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Abstract: The airborne hyperspectral remote sensing systems (AHRSSs) acquire images with high
spectral resolution, high spatial resolution, and high temporal dimension. While the AHRSS captures
more detailed information from the terrain objects, the computational complexity of data processing
is greatly increased. As an important application technology in the hyperspectral domain, anomaly
detection (AD) processing must be real-time and high-precision in many cases, such as post-disaster
rescue, military battlefield search, and natural disaster detection. In this paper, the real-time AD
technology for the push-broom AHRSS is studied, the mathematical model is established, and
a novel implementation framework is proposed. Firstly, the optimized kernel minimum noise
fraction (OP-KMNF) transformation is employed to extract informative and discriminative features
between the background and anomalies. Secondly, the Nyström method is introduced to reduce
the computational complexity of OP-KMNF transformation by decomposing and extrapolating the
sub-kernel matrix to estimate the eigenvector of the entire kernel matrix. Thirdly, the extracted
features are transferred to hard disks for data storage. Then, taking the extracted features as input
data, the background separation model-based CEM anomaly detector (BSM-CEMAD) is imported
to detect anomalies. Finally, graphics processing unit (GPU) parallel computing is utilized in the
Nyström-based OP-KMNF (NOP-KMNF) transformation and the BSM-CEMAD to improve the
execution efficiency, and the real-time AD for the push-broom AHRSS could be realized. To test
the feasibility of the implementation framework proposed in this paper, the experiment is carried
out with the Airborne Multi-Modular Imaging Spectrometer (AMMIS) developed by the Shanghai
Institute of Technical Physics as the data acquisition platform. The experimental results show that the
proposed method outperforms many other state-of-the-art AD methods in anomalies detection and
background suppression. Moreover, under the condition that the downlink data could retain most of
the hyperspectral data information, the proposed method achieves real-time detection of pixel-level
anomalies, with the initial delay not exceeding 1 s, the false alarm rate (FAR) less than 5%, and the
true positive rate (TPR) close to 98%.

Keywords: airborne hyperspectral remote sensing system (AHRSS); anomaly detection (AD); feature
extraction; graphics processing unit (GPU); real-time processing

1. Introduction

With the development of remote sensing technology, the acquired images have un-
dergone a development process from panchromatic to multispectral to hyperspectral [1].
Compared with panchromatic and multispectral images, hyperspectral images provide
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richer spectral information, which helps to identify the subtle features of the terrain ob-
jects [2]. Recently, hyperspectral remote sensing has been widely used in various fields,
such as military reconnaissance, urban planning, disaster assessment, resource exploration,
and environmental monitoring [3–7]. According to the platforms hyperspectral sensors
carried, they can be divided into ground-based hyperspectral remote sensing systems
(GHRSSs), spaceborne hyperspectral remote sensing systems (SHRSSs), and airborne hy-
perspectral remote sensing systems (AHRSSs). In practice, the payloads of GHRSSs could
be replaced according to the requirement for data acquisition, while the GHRSSs is chal-
lenging to be widely used because of the limited data acquisition areas when they are
worked. The SHRSSs could obtain data in a large area, while their payloads are tough to
replace and maintain. Additionally, the area of data acquisition is limited by the satellite
transit situation, and it is almost impossible to collect data in a timely manner in areas
that face emergencies. The AHRSS makes up for the shortcomings of the GHRSS and the
SHRSS. The payloads of AHRSSs could be replaced according to the demand in practice,
allowing for capturing data rapidly in areas where the human resources are difficult to
reach or involve. Moreover, the flight altitude setting of the airborne platforms is flexible,
and multi-scale remote sensing data could be collected according to the requirements [8].
The basic information of the representative AHRSS is shown in Table 1, and it can be seen
that push-broom scanning represents the mainstream of the AHRSS.

Table 1. The basic information of the representative AHRSS.

The AHRSS Name Place of Development Producing Year Scanning Mode

AIS America 1983 push-broom
AVIRIS America 1987 whisk-broom

CASI/SASI/MASI/TASI Canada 1988 push-broom
AISA Finland 1992 push-broom

HyMap Australia 1997 whisk-broom
PHI China 1997 push-broom
AVIS Germany 1997 push-broom
OMIS China 2000 whisk-broom
AVIS-2 Germany 2001 push-broom
APEX Switzerland/Belgium 2009 push-broom

Hyper-Cam Canada 2009 push-broom
MAKO America 2010 push-broom
Sieleters France 2013 push-broom

AISA-OWL Finland 2014 push-broom
AMMIS China 2016 push-broom
HyTES America 2016 push-broom

AVIRIS-NG America 2019 push-broom

While the AHRSS captures more detailed information from the terrain objects, the
computational complexity of data processing is greatly increased [6]. As an important
application technology in the hyperspectral domain, anomaly detection (AD) processing
must be real-time and high-precision in many cases, such as post-disaster rescue, military
battlefield search, and natural disaster detection [9]. Methods based on deep learning, by
mining the deep features of images, have emerged as a research hotspot in recent years for
achieving anomaly target detection. Depending on whether annotated samples are needed,
deep learning-based anomaly detection methods can be categorized into supervised and
unsupervised anomaly detection. Current anomaly detection methods based on deep
learning are depicted in Table 2. Over the past few years, researchers have developed
numerous methods for hyperspectral anomaly detection. However, several critical tech-
nical challenges still persist in practical applications: (1) parameter tuning, (2) algorithm
generality, and (3) real-time capability [10]. Furthermore, with the advancement of auto-
mated applications, conducting real-time anomaly detection and transmitting results to the
ground for intelligent decision making has also become a pressing technological challenge
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that needs to be overcome. As mentioned above, push-broom scanning represents the
mainstream of the AHRSS. Many related methods on the real-time AD for the push-broom
AHRSS are proposed, mainly focusing on fast matrix computation, hardware design, and
parallel computation [10]. For matrix inverse adaptive calculation and optimization, some
algorithms, such as the real-time recursive causality [11], the linear algebra libraries and
multicore platforms [12], and the Cholesky decomposition and linear algebra [11], are
proposed to improve the computational efficiency of anomaly detection methods effectively.
In terms of hardware design, a two-module field-programmable gate array (FPGA) [13]
based on the Reed-Xiaoli (RX) algorithm and the constrained energy minimization (CEM)
algorithm is designed to transform those two algorithms according to requirements. In
parallel computation, the parallel computing version of the RX detector is studied on
the multicore platform [12] and graphics processing unit (GPU) [14], which achieve a
remarkable acceleration effect in execution time.

Table 2. Anomaly detection methods based on deep learning.

Category Representative Methods

Unsupervised deep learning-based
anomaly detection methods

Sparse decomposition and auto-encoder (AE) [15];
stacked AE [16–18]; spectral constraint adversarial

AE network [19–21]; generative adversarial network
(GAN) combined with AE [22]; exploiting

embedding manifold of autoencoders [23]; and
semi-supervised spectral learning with GAN [24].

Supervised deep learning-based anomaly
detection methods

Convolutional neural network (CNN) [25]; online
CNN [26]; and CNN combined with low-rank

representation (LRR) [27].

Although these studies have made some achievements, the real-time anomaly de-
tection for the push-broom AHRSS still faces the following difficulties: (1) the nonlinear
characteristics and high dimensionality of hyperspectral images are significant, and it is
difficult to extract features effectively; (2) constructing a precise representation of anomalies
and background information for complex scenes is challenging, and as a result, the target
detection accuracy for AHRSS is limited recently; (3) the hyperspectral image has many
bands, leading to high data processing calculation and low processing efficiency; (4) the
AHRSS captures more detailed information from the terrain objects, and the images have
high research value. Ensuring that the downlink data retain most of the hyperspectral data
information while performing real-time processing is also a problem to be considered.

In this paper, the real-time AD technology for the push-broom AHRSS is studied,
the mathematical model is established, and a novel implementation framework is pro-
posed. To test the feasibility of the implementation framework, this paper designs an
experiment carried out with the Airborne Multi-Modular Imaging Spectrometer (AMMIS)
developed by the Shanghai Institute of Technical Physics as the data acquisition platform.
The experimental results show that the proposed method outperforms many other AD
methods (including RX detector [12], low-probability detector (LPD) [28], abundance-
and dictionary-based low-rank decomposition (ADLR) [29], collaborative representation
detector with background purification and saliency weight (CRDBPSW) [30], anomaly
detection via integration of feature extraction and background purification (FEBPAD) [31],
and kernel isolation forest-based hyperspectral anomaly detection method (KIFD) [32])
in anomalies detection and background suppression. Moreover, under the condition that
the downlink data could retain most of the hyperspectral data information, the proposed
method achieves real-time detection of pixel-level anomalies, with the initial delay not
exceeding 1 s, the false alarm rate (FAR) less than 5%, and the true positive rate (TPR) close
to 98%.

The main contributions of this paper are introduced as follows:
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(1) Considering the data acquisition, data transmission/storage, and data processing of
the push-broom AHRSS, the real-time AD technology for the push-broom AHRSS
is studied in this paper, the mathematical model of it is established, and the critical
problems that need to be solved can be explained by mathematical theoretical analysis,
which provides a theoretical reference for the difficulties in the push-broom AHRSS
real-time AD technology.

(2) A novel AHRSS real-time AD implementation framework is proposed based on
the mathematical model. Firstly, the optimized kernel minimum noise fraction
(OP-KMNF) transformation is employed to extract informative and discriminative
features between the background and anomalies. Secondly, the Nyström method is
introduced to reduce the computational complexity of OP-KMNF transformation by
decomposing and extrapolating the sub-kernel matrix to estimate the eigenvector of
the entire kernel matrix. Thirdly, the extracted features are transferred to hard disks
for data storage. Then, taking the extracted features as input data, the background
separation model-based CEM anomaly detector (BSM-CEMAD) is imported to detect
anomalies. Finally, graphics processing unit (GPU) parallel computing is utilized in
the Nyström-based OP-KMNF (NOP-KMNF) transformation and the BSM-CEMAD
to improve the execution efficiency, and the real-time AD for the push-broom AHRSS
could be realized.

(3) To test the feasibility of the implementation framework, this paper designs an experi-
ment carried out with the Airborne Multi-Modular Imaging Spectrometer (AMMIS)
developed by the Shanghai Institute of Technical Physics as the data acquisition plat-
form. The experimental results show that the proposed method outperforms many
other AD methods (including RX detector, LPD, ADLR, CRDBPSW, FEBPAD, and
KIFD) in anomalies detection and background suppression. Moreover, under the con-
dition that the downlink data could retain most of the hyperspectral data information,
the proposed method achieves real-time detection of pixel-level anomalies, with the
initial delay not exceeding 1 s, the false alarm rate (FAR) less than 5%, and the true
positive rate (TPR) close to 98%.

The remainder of the manuscript is organized as follows: In Section 2, the proposed
methods are described in detail. The experimental results are shown in Section 3. Section 4
analyzes and discusses the results, and conclusions are presented in Section 5.

2. Proposed Methods

As mentioned above, the real-time AD for the push-broom AHRSS still faces many
difficulties. Considering the data acquisition, data transmission/storage, and data pro-
cessing of the push-broom AHRSS, the real-time AD technology based on the graphics
processing unit (GPU) for the push-broom AHRSS is studied in this paper. In this section,
the mathematical model of the real-time AD technology for the push-broom AHRSS is
established, and the GPU-based parallel computing is described.

2.1. Mathematical Model Analysis

The realization of the push-broom AHRSS real-time AD could be abstracted as the
mapping function:

y = fy(x; η), (1)

where y represents the expected output of the push-broom AHRSS real-time AD, x repre-
sents the image data captured by the push-broom AHRSS, η represents the parameter to be
determined in the mapping function, and fy represents the abstracted mapping function
dependent on the parameter η.

To solve the difficulties in the real-time AD for the push-broom AHRSS, a novel AHRSS
real-time AD implementation framework is proposed in this paper. The implementation
flowchart is shown in Figure 1. It can be seen that the factors affecting the expected output
y include the effectiveness of the features extracted by feature extraction, the efficiency and
reliability of data transmission/storage, the detection capability of the anomaly detection
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method, and the execution efficiency of the data processing. The determination of the
parameter η in the mapping function is affected by these factors, which can be abstracted
as the mapping function:

η = ε ∗ dt ∗ fη(dr; ad), (2)

where dr, ad, ε, and dt represent the effects of the effectiveness of the features extracted by
feature extraction, the detection capability of the anomaly detection method, the execution
efficiency of the data processing and transmission/storage, and the reliability of data
transmission/storage in the determination of the parameter η, respectively.
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In the mathematical model, the influence of the execution efficiency of the data pro-
cessing and transmission/storage and the reliability of data transmission/storage in the
determination of the parameter η is represented by the perturbation factors ε and dt in the
mapping function, which plays a decisive role in the whole mapping relationship. The
execution efficiency of the data processing and transmission/storage, ε, is affected by two
factors—(a) the execution efficiency of the data processing εdr−ad and (b) the execution
efficiency of data transmission/storage, εdt— and the mathematical relationship could be
expressed as:

ε = εdr−ad + εdt (3)

After the mathematical model of the real-time AD technology based on the GPU for
the push-broom AHRSS is established, the critical problems that need to be solved can be
explained by mathematical theoretical analysis. Improving the reliability of data transmis-
sion/storage and the execution efficiency of the data processing and transmission/storage
can be described as the process of optimizing the perturbation factors ε and dt, while
improving the feature extraction performance and AD accuracy can be described as the
process of optimizing the parameters dr and ad in the mapping function.

In previous works, feature extraction, anomaly detection, and algorithm complexity op-
timization are studied [33–35]. The optimized kernel minimum noise fraction (OP-KMNF)
transformation for feature extraction [33], the background separation model-based CEM
anomaly detector (BSM-CEMAD) for anomaly detection [34], and the Nyström-based
OP-KMNF (NOP-KMNF) transformation for algorithm complexity optimization [35] are
proposed. On the problem of the inaccurate noise estimation in kernel minimum noise
fraction (KMNF) transformation, a mixed noise estimation model (MNEM) combining the
Gaussian prior denoising model, the Sobel operator, and the median filter is proposed for
OP-KMNF transformation. The MNEM is more robust and effective, retains more edge
features and details, and is more suitable for noise estimation during KMNF transformation.
Experiments using various hyperspectral datasets with different spatial and spectral reso-



Remote Sens. 2023, 15, 4449 6 of 21

lutions were conducted. The results show that the OP-KMNF transformation overperforms
other feature extraction methods (including linear discriminant analysis (LDA) [36], princi-
pal component analysis (PCA) [37], minimum noise fraction (MNF) transformation [38],
optimized MNF (OMNF) [39], factor analysis (FA) [40], kernel PCA (KPCA) [41], KMNF
transformation [42], optimized KMNF (OKMNF) transformation [43], and local preserving
projections (LPPs) [44]) for feature extraction and has better adaptability to the changes
in spatial resolution and spectral resolution [33]. To reduce the computational complexity
of the KMNF transformation, a Nyström-based KMNF transformation (NKMNF) feature
extraction method is proposed. The entire kernel matrix of the feature vector is estimated
by decomposition and extrapolation of the sub-kernel matrix. The experimental results
demonstrate that the NKMNF transformation has lower computational complexity and a
better feature extraction performance than KMNF [34]. Similarly, the Nyström method is
also applicable to the OP-KMNF transformation to reduce the computational complexity
and improve the execution efficiency. Aiming to obtain accurate background and abnormal
pixel sets, a background separation model (BSM) combining outlier removal, an iterative
strategy, and an RX detector is proposed. The BSM-CEMAD takes the background and
abnormal pixel sets as the input of CEMAD to improve the anomaly detection capability.
The experimental results show that the BSM-CEMAD has better anti-noise performance,
anomalies detection, and background suppression ability, and has better adaptability to the
changes in spatial resolution and spectral resolution [35].

To overcome the difficulties in the real-time AD for the push-broom AHRSS, a novel
AHRSS real-time AD implementation framework is proposed based on the mathematical
model. The technical realization flowchart is shown in Figure 2. Firstly, the OP-KMNF
transformation is employed to extract informative and discriminative features between the
background and anomalies. Secondly, the Nyström method is introduced to reduce the
computational complexity of OP-KMNF transformation by estimating the eigenvector of
the entire kernel matrix by decomposing and extrapolating the sub-kernel matrix. Thirdly,
the extracted features are transferred to hard disks for data storage. Then, taking the
extracted features as input data, the BSM-CEMAD is imported to detect anomalies. Finally,
graphics processing unit (GPU) parallel computing is utilized in the Nyström-based OP-
KMNF (NOP-KMNF) transformation and the BSM-CEMAD to improve the execution
efficiency, and the real-time AD for the push-broom AHRSS could be realized.

2.2. GPU-Based Parallel Computing

According to the type of hardware platforms, hyperspectral image real-time process-
ing technology can be divided into three categories: (1) real-time hyperspectral image
processing technology based on FPGA; (2) real-time hyperspectral image processing tech-
nology based on cloud computing; (3) real-time hyperspectral image processing technology
based on GPU. In practice, GPU and FPGA cannot process large-scale hyperspectral images
because of the limitation of their memory capacity, while the cloud computing has no
such limitations. The low power consumption makes FPGA more suitable for real-time
processing of AHRSS without a data downlink, while its acceleration performance is not
superior to GPU. Compared to FPGA and cloud computing, GPU has lower cost and
better acceleration performance, which is the most cost-effective hardware platform in
high-performance computing [45]. The comparison of different hardware platforms is
shown in Table 3. Recently, GPU-related technologies have developed rapidly. Taking
NVIDIA GPU products as an example, its organizational structure has been upgraded from
Fermi architecture to Ampere architecture, and the processing power has been significantly
improved. The development of NVIDIA GPU architecture is shown in Figure 3.
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Table 3. Comparison of different hardware platforms [37].

High Speedup Performance Low Power Consumption Low Cost Large Memory Capacity

FPGA √

Cloud computing √ √

GPU √ √

Basic linear algebra subroutines (BLASs) provide a series of interface standards for
basic linear algebra operations and are widely used to develop various high-quality linear
algebra software, such as LAPACK and FLAME [46,47]. To perform vector and matrix
operations effectively, NVIDIA computing unified device architecture (CUDA) provides a
BLAS library (CUBLAS) based on the GPU parallel computing platform. Some relevant
research demonstrates that CUBLAS has superior performance in processing vector and
matrix operations [48,49]. An analysis of NOP-KMNF transformation and BSM-CEMAD
show that voluminous vector and matrix operations exist in their implementation program.
These operations mainly encompass vector multiplication, matrix multiplication, and ma-
trix eigenvalue computation. The overall algorithmic time complexity of the processing
workflow could be represented as O

(
N2). In this paper, the NVIDIA CUBLAS is utilized to

develop the GPU parallel computing-based NOP-KMNF (GNOP-KMNF) transformation
and BSM-CEMAD (GBSM-CEMAD). The computational efficiency of GNOP-KMNF trans-
formation and GBSM-CEMAD are evaluated in the hardware composed of an NVIDIA
GeForce RTX2060 GPU card and an Intel (R) Core (TM) i7-10750H CPU. The NVIDIA
GeForce RTX2060 GPU hardware specifications are shown in Table 4.
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Table 4. The NVIDIA GeForce RTX2060 GPU hardware specifications.

Parameters Performance

CUDA Driver Version/Runtime Version 11.4/10.0
CUDA Cores 1920

Total amount of global memory 6144 MBytes
Memory clock rate 5501 MHz

Max clock rate 1200 MHz
Memory bus width 192 bits

Warp size 32
Total number of registers available per block 65,536

Total amount of shared memory per block 49,152 bytes
Total amount of constant memory 65,536 bytes

3. Results

In this section, the experimental results of the method proposed in this paper are
described. In Section 3.1, the data acquisition platform AMMIS VNIR hyperspectral push-
broom sensor is introduced. In Section 3.2, the real hyperspectral dataset named Vehicle
dataset captured by AMMIS VNIR hyperspectral push-broom sensor and conducted in the
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experiments is presented. In Section 3.3, the evaluation criteria of the proposed methods
are described. Two experiments are designed to assess the feasibility of the implementation
framework in real-time anomaly detection for the push-broom AHRSS. In order to evaluate
the effectiveness of the real-time processing, the Vehicle dataset is used as the captured
image, and the runtimes of (1) feature extraction, (2) data transmission/storage, and
(3) anomaly detection with different data sizes along the flight direction are tested. To
ensure the reliability of the experimental results, each experiment is conducted five times,
and the average values are used to analyze the results, which are shown in Section 3.4. The
second experiment is designed to assess the AD capability of the proposed method, and
the results in the Vehicle dataset are shown in Section 3.5.

3.1. Data Acquisition Platform

The AMMIS is an AHRSS developed by the Shanghai Institute of Technical Physics,
Chinese Academy of Sciences. It is designed for various applications, such as land man-
agement, urban planning, natural disaster monitoring and assessment, agricultural and
forestry surveys, water resources utilization, water quality monitoring, and so on. It can be
configured in different modules according to the application requirements [50]. In this pa-
per, the AMMIS visible and near-infrared range (VNIR) hyperspectral push-broom sensor
is utilized as the data acquisition platform. The AMMIS VNIR hyperspectral push-broom
sensor specifications are shown in Table 5, and its imaging diagram is shown in Figure 4.

Table 5. AMMIS VNIR hyperspectral push-broom sensor specifications.

Parameters Performance

Spectral range (µm) 0.40~0.95
Instantaneous field of view (mrad) 0.25

Signal-to-Noise Ratio ≥500
Across-track pixels 2048

Frame frequency (Hz) 160
Effective spectral bands 250
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3.2. Input Data

The Vehicle dataset used in this paper is collected by the AMMIS VNIR hyperspectral
push-broom sensor in Xiong’an New Area, Hebei Province, China. The dataset consists of
2048 pixels along the across-track direction and 15,000 pixels along the flight direction. The
wavelength range is 0.40~0.95 µm, and the spatial resolution is 0.5 m. The pseudo-color
and the reference map are shown in Figure 5.
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3.3. Evaluation Criteria

To assess the performance of the anomaly detection capability of the proposed method,
the 3D receiver operating characteristic (3D ROC) curve, the 2D ROC curve of (PD, PF),
the 2D ROC curve of (PD, t), and the 2D ROC curve of (PF, t) are visualized in this pa-
per. Furthermore, the area under the 2D ROC curve of (PD, PF) (AUC (D, F)), the area
under the 2D ROC curve of (PD, t) (AUC (D, t)), the area under the 2D ROC curve of
(PF, t) (AUC (F, t)), the AUC value of target detectability (AUCTD), the AUC value of
background suppressibility (AUCBS), the AUC value of target detection in the background
(AUCTD−BS), the AUC value of the overall detection probability (AUCODP), the AUC value
of overall detection (AUCOD), and the AUC value of the signal-to-noise probability ratio
(AUCSNPR) are used as evaluation indexes to quantitatively evaluate the anomaly detection
capability [51]. The calculation formulas of these evaluation criteria are shown in Table 6.

Table 6. The calculation formulas of the anomaly detection evaluation criteria.

Evaluation Criteria Calculation Formulas

AUC (D, F) the area under the 2D ROC curve of (PD, PF)
AUC (D, t) the area under the 2D ROC curve of (PD, t)
AUC (F, t) the area under the 2D ROC curve of (PF, t)

AUCTD AUC (D, F) + AUC (D, t)
AUCBS AUC (D, F)− AUC (F, t)

AUCTD−BS AUC (D, t)− AUC (F, t)
AUCODP AUC (D, t) + (1− AUC (F, t))
AUCOD AUC (D, F) + AUC (D, t)− AUC (F, t)

AUCSNPR AUC (D, t)/AUC (F, t)

In practical applications, the specific false alarm rate (FAR) and true positive rate (TPR)
give the operator a more intuitive understanding of the performance of the methods. As a
matter of common knowledge, the lower the false alarm rate, the higher the detection rate,
the better the method’s performance is. In this paper, a novel evaluation criterion based on
the FAR and TPR in the 3D ROC curve is proposed in this section.

Index = TPR ∗ (1− FAR). (4)

As shown in Formula (4), the Index values are calculated based on the FAR and TPR
corresponding to each coordinate point on the 3D ROC curve. The larger the Index value,
the better the detection results are. Taking the FARmin and the TPRmax at the maximum
Index value together as the evaluation criterion of the anomaly detection methods, the
results can be assessed more intuitively.
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3.4. Real-Time Processing Analysis

Experiments on hyperspectral images with different data sizes are conducted in this
section. To ensure the reliability of the experimental results, each experiment is conducted
five times, and the average values are used to analyze the results. Figure 6 shows the
computational cost comparisons for NOP-KMNF-Ratio transformation and GNOP-KMNF-
Ratio transformation with different data sizes, and the computational cost comparisons for
BSM-CEMAD and GBSM-CEMAD with different data sizes are shown in Figure 7.
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The results shown in Figures 6 and 7 indicate that (1) with the increase in data sizes,
the acceleration effect of GNOP-KMNF transformation rather than that of NOP-KMNF-
Ratio transformation and GBSM-CEMAD rather than that of BSM-CEMAD are more and
more significant; (2) when the data size is 288 × 288 × 250, the execution efficiency of
GNOP-KMNF transformation is about 336 times that of NOP-KMNF transformation, which
shows the superior performance of the GNOP-KMNF transformation feature extraction
algorithm in execution efficiency; (3) when the data size is 128 × 128 × 250, the execution
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efficiency of GBSM-CEMAD is about 223 times that of BSM-CEMAD, which indicates the
superior performance of GBSM-CEMAD in execution efficiency.

As mentioned above, the data processing includes three parts: (1) feature extrac-
tion, (2) data transmission/storage, and (3) anomaly detection. The Vehicle dataset is
used as the captured image, and the runtimes of these three data processing parts with
different data sizes along the flight direction are tested. To ensure the reliability of the
experimental results, each experiment is conducted five times, and the average values are
used to analyze the results. The execution efficiency of GNOP-KMNF transformation, data
transmission/storage, and GBSM-CEMAD with different data sizes are shown in Figure 8,
Figure 9, and Figure 10, respectively. To quantitatively show the experimental results, the
runtimes of GNOP-KMNF transformation, data transmission/storage, and GBSM-CEMAD
with different data sizes are shown in Table 7.
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Table 7. The runtimes of GNOP-KMNF transformation, data transmission/storage, and GBSM-
CEMAD with different data sizes.

Data Sizes
Runtimes (ms)

GNOP-KMNF Data Transmission/Storage GBSM-CEMAD

2048 × 250 × 10 68.58 18.20 33.01
2048 × 250 × 20 96.42 18.40 62.43
2048 × 250 × 30 127.68 18.80 91.42
2048 × 250 × 40 154.74 19.10 120.49
2048 × 250 × 50 183.40 19.20 149.86
2048 × 250 × 60 215.78 19.50 179.39
2048 × 250 × 70 242.96 19.70 206.98
2048 × 250 × 80 272.24 19.80 240.27
2048 × 250 × 90 302.06 20.10 262.98
2048 × 250 × 100 334.30 20.30 291.50
2048 × 250 × 110 362.30 20.40 320.75
2048 × 250 × 120 392.62 20.50 352.40
2048 × 250 × 130 423.18 20.90 383.11
2048 × 250 × 140 454.68 21.10 411.90
2048 × 250 × 150 482.86 21.40 441.82
2048 × 250 × 160 506.92 21.60 463.09

Analyzing the data in Table 6, it can be seen that when the data size is 2048 × 250 × 160,
the whole processing time of GNOP-KMNF transformation, data transmission/storage,
and GBSM-CEMAD is 991.61 ms. The frame frequency of the AMMIS VNIR hyperspectral
sensor is 160 Hz, the data acquisition rate is 313 MB/s, and the processing speed of the
proposed method is 315.65 MB/s. In real-time processing, the hyperspectral image data of
2048 × 250 × 160 are used as a hyperspectral image cube to be processed. With the initial
delay not exceeding 1 s, the real-time AD for the AMMIS VNIR hyperspectral sensor can be
realized. The real-time AD processing for the AMMIS VNIR hyperspectral sensor is shown
in Figure 11, and the anomaly detection results of the proposed method for the Vehicle
dataset is shown in Figure 12.
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3.5. Anomaly Detection Capability Evaluation

In this section, the anomaly detection capability of the proposed method and other
state-of-the-art algorithms (including RX detector, LPD, ADLR, CRDBPSW, FEBPAD, and
KIFD) is evaluated. Because the size of the Vehicle dataset is too large, part of the anomaly
detection results using different detectors is shown in Figure 13 to display the detection
results better.

Part of the anomaly detection results using different detectors for the Vehicle dataset
are shown in Figure 13. By observing these result images, it can be seen that the proposed
method suppresses more of the background and highlights the anomalies from the back-
ground. Compared with RX, ADLR, CRDBPSW, and FEBPAD, LPD and KIFD detect more
anomaly pixels and obtain an acceptable background suppression.

To quantitatively assess the results, the 3D ROC curve and its generated three 2D ROC
curves of the Vehicle dataset are demonstrated in Figure 14, and the AUC values calculated
from three 2D ROC curves for the Vehicle dataset are shown in Table 8.
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Table 8. The AUC values calculated from three 2D ROC curves for the Vehicle dataset.

Evaluation Criteria Proposed RX LPD ADLR CRDBPSW FEBPAD KIFD

AUC(D, F) 0.982476 0.866253 0.826230 0.689321 0.835342 0.849385 0.944433
AUC(D, t) 0.499693 0.073389 0.296374 0.759743 0.155015 0.118904 0.471660
AUC(F, t) 0.043713 0.015264 0.124230 0.630917 0.018577 0.012252 0.062557

AUCTD 1.482169 0.939642 1.122604 1.449064 0.990357 0.968289 1.416093
AUCBS 0.938763 0.850989 0.702000 0.058404 0.816765 0.837133 0.881876

AUCTD−BS 0.455980 0.058125 0.172144 0.128826 0.136438 0.106652 0.409103
AUCODP 1.455980 1.058125 1.172144 1.128826 1.136438 1.106652 1.409103
AUCOD 1.438456 0.924378 0.998374 0.818147 0.971780 0.956037 1.353536

AUCSNPR 11.43122 4.807980 2.385688 1.204189 8.344458 9.704865 7.539684

As shown in Figure 14, the proposed method shows better performance in the ROC
curves. For the 2D ROC curves of (PF, t), the curve of the proposed method is closest
to the bottom-right corner. Moreover, the 2D ROC curves of (PD, PF) and (PD, t) of the
proposed method are closest to the top-left corner. The results demonstrate the significant
performance of the proposed method.

For the AUC values calculated from three 2D ROC curves for the Vehicle dataset
shown in Table 8, the AUC(D, t) of ADLR is better than that of the proposed method, while
the AUC(F, t) and other evaluation criteria values of ADLR are much worse than that of
the proposed method. Additionally, the AUC(F, t) of FEBPAD outperforms that of the
proposed method, while the AUC(D, t) and other evaluation criteria values of FEBPAD are
much worse than that of the proposed method. In summary, the results show that the pro-
posed method has a better anomalies detection and background suppression performance.

The Index values based on the FAR and TPR in the 3D ROC curves for different
detectors are calculated, which are shown in Table 9. When the Index value is the largest,
the FARmin of the proposed method is 0.045527, and the TPRmax of the proposed method is
0.979167. The results demonstrate that the proposed method can achieve real-time detection
of pixel-level anomalies, with the initial delay not exceeding 1 s, the FAR of less than 5%,
and the TPR close to 98%.

Table 9. The Index values based on the FAR and TPR in the 3D ROC curves for the Vehicle dataset.

Methods Index FARmin TPRmax

RX 0.617582 0.258901 0.833333
LPD 0.565461 0.272979 0.777778

ADLR 0.739566 0.260434 1.000000
CRDBPSW 0.625933 0.216223 0.798611

FEBPAD 0.578459 0.199056 0.722222
KIFD 0.809781 0.036294 0.840278

Proposed 0.934588 0.045527 0.979167

4. Discussion

In this paper, two experiments are designed to assess the effectiveness of the imple-
mentation framework in real-time anomaly detection for the push-broom AHRSS.

In Section 3.4, the computational cost comparisons for NOP-KMNF-Ratio transfor-
mation and GNOP-KMNF-Ratio transformation with different data sizes are tested. The
results indicate that (1) with the increase in data sizes, the acceleration effect of GNOP-
KMNF transformation rather than that of NOP-KMNF-Ratio transformation and GBSM-
CEMAD rather than that of BSM-CEMAD are more and more significant; (2) when the data
size is 288 × 288 × 250, the execution efficiency of GNOP-KMNF transformation is about
336 times that of NOP-KMNF transformation, which shows the superior performance
of the GNOP-KMNF transformation feature extraction algorithm in execution efficiency;
(3) when the data size is 128 × 128 × 250, the execution efficiency of GBSM-CEMAD is
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about 223 times that of BSM-CEMAD, which indicates the superior performance of GBSM-
CEMAD in execution efficiency. In order to evaluate the effectiveness of the real-time
processing, the Vehicle dataset is used as the captured image, and the runtimes of three data
processing parts with different data sizes along the flight direction are tested. It can be seen
that when the data size is 2048 × 250 × 160, the whole processing time of GNOP-KMNF
transformation, data transmission/storage, and GBSM-CEMAD is 991.61 ms. The frame
frequency of the AMMIS VNIR hyperspectral sensor is 160 Hz, the data acquisition rate is
313 MB/s, and the processing speed of the proposed method is 315.65 MB/s. In real-time
processing, the hyperspectral image data of 2048 × 250 × 160 are used as a hyperspectral
image cube to be processed. With the initial delay not exceeding 1 s, the real-time AD for
the AMMIS VNIR hyperspectral sensor could be realized. In Section 3.5, the experiment
is designed to assess the anomaly detection capability of the proposed methods. The
experimental results show that the proposed method outperforms many other AD methods
(including RX detector, LPD, ADLR, CRDBPSW, FEBPAD, and KIFD) in anomalies detec-
tion and background suppression. Moreover, under the condition that the downlink data
could retain most of the hyperspectral data information, the proposed method achieves
real-time detection of pixel-level anomalies, with the initial delay not exceeding 1 s, the
FAR less than 5%, and the TPR close to 98%.

In this paper, the real-time AD technology for the push-broom AHRSS is studied,
and a novel implementation framework is proposed. In order to achieve high-precision
real-time anomaly detection for the push-broom AHRSS, the whole implementation pro-
cess of hyperspectral image acquisition, transmission, and processing is analyzed, and
the mathematical model of the real-time AD technology for the push-broom AHRSS is
established. On this basis, the solutions to the current difficulties of this research are given
from the mathematical point of view, which lays a theoretical foundation for the subsequent
implementation. The processing power of GPUs is measured by the ability to perform
floating-point operations per second (FLOPS). In practical applications, the processing
power of GPUs depends on many factors, such as hardware architecture, number of cores,
frequency, and memory bandwidth. Figure 15 shows the thermal design power of these
NVIDIA desktop GPUs, and the processing power of NVIDIA desktop GPUs since 2015
are shown in Figure 16.
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Compared with the NVIDIA GeForce RTX 2060 used in the experiments, the processing
power of the most powerful NVIDIA GeForce RTX 4090 on single-precision floating-point
operations has increased by 12.80 times, and the processing power on double-precision
floating-point operations has increased by 6.40 times. With the continuous development
of GPU parallel computing technologies, the execution efficiency of the algorithm will
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be further improved, and the initial delay time will be effectively shortened. While for
the thermal design power, the most powerful NVIDIA GeForce RTX 4090 has a 2.81-fold
increase compared with the NVIDIA GeForce RTX 2060 used in the experiments, how to
select the hardware platform based on the careful consideration of execution efficiency and
power consumption in actual flight missions still needs further discussion.

Moreover, the implementation framework designed in this paper on the real-time
AD technology based on the GPU for the push-broom AHRSS is guided by practical
application. In practice, the data acquisition speed by the push-broom AHRSS is affected
not only by the frame frequency of the sensors, but also by the flight speed of the airborne
platform. Carrying out simulation experiments only considering the push-broom AHRSS
specifications is limited. It is necessary to design and conduct experiments on real-time
anomaly detection for the push-broom AHRSS in combination with actual flight missions.

5. Conclusions

In this paper, the real-time AD technology for the push-broom AHRSS is studied, the
mathematical model is established, and a novel implementation framework is proposed. To
test the feasibility of the implementation framework proposed in this paper, the experiment
is carried out with the AMMIS developed by the Shanghai Institute of Technical Physics as
the data acquisition platform. The experimental results show that the proposed method
outperforms many other AD methods (including RX detector, LPD, ADLR, CRDBPSW,
FEBPAD, and KIFD) in anomalies detection and background suppression. Moreover,
under the condition that the downlink data could retain most of the hyperspectral data
information, the proposed method achieves real-time detection of pixel-level anomalies,
with the initial delay not exceeding 1 s, the FAR less than 5%, and the TPR close to 98%.
Through the analysis of the critical issues involved in this research, a relatively complete
implementation framework with an algorithm design and data processing for the real-
time AD technology on the push-broom AHRSS is proposed in this paper. Furthermore,
the mathematical model of the real-time AD technology for the push-broom AHRSS is
constructed, the algorithm design and verification are carried out, and the test experiment
validation is conducted. In this paper, the AMMIS developed by Shanghai Institute of
Technical Physics, Chinese Academy of Sciences, is utilized as the data acquisition sensor
to carry out test experiments. While the experiments in this paper are conducted on the
obtained data, we are interested in designing and conducting the experiment under the
real airborne imaging environment in the future.
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