland deformation with InSAR techniques is the
discontinuous coherence of natural objects. As a result, the phase information of pixels may
be lost during standard InSAR processing, and the risk of incoherence persists even with
longer wavelength L-band SAR data [33]. Some researchers found that dynamic changes in
land cover resulted in the pixels exhibiting high coherence characteristics during parts of
the time series, which were defined as the temporary coherent scatterers (TCSs) [38,39]. By
identifying TCSs in peatlands, effective phase information was utilized to construct matrix
equations for estimating the deformation rate, which will extend the application of InSAR
for monitoring peatland degradation.

Based on the above idea, the intermittent small baseline subsets (ISBAS) method was
proposed in [40], which loosened the constraints for pixels’ stable coherence and extended
the coverage of deformation results to larger regions and has been successfully applied
in various fields [32,34,37,41–45]. However, the ISBAS method needs to produce a large
number of interferograms and select the interference combination for each highly coherent
pixel, which requires significant storage capacity and powerful computing performance.
Besides, interferometric information over a long time span may also lead to the decreased
reliability of deformation results. In another study, Izumi et al. simply divided the long-
term SAR image series into three consecutive subsets based on natural years and calculated
the deformation rate of each subset, which effectively increased the density of measurement
points [31]. However, simple annual division may not accurately reflect the actual variation
characteristics of TCSs. Some researchers employed statistics-based methods, such as
Bayesian step detector [38], genetic algorithm [46], and analysis of variance [47], to detect
the start and stop times of TCSs. However, these detection methods were primarily utilized
within the framework of Persistent Scatterer interferometry (PSI) and limited to small
areas, such as airports [39]. Compared with PSI, SBAS-InSAR was a more suitable method
for research areas with predominantly natural distribution, such as peatlands. However,
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the aforementioned methods exhibited low computational efficiency and may produce
unsatisfactory results when facing the complex and variable coherence characteristics of
peatland pixels.

In order to improve the ability of InSAR technology to obtain deformation results
of peatlands, a method that constructed high coherence temporal subsets (HCTSs) SBAS-
InSAR based on the adaptive strategy is proposed in this paper. In the following sections,
the dynamic changes characteristics of peatland coherence are studied firstly, and then
the construction of the proposed method is elaborated. Based on this, Ninety Sentinel-
1 SAR images of peatlands in Southern Sumatra province (2019–2022) were processed,
and the deformation results showed that there was widespread and rapid degradation of
peatlands. Besides, the dynamic changes in the deformation rate of tropical peatlands in a
long time after the fires were revealed, and the reasons were analyzed. Finally, the proposed
method showed significant effectiveness compared with the classical InSAR methods and
the reliability of the results were verified.

2. Study Area and Dataset
2.1. Study Area

The study area is located in the northeast of South Sumatra province, Indonesia
(Figure 1), where abundant peatland resources exist (about 1.48 million hectares, which
account for 8% of all Indonesian peatlands) [48]. South Sumatra province is situated in a
tropical monsoon climate characterized by high humidity levels, with temperatures ranging
from 24.7 ◦C to 32.9 ◦C and average annual precipitation is 2623 mm [49]. Peatlands are
mainly distributed in the eastern flat areas (elevation is generally within 10 m), there are
swamps and tidally influenced brackish waters, with vegetation in the form of palm family
and mangroves [50]. There is a clear division between the dry and rainy seasons, May to
September and October and April are respectively the dry and rainy seasons [48,51].
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Figure 1. Location of the study area and the distribution of peatlands in South Sumatra province.
Peatlands distribution is from the website of Global Peatlands.

Oil palm, rubber, coffee, and coconut are the four primary crops cultivated in South
Sumatra province [52]. Increasing demand for industrial products made from palm oil
and rubber has resulted in the expansion of industrial plantations in recent years, which
is eroding the remnant peatlands of the region. South Sumatra province experienced a
severe El Nino phenomenon in 2015, which caused drought in large areas and widespread
forest fires [36,53]. There were about 260,575 hectares of peatlands burned, which produced
substantial amounts of toxic aerosols and made a serious impact on local transportation
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and residents’ lives and health [54,55]. In 2019, South Sumatra province experienced severe
drought and intense fires again, which caused further degradation of the peatlands [54,56].

2.2. Dataset
2.2.1. Sentinel-1 Datasets

Sentinel-1A/B are C-band SAR satellites managed by the European Space Agency
(ESA). The revisit time of a single satellite is 12 days. Sentinel-1 single look complex (SLC)
SAR datasets over South Sumatra province were acquired by the Interferometric Wide
swath (IW) TOPS mode and collected from January 2019 to December 2022 in this study.
In addition, due to the limited coverage of the ascending data, descending SAR images
were used. The SAR dataset used in this study is described in Table 1. Note that most
peatlands are distributed in Sub-swaths 1 and 2, which were primarily handled, and due
to the mechanical failure of Sentinel-1, some SAR images were not acquired from January
2019 to December 2022.

Table 1. Sentinel-1 SAR data in this experiment.

Year Path-Frame Time Range Number of SAR Images Orbit Direction

2019 120-600 8 January 2019–22 December 2019 23 Descending
2020 120-600 3 January 2020–28 December 2020 24 Descending
2021 120-600 9 January 2021–23 December 2021 22 Descending
2022 120-600 4 January 2022–30 December 2022 21 Descending

2.2.2. Landsat Datasets

High-resolution optical images provided by multi-spectral Landsat satellite are utilized
in this study, which can be downloaded from the USGS EarthExplorer. The acquisition
of the data expanded from January 2019 to December 2022, and only the optical images
with low cloud coverage were selected. The Landsat dataset used in the study is listed
in Table 2.

Table 2. Landsat data in this experiment.

Number Path-Row Data Acquisition Time Sensor

1 123-062 10 March 2019 Landsat 8
2 123-062 13 April 2020 Landsat 8
3 123-062 6 October 2020 Landsat 8
4 123-062 9 October 2021 Landsat 8
5 123-062 11 April 2022 Landsat 9

3. Methodology
3.1. Temporal Decorrelation Model in Peatlands

Understanding the changes in ground objects’ coherence is fundamental to InSAR
algorithms, particularly in peatlands, with significant changes in vegetation cover type.
Hence, South Sumatra province was selected as a test area to study the coherence behaviors
of peatlands, which will guide the processing strategies in the following sections.

The coherence coefficient means the similarity degree of the same region in two
registered SLC SAR images in two imaging times, which could be modeled as the following
equation [57]:

γ =

∣∣∣∣∣∣ ∑N
n=1 ∑M

m=1 µ1(n, m)µ∗2(n, m)√
∑N

n=1 ∑M
m=1|µ1(n, m)|2∑N

n=1 ∑M
m=1|µ2(n, m)|2

∣∣∣∣∣∣ (1)

where, γ is the coherence between two SAR images, M and N are the size of the region
of coherence to calculate, m, n respectively represent the row and column, µ1(n, m) and
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µ2(n, m) are the complex values of the same area in the interferogram. At last, |·|2 is the
second-order norm of complex numbers.

SAR images (August 2019–May 2022) were grouped into four consecutive subsets and
the rest of isolated images were not taken into consideration (Figure 2). Note that some
images were not used in this section because they only stayed continuous in a short time.
The master image in each of the first three subsets was set as that in August and the master
image in Subset 4 was set as that in January, aiming at analyzing the difference of coherence
in different seasons.
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Figure 2. Distribution of four consecutive subsets in time dimension. Gray areas mean the gaps in
SAR images.

All images in each subset were registered with the master images, and the interfero-
grams were then generated. Regions of peatlands with high coherence characteristics in
the interferograms generated by images 12 days apart from the master image were labeled,
which were used to analyze the temporal change of peatlands. The SAR images of the four
subsets are listed in Table 3. Furthermore, it was necessary to notice that the regions in
different subsets were different, they are plotted in Figure 3.
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Table 3. Detailed information on four subsets.

Master Image Time Range Number of SAR Images

Subset 1 12 August 2019 2 August 2019–27 January 2020 15
Subset 2 6 August 2020 6 August 2020–27 April 2021 23
Subset 3 13 August 2021 13 August 2021–4 May 2022 13
Subset 4 9 January 2021 9 January 2021–27 April 2021 10

Exponential-based coherence attenuation model, as Equation (2) shows, was intro-
duced to describe the variation of coherence characteristics in peatlands [58,59]:

γ̂(t) = (γ0 − γ∞)e−t/τ + γ∞ (2)

where γ̂(t) is the coherence value, γ0 represents the initial coherence of ground objects,
γ∞ is the long-term coherence, which shows the pixels’ coherence’s convergent value in
time series. τ is a constant, which means the time that coherence drops down to the 1/e of
initial coherence.

Labeled regions of peatlands in four subsets were employed to fit Equation (2). The
fitting curves and parameters were respectively plotted and listed in Figure 4 and Table 4.
After analyzing the fitting results, we noticed that:
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Table 4. Fitting results of the labeled regions in four subsets.

Subset 1 Subset 2

γ0 γ∞ τ γ0 γ∞ τ

Region 1 0.5409 0.0794 19.9547 Region 1 0.4683 0.081 18.006
Region 2 0.5109 0.0873 13.3393 Region 2 0.4961 0.0817 16.8464
Region 3 0.6169 0.0828 23.0578 Region 3 0.4589 0.081 16.1096
Region 4 0.6624 0.0862 16.9992 Region 4 0.3599 0.0787 30.9161
Region 5 0.6323 0.0825 14.4918 Region 5 0.3952 0.0823 28.2754

Average 0.59268 0.08364 17.56856 Average 0.43568 0.08094 22.0307

Subset 3 Subset 4

γ0 γ∞ τ γ0 γ∞ τ

Region 1 0.5534 0.0884 10.4404 Region 1 0.676 0.0689 23.1483
Region 2 0.5145 0.0843 9.6184 Region 2 0.5854 0.0804 23.181
Region 3 0.6645 0.0845 17.2163 Region 3 0.5885 0.0787 26.3481
Region 4 0.556 0.0843 25.1663 Region 4 0.5986 0.0705 23.5385
Region 5 0.4224 0.0893 17.6846 Region 5 0.5106 0.0689 26.1949

Average 0.54216 0.08616 16.0252 Average 0.59182 0.07348 24.48216

1. The coherence coefficient of tropical peatlands exhibited a high value during the initial
stages of dynamic changes (with γ0 approximately 0.54) and decreased with time,
approaching incoherence scatterers (with γ∞ approximately 0.08) finally. Besides, the
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coherence decreased slowly in the rainy seasons (τ is about 18.5 days in Subset 1, 2, 3,
and about 24.5 days in Subset 4).

2. The coherence coefficient’s changes of labeled regions during the same period were
also different. Such as in Subset 2, the coherence coefficient in regions 2 and 3 dropped
to about 0.1 with 24-day time threshold, but region 4 still kept a high coherence, which
had a similar initial coherence with regions 2, 3.

3. Spatial distribution of regions with high coherence was different within different
subsets, so it was hard for peatlands to keep a high coherence for a long time.

The research on the coherence of peatlands in time and space confirmed the dynamic
change of peatlands’ coherence, which was the reason why it was difficult to monitor
peatlands with classical InSAR technology. Therefore, a novel method was proposed in the
following sections to solve this problem. Besides, those findings in this section will guide
the processing strategies in monitoring the deformation of peatlands by InSAR.

3.2. Continuous Coherence Three-Dimensional (3D) Model with 12-Day Time Threshold

Different from the amplitude-based method in PS-InSAR [60], the coherence coeffi-
cients threshold was utilized in SBAS-InSAR to select high coherence scatterers [61], which
increased the density of scatterers while reducing the amount of data processed. Therefore,
the continuous coherence 3D model in the temporal dimension was constructed, and the
time threshold was set as 12 days because ground objects could keep the maximum coher-
ence under the shortest revisit time of Sentinel-1. Furthermore, we analyzed the temporal
decorrelation model of peatlands in Section 3.1 to determine the coherence coefficients
threshold (set as 0.2) and optimal time threshold (set as 24 days), which were set based on
the following considerations:

The time thresholds that included 12, 24, 36, and 48 days were focused on, and the long-
term coherence was set as 0.1, which improved the robustness of the coherence coefficients
threshold. We noticed that setting 24 days as the time threshold could obtain interferograms
with high reliability because the coefficient thresholds of some regions were lower than 0.1
with a 36- or 48-day time threshold. Furthermore, all regions’ coherence coefficients were
higher than 0.2 with a 12-day time threshold and would still keep high coherence (higher
than the long-term coherence) with a 24-day time threshold.

Finally, pixels with coherence coefficients higher than the coherence coefficients thresh-
old (0.2) were set as high coherence time points, and lower were set as low coherence time
points in the time series. An example of the continuous coherence 3D model with a 12-day
time threshold is shown in Figure 5.
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3.3. Construction of Adaptive HCTSs

The construction of temporal subsets primarily comprises four elements: start time
of HCTSs, time span of HCTSs, stop time, and the step length between temporal subsets.
Subsequently, four elements will be analyzed in detail.

1. Start time of HCTS: HCTS will start with the first SAR image in the whole time series.
2. Time span of HCTSs: Cigna et al. [37] established the correlation between the velocity

standard errors and the number of interference pairs, as shown in Equation (3). Based
on the empirical correlation, the minimum number of interferograms (Ni) required
for a temporal subset can be calculated by setting an acceptable maximum error.

εvel =
M√
Ni

(3)

3. Stop time of HCTSs: An initial time subset has been established based on the aforemen-
tioned elements, but subsets require more SAR images because more interferograms
(more observations) can reduce the error of the rate. However, it is necessary to realize
that pixels’ coherence may be hard to keep high coherence for a longer time because
there are more uncertainties. Therefore, taking into account the relationship between
the length and number of TCSs in the temporal subset holistically, a method is pro-
posed to create adaptive temporal subsets, which utilize the change of measurement
points to optimize stop time. The detailed process is as follows:

Step A: Firstly, the number of pixels with high coherence (Nu1) that can be obtained
is calculated based on the minimum span requirement and the continuous coherence 3D
model established in Section 3.2.

Step B: A subsequent SAR image is added to the end of the temporal subset, resulting
in a new temporal subset. The interferometric combination is updated, and the number of
pixels (Nui) obtained in this new subset is calculated.

Step C: In order to get the upper limit for adding images, the judgment criterion is
set to terminate the infinite extension of the temporal subset: If Nui/Nu1 < K is true, it is
time to stop adding SAR images, where K is a proportionality constant, which is related to
the actual situation. The equation refers to the reduction proportion of integrated pixels
relative to the initial temporal subset.

Step D: In case step C is false, iterate through steps B and C until either step C becomes
true or there are no further images available in the whole time series.

4. Step length between temporal subsets: HCTS is established after completing the
above steps. However, it is necessary to recognize that there are multiple temporal
subsets rather than only one in the whole time series in most cases. Step length
between temporal subsets needs to be considered because starting with each SAR
image will produce many temporal subsets, which will slow down the efficiency of
InSAR processing in large-scale and long-time series monitoring.

To solve this problem, the time threshold is introduced as the step length between tem-
poral subsets, and TCSs can keep high coherence without losing too many interferograms
under the 24-day time threshold. Therefore, while including as many measurement points
as possible in the deformation results, the number of HCTSs is reduced, and the processing
efficiency is improved. Construction of adaptive HCTSs has been achieved, as exemplified
in Figure 6. The SAR images will be added to the subset orderly, and the number of pixels
with high coherence in the current subset will be recalculated, and the flowchart on the
right will be used to determine whether the termination condition is met. Then, the process
will be repeated following Step 4.
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Figure 6. An example of the construction of adaptive HCTSs. N0 means the minimum number of
SAR images in a temporal subset. Ni represents the number of pixels with high coherence in the
current temporal subset. St is the step length between the temporal subsets.

Figure 7 shows the establishment of adaptive HCTSs based on the above method
for TCSs with different high coherence durations in the whole time series, and each unit
possesses its own duration of high coherence.
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3.4. SBAS-InSAR Processing with Time-Weighted in HCTSs

Multiple HCTSs are established for the whole time series of Sentinel-1 images after
Section 3.3. Generic Mapping Tools Synthetic Aperture Radar software (GMTSAR) [62] is
utilized to process Sentinel-1 images and generate interferograms (gmtsar/gmtsar: GMT-
SAR (github.com), accessed on 20 March 2023). With the precise orbit data provided by
ESA, SAR images within the HTCSs are accurately co-registered to the master images. Fur-
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thermore, the space-time baseline map and interferograms are generated with a reasonable
spatial threshold and time threshold. For the same pixel P in two SAR images, the interfer-
ometric phase ϕP of pixel P in interferograms could be described as Equation (4) [63]:

ϕP = ϕdef +ϕtopo +ϕatm +ϕorb +ϕnoise (4)

where ϕdef is the phase change caused by the displacement of ground object in the line
of sight of radar during two observations, ϕtopo is the residual topographic phase due to
the error in the digital elevation model (DEM), ϕatm is the atmospheric phase disturbance,
ϕorb and the ϕnoise are respectively the satellite orbital error and the random noise error.

In order to improve the coherence of ground object pixels and reduce the influence
of speckle noise, multi-view processing with azimuth direction 2 and distance direction 8
is adopted. The 1-arcsecond (about 30 m resolution) Shuttle Radar Topography Mission
(SRTM) DEM is used to remove topographic phase contribution, and the interferograms
were unwrapped by calling SNAPHU [64]. The atmospheric phase delay is removed by
common-point stacking.

After the above operations, the interferometric phase can be expressed as Equation (5):

ϕP =
4π

λ

[
Dp(TB)−Dp(TA)

]
(5)

where the λ is radar wavelength, and Dp(TA) and Dp(TB) mean the pixel P’s displacement
in Time A and B.

Convert Equation (5) into matrix form:

ϕ(M·1) = B(M·N)V(N·1) (6)

where B(M·N) is a coefficient matrix with M·N, M is the number of interference pairs, N
corresponds to the number of SAR images, and the V(N·1) is the deformation rate at a
different time, which could be expressed as Equation (7)

VT = [V1 =
ϕ1

T1 − T0
, · · · , VN =

ϕN−ϕN−1

TN − TN−1
] (7)

Then, based on the singular value decomposition (SVD) method of the matrix, the
linear deformation rate of a pixel in the subset time is calculated, and the cumulative
deformation is generated by integrating in the temporal dimension. After geocoding with
the SRTM DEM, pixels are converted from radar coordinates to geographic coordinates
(WGS84). Furthermore, stable reference points are selected to convert the relative deforma-
tion rate of pixels to the absolute deformation rate. We assumed that the deformation of
the peatlands is mostly vertical, so it is necessary to project the line-of-sight displacement
deformation (dLOS) to the vertical displacement deformation (dver). This transformation
is achieved by obtaining the incidence angle (θ) of the Sentinel-1 and calculated based on
Equation (8):

dver =
dLOS

cos θ
(8)

Since the deformation results of a single time subset are scattered in time and limited
in space coverage, we obtain the average deformation rate of peatlands in the whole time
series and each natural year interval through temporal dimension weighted processing as
Equation (9) shows:

Vave =
∑M

i=1 ViTi

∑M
i=1 Ti

(9)

where Vave is the average deformation rate in mm/year, and M is the number of high
coherence temporal subsets, Vi and Ti are respectively the rate of deformation and time
span in i-th HCTS.
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3.5. Reliability Analysis of the Deformation Rate

In this study, the Pearson product-distance correlation coefficient (Pearson’s r) and
Root Mean Square Error (RMSE) are calculated to evaluate the reliability of the deformation
results, which are respectively defined as the following equations:

Pearson′s r =
∑N

i=1
(
Xi − X

)(
Yi − Y

)√
∑N

i=1
(
Xi − X

)2
√

∑N
i=1
(
Yi − Y

)2
(10)

where Xi and Yi are deformation rate in two sub-swaths, respectively. X and Y are the mean
deformation rate in two sub-swaths, and N is the total number of measurement points.

RMSE =

√
1
N∑N

i=1(Xi − Yi)
2 (11)

where the meaning of parameters in Equation (11) is same as in Equation (10).
Finally, the overall experimental process is summarized as follows (Figure 8):
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4. Results and Analysis
4.1. Results of the Adaptive HCTSs

Ninety Sentinel-1 SAR images over South Sumatra province were processed and gen-
erated the adaptive HCTSs based on the method proposed in Section 3.3. The general
parameter M was set as 11 in [37], which was accepted in our experiments. We comprehen-
sively considered the number of SAR images and temporal subsets and set the maximum
acceptable standard error as 2.5 mm/year, so a minimum of 20 interferograms were re-
quired in a subset. Besides, considering the relatively reliable time threshold was set as
24 days in Section 3.2, the minimum length for temporal subsets generally required about
11 SAR images. In order to keep data continuity in the temporal subsets, some SAR images
with a 36-day time threshold were added, while far-apart isolated images were ignored.
The proportionality constant K was set as 0.8, which was empirically determined in the
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experiments, and the results of adaptive HCTSs in Sub-swath 1 and Sub-swath 2 were
listed in Table 5. Note that the third HCTS in both sub-swaths were reserved, though there
were only eight images, because we did not want to lose too many images.

Table 5. Results of HCTSs in Sub-swath 1 and Sub-swath 2.

Sub-Swath 1 Sub-Swath 2

No. Time Range Master
Image

Number of Images
(Inter 1) Time Range Master Image Number of Images

(Inter 1)

1 8 January 2019–1
June 2019 9 March 2019 11 (15) 8 January 2019–1

June 2019 9 March 2019 11 (15)

2 2 August 2019–3
January 2020 23 October 2019 13 (23) 2 August 2019–3

January 2020 23 October 2019 13 (23)

3 5 September 2019–27
January 2020 16 November 2019 13 (23) 5 September 2019–27

January 2020 16 November 2019 13 (23)

4 3 March 2020–19
June 2020 8 April 2020 8 (10) 3 March 2020–19

June 2020 8 April 2020 8 (10)

5 6 August 2020–21
January 2021 17 October 2020 15 (27) 6 August 2020–26

February 2021 29 October 2020 18 (33)

6 30 August 2020–2
February 2021 10 November 2020 14 (25) 30 August 2020–10

March 2021 4 December 2020 17 (31)

7 23 September 2020–26
February 2021 4 December 2020 14 (25) 23 September 2020–22

March 2021 16 December 2020 16 (29)

8 17 October 2020–22
March 2021 28 December 2020 14 (25) 17 October 2021–15

April 2021 9 January 2021 16 (29)

9 10 November 2020–3
April 2021 9 Januray 2021 13 (23) 10 November 2020–21

May 2021 2 February 2021 16 (28)

10 4 December 2020–21
May 2021 14 February 2021 14 (24) 13 August 2021–17

March 2022 5 November 2021 16 (24)

11 13 August 2021–9
February 2022 24 October 2021 14 (22) 6 September 2021–29

March 2022 11 December 2021 15 (22)

12 6 September 2021–5
March 2022 17 November 2021 13 (19) 30 September 2021–10

April 2022 23 December 2021 14 (20)

13 30 September 2021–10
April 2022 23 December 2021 14 (20) 24 October 2021–4

May 2022 16 January 2022 14 (20)

14 24 October 2021–4
May 2022 16 Januray 2022 14 (20) 8 August 2022–30

December 2022 7 October 2022 12 (15)

15 8 August 2022–30
December 2022 7 October 2022 12 (15)

1 Inter means the number of interferograms.

4.2. Deformation Results of Peatlands in South Sumatra Province from 2019 to 2022

Adaptive HCTSs presented in Section 4.1 were utilized to obtain the deformation
results, and the time threshold and spatial baseline threshold were respectively set as
24-day and 300 m, which could obtain the high-quality interferograms as much as possible
and increase the number of interferograms.

Reference points in two sub-swaths were selected in P1 (Sub-swath 1) and P2 (Sub-
swath 2), both located in the urban areas, which are generally considered to be more stable
than natural surfaces [30]. P2 is near a Global Positioning System (GPS) Station (Station
ID: PAL8, http://geodesy.unr.edu/NGLStationPages/stations/PAL8.sta, accessed on 20
March 2023). Since the station only updated to 2017, the information provided by the GPS
station was not used to correct the deformation results. Details of the reference points are
shown in Table 6.

Table 6. Details about the reference points.

Reference Points Sub-Swath Location (Longitude, Latitude) Land Use

P1 1 (105◦58′25.19′′E, 3◦18′4.92′′S) Urban
P2 2 (104◦42′00.00′′E, 2◦54′7.02′′S) Urban (near to the GPS Station)

The deformation results of South Sumatra province’s peatlands from 2019 to 2022 are
shown in Figure 9. The time-weighted method was used to generate deformation results of
natural year interval and the whole time series (from 2019 to 2022, and we call it Whole)
based on the multiple temporal subsets, which will be utilized in the following analysis
and discussions. Moreover, it is necessary to note that the negative deformation value
represented the subsidence in peatlands, and the positive value meant the uplift.

http://geodesy.unr.edu/NGLStationPages/stations/PAL8.sta
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Figure 9. Deformation results of peatlands in South Sumatra province based on adaptive HCTSs
SBAS-InSAR. (a) Average deformation rate of study region in the whole time series. (b) Average
deformation rate of study region in 2019. (c) Average deformation rate of study region in 2020.
(d) Average deformation rate of study region in 2021. (e) Average deformation rate of study region
in 2022.

The study found that most of the peatlands in South Sumatra province continued to
experience extensive and severe degradation between 2019 and 2022, and the distribution
of subsidence characteristics was closely related to the scope of peatlands in space. Approx-
imately 43.5% of pixels in peatlands exhibited subsidence (less than −50 mm/year), while
45.8% kept stable (between −50 mm/year and 50 mm/year), and the remaining 10.7%
displayed uplift (greater than 50 mm/year), which accounted for a small proportion, so
we did not focus on these in this paper. Details of deformation results in the peatlands are
listed in Table 7.

Table 7. Detailed deformation results of peatlands in South Sumatra province from 2019 to 2022.

Min Subsidence Rate (mm/year) Max Uplift Rate (mm/year)

2019 −390 283
2020 −324 436
2021 −398 260
2022 −735 327

Whole −567 347

Compared with deformation results in 2019 and 2022, the number and coverage of
measurement points obtained in 2021 and 2022 significantly increased. By comparing the
deformation results spatially and quantitatively with fire hotspots provided by MODIS in
South Sumatra province from 2019 to 2022 (Figure 10), the above findings should be due
to the decrease of the vegetation cover of industrial plantations caused by the dense fire
hotspots in 2019, and the large bare land greatly increased the number of measurement
points in 2020 and 2021. By 2022, most of the fire-affected areas have been vegetated again,
so the number of measurement points was relatively small.
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Figure 10. Spatial distribution of fire hotspots in South Sumatra province (2019–2022) provided
by MODIS.

The average deformation rate of the peatlands in South Sumatra province ranged from
about −567 to 347 mm/year and showed a higher deformation rate in 2019 and 2022. The
higher deformation rate in 2019 was due to the increased oxidation of peatlands, which was
caused by the extensive and intensive fires. While there was a large amount of consolidated
soil in the upper layer caused by the oxidation (burning) of the previous year, which slowed
down the oxidation process to a certain extent and resulted in a decrease in the deformation
rate. At the same time, replanting in late 2020 may plow up the consolidated and burned
soil, and the rapid oxidation of the underlying fresh peatlands soil resulted in an increase
in the deformation rate in 2021.

Finally, the region that appeared to have a relatively high deformation rate in 2022 was
focused on and the historical deformation results (2019 to 2021) are shown in Figure 11b–e.
Five parts (A–E) of the region were focused on and there were a few optical images with
better imaging due to the cloud conditions, so normalized vegetation index (NDVI) maps
at different times were created to replace the changes of NDVI in the whole time series.
Most parts kept the relatively high vegetation cover until 2022, which resulted in the lack
of historical deformation results. Specifically speaking, part A and E kept a high and stable
vegetation cover in the past three years. The higher deformation rate in 2022 may be caused
by the drainage operations in the new industrial plantations, which is similar to the rate
in the first year after drainage [16]. Then, part B and C showed a low vegetation cover in
2019 and 2022 and a higher deformation rate in 2022, which may be caused by the further
development of industrial plantations. Finally, part D, due to the limitation of optical image
imaging time, the lower vegetation cover was not observed in the NDVI maps generated in
11 April 2022, although part D showed a higher deformation rate in the result of 2022.
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Figure 11. Maps of deformation results and the value of NDVI in the region with a relatively high
deformation rate. (a) Average deformation results in the whole time series. (b–e) Average deformation
results of the focused region from 2019 to 2022. (f–j) Maps of the value of NDVI in the focused region
at different times (10 March 2019, 13 April 2020, 16 October 2020, 19 October 2021, 11 April 2022).
(A–E) Five parts of the region that showed high deformation rate in the deformation result of 2022.

4.3. Reliability Validation of the Peatlands’ Deformation Results

Tropical peatlands are mostly located in areas covered by dense vegetation and hard
to access, so field ground leveling is difficult, and the local GNSS data available are limited
at the same time. Therefore, the method to validate peatland’s deformation results used
in [30] was applied in our experiments, Pearson’s r and RMSE of the average deformation
rate in the overlapping area’s deformation results were calculated and analyzed to validate
the reliability of results.

The deformation results of natural year (2019, 2020, 2021, 2022) and the whole time
series obtained by time weighting (Whole) were verified. As shown in Figure 10, Pearson’s
r ranged from 0.44 to 0.75, indicating a relatively strong linear relationship between defor-
mation results in the overlapping region. RMSE ranged from 50 to 75 mm/year, which
reflected the degree of deviation between the deformation results and was acceptable rela-
tive to the overall range of deformation rate. Those parameters proved that the deformation
results provided by the proposed method were reliable. Besides, Pearson’s r in Figure 12f
was relatively low, which may be due to the increased instability caused by more data
being weighted, and the relatively high RMSE in Figure 12e was affected by the higher
degree of dispersion of deformation results.
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Figure 12. Results of reliability validation of the peatland’s deformation results. (a) Map of overlap-
ping area between two sub-swaths. (b) Correlation results between two sub-swaths based on the
deformation results in 2019. (c) Correlation results between two sub-swaths based on the deformation
results in 2020. (d) Correlation results between two sub-swaths based on the deformation results
in 2021. (e) Correlation results between two sub-swaths based on the deformation results in 2022.
(f) Correlation results between two sub-swaths based on the deformation results in the whole time
series (2019–2022).

4.4. Comparison and Evaluation of Deformation Results of Adaptive HCTSs SBAS-InSAR

To evaluate the improvement of the proposed method, comparisons between SBAS-
InSAR and HCTSs SBAS-InSAR were conducted in three parts: Firstly, the SAR images in
the whole time series were utilized for computation (call it Whole 1). Secondly, datasets
divided with the natural year were computed separately. Finally, based on the above results,
the time-weighted approach was employed to obtain deformation results in the whole time
series (call it as Whole 2). Temporal and spatial baselines in all experiments were consistent
(24 days and 300 m), and some SAR images with a 36-day time threshold were added to
the subsets due to the absence of SAR images in certain time periods. Besides, the range of
some SAR images in 2022 does not fully overlap with the main SAR image, which resulted
in the loss of measurement points in the deformation result of 2022 and the whole time
series.

Deformation results obtained in comparative SBAS-InSAR experiments are presented
in Figure 13.
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points was limited and primarily concentrated in PS scatterers when utilizing all SAR im-
ages or subsets of time divided by natural year as input data. Those were exemplified in 
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for a long time, and (d) towns. Improvement of the number and the coverage area of meas-
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Figure 13. Deformation results of comparative SBAS-InSAR experiments in South Sumatra province.
(A) Average deformation rate of study region in 2019. (B) Average deformation rate of study region
in 2020. (C) Average deformation rate of study region in 2021. (D) Average deformation rate of
study region in 2022. (E) Average deformation rate of study region during 2019–2022 (Whole 1).
(F) Average deformation rate of study region during 2019–2022 by using time-weight method (Whole
2).(a–d) Land use features of the four regions in optical remote sensing images provided by Google
Earth Image.

Comparative SBAS-InSAR experiments showed that the number of measurement
points was limited and primarily concentrated in PS scatterers when utilizing all SAR
images or subsets of time divided by natural year as input data. Those were exemplified
in Figure 13, (a) Palembang City, (b) artificial roads within plantations, (c) soil that stays
bare for a long time, and (d) towns. Improvement of the number and the coverage area of
measurement points between adaptive HCTSs SBAS-InSAR method and the SBAS-InSAR
methods are plotted in Figure 14. Statistics of the comparative information are listed in
Table 8. Note that Whole 1 and Whole 2 were both compared with the Whole.
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Figure 14. (a) Improvement of the number of measurement points between experiments with the
proposed method and comparative SBAS-InSAR experiments. (b) Improvement of the coverage
area of measurement points between experiments with the proposed method and comparative
SBAS-InSAR experiments.

Table 8. Statistics of comparative information between comparative SBAS-InSAR experiments and
experiments based on the adaptive HCTSs SBAS-InSAR.

Number and coverage percent of measurement points in the comparative SBAS-InSAR experiments

2019 2020 2021 2022 Whole 1 Whole 2
Sub-swath 1 (Points Number) 38,221 39,195 40,080 29,122 5172 104,908
Sub-swath 2 (Points Number) 186,475 184892 195,595 209,057 124,467 303,075

Coverage Percent in Sub-swath 1 (%) 2.4 2.4 2.5 1.8 0.3 6.6
Coverage Percent in Sub-swath 2 (%) 4.4 4.3 4.6 4.9 2.9 7.1

Number and coverage percent of measurement points in experiments based on the adaptive HCTSs SBAS-InSAR

2019 2020 2021 2022 Whole
Sub-swath 1 (Points Number) 211,539 479,287 362,905 216,792 659,378
Sub-swath 2 (Points Number) 542,354 561,776 416,772 434,282 773,624

Coverage Percent in Sub-swath 1 (%) 13.4 30.4 23.1 13.8 41.9
Coverage Percent in Sub-swath 2 (%) 12.9 13.3 9.9 10.2 18.3

Improvement of the number of measurement points (times)

Sub-swath 1 5.5 12.2 9.1 7.4 127.4 6.2
Sub-swath 2 2.9 3 2.1 2.1 6.2 2.5

Adaptive HCTSs SBAS-InSAR obtained a larger number of measurement points
compared with the SBAS-InSAR methods. Those newly acquired measurement points
were primarily located in the areas where SBAS-InSAR methods had difficulty obtaining,
such as industrial plantations with significant changes in vegetation cover in a short
time. According to the detailed comparative information, the number of measurement
points in a single natural year increased about 2 to 12 times, and the ratio of coverage
increased from 1.8% to 30.4%. Compared with the deformation results in Whole 1 and
Whole 2, the number of measurement points increased about 6 to 127 times and 2 to 6 times,
respectively. Furthermore, there was a significant improvement, especially in Sub-swath 1.
The improvement was relatively low in Sub-swath 2 due to the relatively low change in
plantation forests in this region and the long-term stability of the southern forests. Even
with the adaptive HCTSs SBAS-InSAR method, it was still challenging to obtain satisfied
deformation results.
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5. Discussion

Rapid degradation of tropical peatlands has released a large amount of greenhouse
gas, which accelerates the process of global warming [65,66]. Aiming at the limitations of
classical InSAR technology in the research of peatland degradation, this paper constructed
multiple adaptive HCTSs by capturing the dynamic variation range of peatlands, which
made full use of the limited phase information to calculate the deformation rate and the
time-weighted strategy was utilized to get the deformation results in corresponding time
intervals based on the discrete HCTSs.

The proposed method was practiced in the South Sumatra province and revealed the
widespread and rapid degradation of peatlands from 2019 to 2022 (about−567 to 347 mm/year).
Based on the average annual deformation rate of peatlands, the degradation law of peat-
lands in a long time after fires was inferred. In addition, Pearson’s r and RMSE of defor-
mation results in overlapping areas were calculated to verify the reliability of the results.
We compared the results with previous studies of the region. Specifically speaking, the
subsidence rate in [36] was relatively higher (25 cm/year before fires and 1.6 m/year after
fires), which should be related to the initial degraded state of peatlands and the more
serious fires. Then, the deformation rate in [31] was consistent with us in the same region,
but we observed a higher deformation rate in the region that did not be obtained in [31].

As shown by the comparisons with SBAS-InSAR methods, adaptive HCTSs SBAS-
InSAR effectively increased the density of measurement points (2 to 127 times). Besides,
compared with the ISBAS method in [37], this short-time baseline, multi-time subset
method significantly reduced the number of interferograms (from about 18%~31% of all
possible interference combinations to about 5% of all), and the memory requirements and
the reduction will be more significant in a longer time series. The proposed method has
strong extensibility. Construction parameters of HCTSs could be updated dynamically
by combining with the coherence characteristics of different ground objects, the precision
of results, and the number of images to extend the deformation monitoring ability of the
proposed method in various ground objects.

Although HCTSs SBAS-InSAR method has been able to obtain a largerand relatively
reliable number of measurement points, it still has certain limitations: Firstly, it is still
difficult to obtain the deformation information of the completely incoherent regions in the
whole time series, such as the dense forest or the stable state industrial plantation above
the original peatlands. Besides, the overall process of the proposed method is relatively
complicated and needs to be simplified.

6. Conclusions

An adaptive HCTSs SBAS-InSAR method is proposed to address the problem that
the dynamic changes of vegetation cover in tropical peatlands make it difficult to obtain
surface deformation information by classical InSAR methods. Ninety Sentinel-1 SAR
images (2019−2022) were processed, and the spatial and temporal degradation of peatlands
in South Sumatra province were revealed based on the proposed method. Besides, the
reliability of the deformation results was evaluated by calculating Pearson‘s r and RMSE,
and the proposed method was compared with the SBAS-InSAR methods to evaluate the
improvement. The conclusions of this paper are summarized as follows:

1. Based on the deformation results, the widespread and rapid degradation of peatlands
in South Sumatra province between 2019 and 2022 was observed, with the deformation
rate ranging from −567 to 347 mm/year. The spatial distribution of subsidence was
closely related to the scope of peatlands.

2. The study found that peatlands’ deformation rate and the number of measurement
points were affected by fires and the change in land cover. Fires caused higher rates
of peatland deformation, after which the rate of deformation decreased slightly and
then increased with time. At the same time, the change in land cover, such as the
newly reclaimed industrial plantation, also contributed to the rapid deformation
of peatlands. Besides, the number of measurement points increased after fires or
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deforestation because there is a lot of soil exposed and decreases with the restoration
of vegetation.

3. Pearson’s r and RMSE in overlapping area’s deformation results ranged from 0.44 to
0.75 and 50 to 75 mm/year, respectively, which verified the reliability of the proposed
method. In addition, compared with the deformation results obtained by SBAS-InSAR
methods, the number of measurement points increases by about 2 to 127 times, and the
ratio of coverage increases from 1.8% to 41.9%. New measurement points were always
located in the areas that were difficult to monitor with SBAS-InSAR methods, which
enhanced the monitoring ability of InSAR technology in tropical peatlands. At the
same time, the number of interferograms and storage requirements were significantly
reduced compared with the ISBAS method, which was conducive to meeting the
requirements of calculation in a wider range.

In the future, the adaptive HCTSs SBAS-InSAR method will be improved and applied
to the calculation of peatland degeneration across Southeast Asia in recent years. Then,
the emission of carbon dioxide caused by the peatland degeneration will be estimated
according to the relationship between them. Finally, we will assess the extent to which the
degradation of tropical peatlands in Southeast Asia contributes to global climate change.
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