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Abstract: To overcome the interference of noise on the exploration effectiveness of the controlled-
source electromagnetic method (CSEM), we improved the deep learning algorithm by combining
the denoising convolutional neural network (DnCNN) with the residual network (ResNet), and
propose a method based on the residual denoising convolutional neural network (ResDnCNN)
and shift-invariant sparse coding (SISC) for denoising CSEM data. Firstly, a sample library was
constructed by adding simulated noises of different types and amplitudes to high-quality CSEM data
collected. Then, the sample library was used for model training in the ResDnCNN, resulting in a
network model specifically designed for denoising CSEM data. Subsequently, the trained model
was employed to denoise the measured data, generating preliminary denoised data. Finally, the
preliminary denoised data was processed using SISC to obtain the final denoised high-quality data.
Comparative experiments with the ResNet, DnCNN, U-Net, and long short-term memory (LSTM)
networks demonstrated the significant advantages of our proposed method. It effectively removed
strong noise such as Gaussian, impulse, and square wave, resulting in an improvement of the signal-
to-noise ratio by nearly 20 dB. Testing on CSEM data from Sichuan Province, China, showed that the
apparent resistivity curves plotted using our method were smoother and more credible.

Keywords: controlled-source electromagnetic method (CSEM); denoising convolutional neural
network (DnCNN); residual network (ResNet); shift-invariant sparse coding (SISC); deep learning;
denoising

1. Introduction

Controlled-source electromagnetic method (CSEM), which involves artificially exciting
alternating electromagnetic fields, offers advantages such as stable sources and strong
resistance to interference compared to natural-source electromagnetic methods [1–4]. It has
been widely applied in various fields, including engineering and environmental surveys,
resource and energy exploration, and geological hazard detection [5–7]. Similarly, CSEM
also plays an important role in exploration of hydrology and engineering geology [8–10]. It
is also suitable for both ocean and land construction [11,12]. However, due to increasing
human activities, CSEM observation data is inevitably affected by electromagnetic noise,
which can significantly degrade the detection performance [13,14]. Therefore, suppressing
noise and obtaining high-quality data under conditions of strong interference have become
the primary challenges in current CSEM research.

When conducting research on CSEM data, denoising is particularly important given
the current limited observation conditions [15–17]. CSEM data denoising can be performed
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based on the data characteristics, using both frequency domain and the time domain ap-
proaches. Yang et al. [18] optimized the excitation signal to achieve CSEM data denoising
in the time domain. Liu et al. [19] applied frequency-domain spread-spectrum-induced
polarization methods to remove weak noise from electromagnetic data, although the ef-
fectiveness of this method diminishes as the noise amplifies. Liu et al. [20] proposed
a time-domain empirical mode decomposition method for periodic CSEM data, but its
limitation lies in an increase in residual noise when noise becomes more complex. Sin-
gular value decomposition [13] has been employed in the time domain for CSEM data
analysis and denoising, yet its performance needs further improvement when dealing with
diverse types of noise. Dictionary learning [21,22] can be a feasible approach for denoising
electromagnetic data, although the dictionaries used may lack flexibility and adaptability.
Li et al. [23] introduced the shift-invariant sparse coding (SISC) to address the issue of fixed
dictionaries. By continuously learning data features, the dictionary can be updated. Thus,
SISC automatically calculates the sparsity based on different signals, leading to effective
noise suppression. Traditional denoising methods can achieve excellent results under
certain conditions, but overall, their adaptability and efficiency need to be improved.

With the development of technology in recent years, the application of deep learning
networks has become increasingly widespread [24–27]. As such, many methods for denois-
ing using deep learning have also emerged in the field of controlled–source electromagnetic
exploration. Wu et al. [28] proposed the use of wavelet neural network to predict high
frequency noise in CSEM data. The denoising autoencoder [29,30] can also learn noise
characteristics and was also applied to CSEM data denoising. It has better performance
compared to wavelet neural network. Wu et al. [30] proposed a new denoising method
by combining the autoencoder and long short-term neural network (LSTM), and the re-
sults showed that its effectiveness is superior to any single network. Li et al. [31] fused
LSTM with four convolutional neural networks to achieve better denoising performance.
Bang et al. [32] proposed a recurrent neural network (RNN) to handle noise in CSEM data.
Sun et al. [33] combined the minimum noise fraction (MNF) algorithm with deep neural
network (DNN) to extract complex features of the signal and achieved better denoising
results. Compared with traditional denoising methods, deep learning-based methods
are more intelligent and less susceptible to subjective bias. This demonstrates that deep
learning has significant advantages in the denoising of CSEM data.

Zhang et al. [34] introduced the denoising convolutional neural network (DnCNN),
and He et al. [35] proposed the residual network (ResNet) in the field of image processing,
both of which have achieved great success. DnCNN has good performance for data with
different noise levels, while ResNet can avoid network degradation caused by an increase in
network layers. They have achieved extremely successful cases in the fields of seismic data
denoising [36] and geomagnetic data denoising [37]. These advancements provide insights
for CSEM data denoising, leveraging the strengths of these two networks. In this study, an
improved deep learning algorithm is proposed based on the two networks, combined with
the advantages of the shift-invariant sparse coding (SISC) denoising method. This formed
the residual denoising convolutional neural network (ResDnCNN) and shift-invariant
sparse coding denoising method, aimed at achieving more accurate and comprehensive
denoising results.

The following is the arrangement of this article. In Section 2, we will provide an
introduction of DnCNN, ResNet, and the proposed ResDnCNN network, and the overall
denoising procedure. Section 3 will describe the construction of the sample library and the
training process. In Section 4, we will demonstrate the superiority and reliability of the
proposed method through synthetic data and comparative methods. In Section 5, we will
further illustrate the effectiveness of the proposed method using field data from Sichuan
Province, China, along with comparative methods. Finally, in Section 6, we will summarize
and discuss the proposed method.



Remote Sens. 2023, 15, 4456 3 of 19

2. Method Principle
2.1. Overall Experimental Process

The overall experimental process for CSEM data denoising is shown in Figure 1.
Firstly, based on the characteristic sampling rate of 1200 Hz for the CSEM data, the data
to be processed is divided into segments with 1200 sampling points per cycle and then
reassembled. The segmented data is then fed into the pre-trained ResDnCNN network
model for initial denoising. Subsequently, the preliminary processed data is input into
SISC, where the signal features are learned through SISC to build a learning type redundant
dictionary. This learned dictionary is used to further separate the noise from the data, so
as to obtain high-quality data after noise removal. This paper focuses on the ResDnCNN
network. SISC denoising was reported in Li et al. [11], which can be referred to for more
information; this paper does not provide a detailed introduction of SISC.
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2.2. Denoising Convolutional Neural Network (DnCNN)

DnCNN [34] is an improved version built upon the convolutional neural network
architecture. It deepens the network architecture, incorporates residual learning, and batch
normalization (BN) to enhance the denoising performance and improve the robustness of
the network. DnCNN is widely used in the field of image denoising. Li et al. [38] addressed
the problem of image inpainting by transforming it into an image denoising problem and
utilized DnCNN to restore the missing parts of the image edges. Wei et al. [39] proposed a
fast block based evolutionary denoising convolutional neural network (FBE-DnCNN) to
enhance the competitiveness of image denoising. Karthikeyan et al. [40] improved DnCNN
with discrete wavelet transform (DWT) to achieve image quality enhancement and improve
image contrast. DnCNN has also made good progress in seismic data denoising. Yuan
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et al. [41] demonstrated that DnCNN can be well applied to the attenuation of linear noise
in seismic data and the extraction of high-quality signal. Dong et al. [42] proposed the
integration of spatial attention mechanisms with a multiscale convolutional neural network
(CNN), resulting in a multiscale spatial attention denoising network (MSSA-Net). This
approach facilitates the suppression of strong seismic background noise and the recovery
of weak reflected signals.

The structure diagram of the DnCNN network is shown in Figure 2, the overall
DnCNN network consists of 18 layers. The size of the convolutional kernels involved in the
convolutional layers contained in the network are set to 3 × 1, the step size is set to 1, and
the number of convolutional channels is set to 64. The activation function adopted by the
network is rectified linear units (ReLU) function. The first layer of the network transforms
the data by convolution and activation functions. Each of the subsequent 2 to 17 layers
consist of a convolutional layer, a BN layer, and an activation function. The last layer is
only a convolutional layer, which is used to change the number of data channels and make
the output data scale to the required scale. Batch normalization of data can narrow the
range of changes in data distribution and reduce the convergence difficulties caused by
excessive data distribution during training. It also decreases the complexity of network
training and minimizes network overfitting.
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Figure 2. The structure diagram of DnCNN network.

2.3. Residual Network (ResNet)

The proposed of ResNet [35] network effectively alleviates the dilemma of gradient
explosion caused by excessive layers in deep learning neural networks. Unlike other
networks, ResNet can converge better in the face of hundreds of layers and avoids the
problem of gradient disappearance. The ResNet network with skip connections preserves
the input data features and maintains training accuracy despite the deepening of the
network. The main feature of ResNet is the use of two different residual modules, as shown
in Figure 3. On the left (a) is the identity residual module, where the input data is directly
connected to the output by jumping. On the right (b) is the convolutional residual module,
where the data are subjected to convolution and batch normalization during the jump
connection, with the convolutional kernel size is set to 1 × 1. The use of the two different
residual modules depends on the input data size. When the input data size is consistent
with the output data, the identical residual module is used. When the input data size is
inconsistent with the output data, the convolutional residual module is needed to adjust
the data size. Similar to the DnCNN network, applications of ResNet networks can be
seen in the field of image denoising. Feng et al. [43] concluded that ResNet network can
be useful for the acquisition of high-quality optical remote sensing images. In addition,
Duan et al. [44] proposed a dual residual denoising autoencoder method with a channel
attention mechanism (DRdA-CA) to improve the quality of communication signal.
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The ResNet network architecture is shown in Figure 4. It mainly consists of three
parts: the input layer, hidden layer, and output layer. The input layer performs preliminary
processing of the data through convolution, batch normalization, and activation functions to
make the data meet the input requirements of the hidden layer. The size of the convolution
kernel involved in the convolution operation is set to 3 × 1, the step size is set to 1, and
the number of channels is set to 64. The hidden layer mainly consists of identity residual
modules and convolutional residual modules, which will automatically judge the input
data. When the size of the input and output data does not match, the convolutional residual
module is selected to change the number of output channels. The output layer uses an
average pooling layer to discard redundant data and reduce the computational complexity
of the network. Then, the data are mapped through a fully connected layer to ultimately
restore output data with the same size as the input data.
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2.4. Residual Denoising Convolutional Neural Network (ResDnCNN)

The DnCNN network provides more flexibility in handling different types of noise,
as it can effectively extract and identify specific noise patterns. It is also designed to
be compatible with GPU environments, which enhances the computational performance
of the network. On the other hand, ResNet is primarily composed of various residual
modules that are interconnected. This architectural design ensures the integrity of data
features during the training process. Even with deep networks, ResNet promotes model
convergence and prevents the occurrence of gradient explosion. In this study, we aimed to
leverage the advantages of both networks and achieve complementary effects. We expected
to achieve better noise removal results for CSEM data containing multiple types of noise.
We refer to this improved neural network as the residual denoising convolutional neural
network (ResDnCNN). The network architecture of ResDnCNN is illustrated in Figure 5. It
can be seen that the input data is first processed by the DnCNN network. The output of the
DnCNN network is then concatenated with the original input data and fed into the ResNet
network for further processing. Finally, the residual concept is employed through skip
connections, where the original input data are added to the output of the ResNet network,
thus complementing the features lost during the network training process.
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2.5. The Wide-Field Electromagnetic Method

The field data used in this paper were collected with the E − Ex wide-field electro-
magnetic method (WFEM) [12]. It is a CSEM of frequency domain. E − Ex WFEM uses an
electric dipole source and observes the electric field component of the horizontal square
line. The signal sent by the transmitter is a pseudo-random multi-frequency wave signal.
For example, when a pseudo-random 7-frequency wave is sent, it can be equivalent to a
signal composed of 7 square waves. Each transmission contains seven signals with different
frequencies but similar energy intensities. The 7-2 signal is composed of seven harmonic
signals of 1 Hz, 2 Hz, 4 Hz, 8 Hz, 16 Hz, 32 Hz, and 64 Hz; while the 7-3 signal is composed
of seven harmonic signals with the frequencies of 0.75 Hz, 1.5 Hz, 3 Hz, 6 Hz, 12 Hz, 24 Hz,
and 48 Hz. The receiver is designed without any filter; that is, it adopts full waveform
acquisition. Afterwards, the power–frequency interference is filtered out through digital
signal processing in a computer. The relevant instruments and software were developed
by Central South University. The maximum power of the transmitter is 200 KW and the
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maximum transmitting current is 200 A. It can send any pseudo-random square wave
signal ranging from 0.01 to 8192 Hz. The receiver adopts a 32-bit analog-to-digital converter
(ADC), and its background noise is less than 1 µ Vrms (0.1~10 Hz).

The apparent resistivity parameter of the WFEM method is closely related to the
electric field. In actual exploration, the measurement of the horizontal component (Ex) of
the electric field is related to the potential difference (VMN) between the electrodes M and
N, and the equations are as follows:

Ex =
IdL

2πσr3 fE−Ex (ikr), (1)

fE−Ex (ikr) = 1 + 3sin2 ϕ + e−ikr(1 + ikr), (2)

VMN = Ex·LMN =
IdLρ

2πr3 fE−Ex (ikr)·LMN, (3)

KE−Ex =
2πr3

dL·LMN
, (4)

where I represents the emission current; dL is the length of the electric dipole; i stands for the
imaginary symbol; k means the wave number; r is the distance between the observation site
and the center of the electric dipole; σ is the conductivity; ϕ represents the angle between
the direction of the electric dipole source and the vector diameter from the midpoint of
the source to the receiving site; fE−Ex (ikr) is composed of frequency, resistivity, and offset,
reflecting the propagation characteristic of the electromagnetic wave under the ground;
LMN is the distance between the electrodes M and N; and KE−Ex is a geometrical coefficient
that is only related to the polar distance.

Therefore, it can be concluded that there is a correlation between the apparent resistiv-
ity and the potential difference, and the equation is:

ρa = KE−Ex

VMN

I
1

fE−Ex (ikr)
. (5)

Equation (5) is the WFEM apparent resistivity. As can be seen from the equation, as
long as the potential difference, the transmission current, and the related pole distance
coefficient are measured, the apparent resistivity information of the underground can
be obtained.

3. Production of Sample Library and Model Training
3.1. Production of Sample Library

The quality of the training results of a model is greatly influenced by the sample library
and, therefore, a sample library with diverse and rich noise content is crucial for effective
training. To enrich the sample library with various types of noise, we selected high-quality
CSEM data from Sichuan Province, China, and added multiple types of simulated noise to
it. The specific process is as follows. The high-quality CSEM data was duplicated 90 times
and labeled as samples 1 to 120. Gaussian white noise ranging from 1 to 30 dB was added
to data numbered from 1 to 30, respectively. Then, after adding Gaussian white noise
ranging from 1 to 30 dB to the data numbered from 31 to 60, different amplitudes of pulse
noise were randomly added; Similarly, after adding Gaussian white noise ranging from
1 to 30 dB to the data numbered from 61 to 90, and then square wave noise of different
amplitudes were added separately and randomly. Finally, 90 pairs of samples containing
different types and amplitudes of noise were obtained. By selecting different high-quality
data and following the above process to create the training set, the number of samples
was expanded. The final training set in the sample library consisted of 230,400 samples,
while the validation set contained 46,080 samples. The ratio of training set to validation set
was 5:1.
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Some examples of the noise types in the sample library are shown in Figure 6.
Figure 6a–c demonstrates the addition of different intensities of Gaussian white noise
to the high-quality CSEM data. Figure 6d–f shows the addition of random pulse noise to
the high-quality CSEM data with different intensities of Gaussian white noise. Figure 6g–i
depicts the addition of different square wave noise to the high-quality CSEM data with
different intensities of Gaussian white noise.
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Figure 6. Types of noise in some sample libraries: (a) add 5 dB of Gaussian white noise to the
high-quality CSEM data; (b) add 15 dB of Gaussian white noise to the high-quality CSEM data;
(c) add 25 dB of Gaussian white noise to the high-quality CSEM data; (d) add random pulse noise
based on (a); (e) add random pulse noise on the basis of (b); (f) add random pulse noise on the basis
of (c); (g) add random square wave noise based on (a); (h) add random square wave noise based on
(b); (i) add random square wave noise based on (c).

3.2. Model Training

The well-prepared sample library was input into U-Net, LSTM, ResDnCNN, DnCNN,
and ResNet networks for training, respectively. During the subsequent network training
process, the sample library was encapsulated and shuffled to prevent the network from
learning a specific order. The five networks were trained with the same set of parameters,
which are as follows: Epoch was set to 300, batch size was set to 130, initial learning rate
was set to 0.00001%, and the learning rate was decayed by 0.9 every 10 training epochs
using gradient descent. The common Adam optimizer was used, and the loss function was
set to mean square error (MSE). Figure 7 displays the training and validation loss curves
for the five networks. From Figure 7, it can be observed that the training and validation
loss curves of ResDnCNN are closer to each other compared to the other networks, and the
curve is smoother. This indicates that ResDnCNN may have better robustness.
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Figure 7. Training and validation loss curves for (a) U-Net, (b) LSTM, (c) ResDnCNN, (d) DnCNN,
(e) ResNet. The blue line represents the training loss curve and the orange line represents the
validation loss curve.

3.3. Denoising Resulte of the Validation Set

Figure 8 shows the training results of the ResDnCNN for the validation set. The
black curves in Figure 8 represent the expected high-quality signal, while the blue curves
represent the actual denoised result of the network. In Figure 8, the red curves in (a–c)
represent Gaussian white noise at different SNR. The green curves in (d–f) of Figure 8
represent mixed noise consisting of different levels of Gaussian white noise and pulse
noise. The orange curves in (g–i) of Figure 8 represent mixed noise consisting of different
levels of Gaussian white noise and square wave noise. Obviously, the training curve of the
ResDnCNN model on the validation set is closely fitted to the expected high-quality signal,
demonstrating a strong suppression effect on various types of simulated noise.
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Figure 8. The denoising effect of ResDnCNN for partial validation set: (a) The denoising effect of
Gaussian white noise with low SNR; (b) The denoising effect of Gaussian white noise with medium
SNR; (c) The denoising effect of Gaussian white noise with high SNR; (d) The denoising effect of
Gaussian white noise and pulse noise with low SNR; (e) The denoising effect of Gaussian white noise
and pulse noise with medium SNR; (f) The denoising effect of Gaussian white noise and pulse noise
with high SNR; (g) The denoising effect of Gaussian white noise and square wave noise with low
SNR; (h) The denoising effect of Gaussian white noise and square wave noise with medium SNR;
(i) The denoising effect of Gaussian white noise and square wave noise with high SNR.
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4. Synthetic Data

To demonstrate the generalization ability and effectiveness of our method, we pro-
cessed the synthetic data to showcase the effectiveness of the model. The synthetic data
used in this article were made by adding different simulated pulse noise and square wave
noise to the measured high-quality data collected in Huidong County, Sichuan Province.
There was no obvious noise in both the time domain and the frequency domain, and the
Pearson correlation between the observed data and the synchronous transmission signal
was about 0.95. The apparent resistivity curves obtained with them were also very smooth
and continuous. Therefore, it can be determined that they were almost unaffected by noise
pollution. Figure 9 shows the denoising effect of this method on the synthetic pulse data
in the time domain. After being processed by ResDnCNN, most of the strong noise was
eliminated, with only a small amount of the noise remaining. The preliminary processing
data were inputted into SISC for further processing, and finally high-quality data were ob-
tained. Similarly, Figures 10 and 11 also demonstrate the denoising effect of this method on
synthetic square wave data and synthetic pulse square wave data in the time domain. The
effects shown in the figures indicate the effectiveness of this method in noise suppression.
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Figure 9. The denoising effect of synthetic pulse noise in the time domain. (a,c,e) the original synthetic
pulse noise data denoised by ResDNCNN, and then denoised by SISC; (b,d,f) the local segments
corresponding to the data on the left.

We denoised the same segment of noisy synthetic data in the time domain using
U-Net, LSTM, DnCNN, ResNet, ResDnCNN, and ResDnCNN-SISC respectively, and the
results are shown in Figure 12. Although the U-Net and DnCNN demonstrated effective
results in Figure 12, the denoised signals exhibited significant fluctuations and lacked
smoothness. The signals processed by the LSTM network and ResNet network showed
obvious overall amplitude compression, exhibiting significant differences in amplitude
compared to the original signals. The suppression of square wave noise by the ResDnCNN
network was not complete, resulting in residual noise. However, the denoising results
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were relatively smooth in regions without square wave noise. The data processed by
ResDnCNN-SISC, on the other hand, was the smoothest. The noise of the whole signal
was effectively removed without altering the signal amplitude. Figures 13 and 14 show the
denoising effects of different methods on synthetic pulse noise and synthetic pulse square
wave noise, respectively.
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synthetic square wave noise data denoised by ResDNCNN, and then denoised by SISC; (b,d,f) the
local segments corresponding to the data on the left.
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Figure 12. The denoising results of synthetic square wave data using different methods are as follows:
The solid dark blue line represents the signal with square wave noise. The solid red line, black line,
green line, light blue line, orange line, and deep purple line represent the denoised signals using
U-Net, LSTM, DnCNN, ResNet, ResDnCNN, and ResDnCNN-SISC, respectively.
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Figure 13. The denoising results of synthetic pulse data using different methods are as follows:
The solid dark blue line represents the signal with pulse noise. The solid dark blue line represents
the signal with square wave noise. The solid red line, black line, green line, light blue line, orange
line, and deep purple line represent the denoised signals using U-Net, LSTM, DnCNN, ResNet,
ResDnCNN, and ResDnCNN-SISC, respectively.
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To gain a more intuitive understanding of the denoising effect, we used a tabular form
to quantify the data. As shown in Table 1, we calculated the SNR, reconstruction error, and
normalized cross-correlation (NCC) for the denoised signals using the six methods. It is
clear that the ResDnCNN-SISC method improves the SNR from −2.9118 dB to 14.2147 dB,
reduces the reconstruction error from 1.39% to 0.19%, and increases the correlation coeffi-
cient from 0.5828 to 0.9848. Among these six methods, the ResDnCNN-SISC method had
the best performance. Figure 15 shows the improvement in SNR achieved by different
methods for denoising the synthetic data, presenting the quantified SNR data in the form
of a line graph to demonstrate the superiority of our approach visually.

Table 1. Quantification of denoising results using different methods.

Method SNR (dB) Reconstruction Error NCC

Noisy −2.9118 1.39% 0.5828
U-Net 9.9061 0.31% 0.9541
LSTM 6.4761 0.47% 0.8882

DnCNN 10.0815 0.31% 0.9526
ResNet 5.7866 0.51% 0.9520

ResDnCNN 10.2678 0.30% 0.9520
ResDnCNN-SISC 14.2147 0.19% 0.9848

In geological exploration, it is common to encounter uneven electrical conductivity
distribution of subterranean rocks. In such cases, the apparent resistivity can be employed
to reflect the variations in electrical conductivity of rocks and ores. When the data are
weakly contaminated by noise, the apparent resistivity curve will exhibit a relatively smooth
response with frequency variation. However, when the data are contaminated by strong
noise, the apparent resistivity curve will jump and exhibit sharp fluctuations. We calculated
the WFEM apparent resistivity of the signal after denoising by different methods. Figure 16
shows the apparent resistivity curves obtained by different methods when dealing with
different synthetic noise.
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Figure 16. The apparent resistivity curves of different stations.

As shown in Figure 16, compared with the other five methods, this method can
effectively suppress the distorted data when the original data are contaminated by strong
noise causing severe distortion. This results in smoother and more regular apparent
resistivity curves, aligning with the trend of slow frequency variation observed in wide
area of apparent resistivity.

5. Measured Data

To test the application effect of this method in practical scenarios, we next performed
denoising on the measured CSEM data. The CSEM data used in this study were obtained
from the karst survey of a reservoir in Huidong, Sichuan Province, China, conducted by
Central South University with the wide-field electromagnetic method in September 2017.
The signal transmitter and receiver used in the survey were developed by Central South
University. The signal sent by the signal transmitter was a pseudo-random 7-frequency
wave. The length of the transmitter dipole was about 1 km, the distance between the
transmitter and receiver was about 7 km, and the maximum transmit current was close to
70 A. The receiver was responsible for collecting the electric field signal parallel to the dipole.
Figure 17 shows the denoising effect of the measured data in the time domain. In the figure,
the original measured data exhibits significant pulse noise at some moments, indicating that
the data was severely contaminated. After the initial ResDnCNN processing, the data noise
was suppressed, but there was still some residual noise. Finally, the periodic high-quality
data with a stable amplitude and smooth curve were obtained through SISC processing.
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data on the left.

As shown in Figure 18, we selected a segment of the measured data and applied
different methods for denoising. In Figure 18, it is evident that LSTM and ResNet exhibit
significant differences in the amplitude of the data before and after processing. The
amplitude width of the data processed by LSTM and ResNet is noticeably smaller compared
to the original signal. Although the amplitude of data processed by U-Net and DnCNN
has little change, there was still residual Gaussian white noise present in the original
data. ResDnCNN effectively suppressed most of the noise, with only minimal weak noise
remaining. The ResDnCNN-SISC method successfully removes the noise and yields high-
quality data that matches the expected shape. Obviously, our method has significantly
improved the quality of the measured data.
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Figure 18. Results of different methods for processing measured data: (a) original measured data; de-
noising results of (b) U-Net, (c) LSTM, (d) DnCNN, (e) ResNet, (f) ResDnCNN, (g) ResDnCNN-SISC.
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The apparent resistivity curves of the measured data are shown in Figure 19, where
different methods were used to denoise different datasets. From Figure 19, it can be
observed that the data processed by U-Net, LSTM, and ResNet networks actually became
more volatile, resulting in a reverse effect on the data. While DnCNN achieved a certain
degree of noise reduction, data jumps still exist, as seen in the figure. The processing effect
of ResDnCNN is basically the same as that of ResDnCNN-SISC. For data with jumps at
low frequencies, it is able to achieve a smooth apparent resistivity curve by ResDnCNN-
SISC processing.
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Figure 19. The apparent resistivity curves of the measured data obtained by different processing methods.

6. Conclusions

To address the challenge of noise interference in the practical application of CSEM and
enhance the detection effectiveness of CSEM, this study conducted research on denoising
methods for CSEM data. Diverging from conventional signal denoising methods, this study
proposed an innovative deep learning denoising approach by synergistically leveraging the
advantages of the residual network (ResNet) and denoising convolutional neural network
(DnCNN). Moreover, this approach is integrated with shift-invariant sparse coding (SISC)
to establish the ResDnCNN-SISC method, which systematically applies to the processing
of CSEM data, facilitating a comprehensive investigation of high-precision denoising
techniques for CSEM data. By subjecting CSEM data, containing various types of noise, to
denoising tests, the effectiveness of our method in effectively suppressing different types of
noise was demonstrated, leading to a significant improvement in the data signal-to-noise
ratio. Furthermore, the ResDnCNN-SISC method exhibited the advantage of avoiding
bias caused by manual threshold setting, resulting in more objective denoising outcomes.
Through the application of the ResDnCNN-SISC denoising method to real-world CSEM
data and a comparative analysis with other denoising methods such as U-Net, DnCNN, and
LSTM, the prominent superiority of the ResDnCNN-SISC method is evident, as it yielded
smoother resistivity curve. This enhancement is conducive to improving the effectiveness
of the controlled-source electromagnetic method in geophysical exploration under strong
interference conditions.

In this study, the WFEM data were taken as an example to illustrate the effectiveness
and superiority of the proposed method. Nevertheless, the proposed method is not only
applicable to WFEM data, but also to any other CSEM data, as well as periodic or similar
periodic signals in other fields. It is worth noting that the ResDnCNN network model
employed in this study requires a relatively long training time. To enhance training
efficiency, further optimization of the neural network structure will be pursued to reduce
the training duration.
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