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Abstract: Hyperspectral image (HSI) classification has been extensively applied for analyzing re-
motely sensed images. HSI data consist of multiple bands that provide abundant spatial information.
Convolutional neural networks (CNNs) have emerged as powerful deep learning methods for pro-
cessing visual data. In recent work, CNNs have shown impressive results in HSI classification. In this
paper, we propose a hierarchical neural network architecture called feature extraction with hybrid
spectral CNN (FE-HybridSN) to extract superior spectral–spatial features. FE-HybridSN effectively
captures more spectral–spatial information while reducing computational complexity. Considering
the prevalent issue of class imbalance in experimental datasets (IP, UP, SV) and real-world hyper-
spectral datasets, we apply the focal loss to mitigate these problems. The focal loss reconstructs
the loss function and facilitates effective achievement of the aforementioned goals. We propose a
framework (FEHN-FL) that combines FE-HybridSN and the focal loss for HSI classification and then
conduct extensive HSI classification experiments using three remote sensing datasets: Indian Pines
(IP), University of Pavia (UP), and Salinas Scene (SV). Using cross-entropy loss as a baseline, we
assess the hyperspectral classification performance of various backbone networks and examine the
influence of different spatial sizes on classification accuracy. After incorporating focal loss as our loss
function, we not only compare the classification performance of the FE-HybridSN backbone network
under different loss functions but also evaluate their convergence rates during training. The pro-
posed classification framework demonstrates satisfactory performance compared to state-of-the-art
end-to-end deep-learning-based methods, such as 2D-CNN, 3D-CNN, etc.

Keywords: hyperspectral remote sensing images; feature extraction; convolutional neural network
(CNN); class imbalance; focal loss

1. Introduction

Hyperspectral images (HSIs) are generated by imaging spectrometers mounted on
various space platforms, capturing spatial–spectral information [1]. The advancement of
hyperspectral imaging technology has enabled sensors to capture hundreds of continu-
ous spectral bands with nanometer-level resolution [2,3]. As a result, HSIs have found
numerous applications in diverse fields, including environmental monitoring [4–6], hyper-
spectral anomaly detection [7], and hyperspectral image classification [8]. HSI classification,
in particular, serves as a fundamental technique in many hyperspectral remote sensing
applications, and it has proven to be invaluable in precision agriculture [9], geological
exploration [10], and other domains [11,12].

The task of HSI classification is mainly tackled by two schemes: one with a hand-
crafted feature extraction method and another with learning-based feature extraction
method. In the early phase of HSI classification, the strategy of extracting more spectral
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or spatial features is conventional machine learning. For instance, Yang and Qian [13]
introduced a novel approach for hyperspectral image classification called multiscale joint
collaborative representation with a locally adaptive dictionary. It constrains the adverse
impact to HSI classification from useless pixels. Camps-Valls et al. [14] proposed and
validated the effectiveness of composite kernels, a novel technique that combines multiple
kernel functions to improve hyperspectral image classification performance. Other hand-
crafted approaches, one after another, were proposed. One prominent method is the joint
sparse model and discontinuity preserving relaxation [15]. The approach preprocesses
each pixel and calculates relevant statistical measures, aiming at elegantly integrating
spatial context and spectral signatures. Similarly, sparse self-representation [16] addresses
band selection using optimization-based sparse self-representation, optimizing for efficient
feature selection. To improve classification accuracy, researchers have proposed fusing
correlation coefficient and sparse representation [17], aiming to harness the strengths
of both methods. Additionally, multiscale superpixels and guided filter [18] have been
explored for sparse-representation-based hyperspectral image classification, promising
effective feature extraction and classification. The Boltzmann-entropy-based unsupervised
band selection [19] has been investigated, targeting informative band selection to enhance
classification performance.

However, the classification processes, based on the abovementioned approaches, are
relatively cumbersome due to that their accomplishments rely on manually extracted
features. Furthermore, faced with the inherent high-dimensional complexity of HSIs,
the researchers find it hard to obtain ideal classification just using the above approaches,
especially in challenging scenes [20]. Regrettably, the lack of labeled samples in the HSI
field is in sharp contrast to the richness of spectral data. This fact poses the challenge of
learning better feature representation and is prone to overfitting of methods. In view of the
above problems, some schemes have been proposed to alleviate them, mainly including
feature extraction [21–23], dimension reduction [24,25], and data augmentation [26].

Deep learning has emerged as a powerful method for feature extraction, enabling the
identification of features from hyperspectral images (HSIs). Among various deep learning
models, the convolutional neural network (CNN) stands out as one of the most widely
applied models to address HSI classification challenges. CNNs have shown remarkable
performance gains over conventional hand-designed features. CNN models are capable
of processing spatial HSI patches as data inputs, leading to the development of progres-
sive CNN-based methods that leverage both spectral and spatial features. For instance,
Mei et al. [27] proposed a CNN model that adopts a pixel-wise approach and involves
preprocessing each pixel by calculating the mean and standard deviation of the pixel neigh-
borhood for each spectral band. On the other hand, Paoletti et al. [28] and Li et al. [29]
introduced two distinct CNN models—one for extracting spatial features and the other for
extracting spectral features. These models utilize a softmax classifier to achieve desirable
classification results. While CNN-based technologies can effectively extract spatial and
spectral features for HSI classification and other applications, they still encounter challenges
in effectively utilizing information related to spatial and spectral associations.

In contrast, some technologies, which learn spatial and spectral features simultane-
ously for HSI classification, have been proposed. Yang et al. [30] proposed a multiscale
wavelet 3D-CNN (MW-3D-CNN). Great importance was attached to the relationship infor-
mation amid adjacent channels, while the corresponding model’s calculating complexity
was augmented intensively. Accordingly, Roy et al. [31] proposed the 3D–2D CNN feature
hierarchy model for HSI classification. On one hand, a few 3D-CNN layers were utilized
to extract spectral information amid spectral bands. On the other hand, 2D-CNN layers
concentrated on much spatial texture and context. Liu et al. [32] extended the CNN model
by incorporating the attention mechanism to enhance feature extraction from HSI. More
recently, Zhong et al. [33] introduced the spectral–spatial residual network (SSRN). In the
SSRN’s designed residual blocks, identity mapping is utilized to connect 3D convolutional
layers. These innovative models and technologies address the limitations of previous
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approaches and effectively leverage spectral and spatial features to significantly improve
the performance of HSI classification.

In recent times, large language models such as Transformer [34] have become a new
paradigm in the field of natural language processing (NLP). Transformer introduces the at-
tention mechanism, which allows for interactions between different tokens, capturing long-
range semantic dependencies. Inspired by this success, researchers have extended these
methods to the field of computer vision (CV). Similar to Transformer in NLP, Vision Trans-
former (ViT) [35] is typically pretrained on unlabeled image streams or video streams and
then fine-tuned on downstream tasks to train model parameters. In the domain of remote
sensing imagery, more researchers are adopting ViT or its variants [36] as foundational mod-
els for their studies. Liu et al. [37] utilized a customized Swin Transformer to reduce com-
putational complexity and obtained strong generalization. Ayas and Tunc-Gormus [38] in-
troduced a novel spectral Swin Transformer (SpectralSWIN) network, but without using
attention mechanism, to hierarchically fuse spatial–spectral features and achieve a signifi-
cant superiority. Zhao et al. [39] proposed a spectral–spatial axial aggregation Transformer
framework to perform multiscale feature extraction and fusion on the input data while
utilizing spectral shift operations to ensure information aggregation and feature extraction
across different spectral components.

With regard to the issue of HSI classification, currently, many loss functions have been
designed and obtained stunning performance. Multiclass hinge (MCH) loss in support
vector machine (SVM), as one of the traditional classification strategies, is the main solution
to HSI classification in the early phase. Wang et al. [40] introduced a novel classification
framework, incorporating spatial, spectral, and hierarchical structure features, for hyper-
spectral images. The approach involves integrating three different and important types
of information into the SVM classifier. By leveraging this joint integration, the proposed
framework intends to enhance the classification performance of hyperspectral images.
Furthermore, cross-entropy loss, as a standard metric, is widely applied to complete dif-
ferent classification tasks in hyperspectral image recognition, such as [41,42]. Regrettably,
common and publicly available datasets Indian Pines (IP), Salinas (SA) and University of
Pavia (UP), as well as the overwhelming majority of other hyperspectral imagery datasets,
are class-imbalanced [43,44] (See Section 2.2). This fact poses great challenges for deep-
learning-based HSI classification models regarding how to handle the class imbalance
problem [45].

In this paper, spatial–spectral feature obtained by the deep learning approach is
proposed for the HSI classification task. First, to extract more vital HSI features, including
spatial and spectral information, we propose a novel convolutional neural network (FE-
HybridSN), which pays attention to the correlation of adjacent bands from HSI. Compared
with the plain 3D-CNN model for HSI classification, the FE-HybridSN alleviates the burden
from complex computation. The proposed framework results in better HSI classification
performance when the 3D-CNN model and the FE-HybridSN have similar scale in model
structure. Second, to cope with the class-imbalanced problem in HSI classification, we
apply the focal loss as loss function. In fact, we obtain expected classification results based
on the focal loss after much rigorous research. In summary, the main contributions of this
paper are as follows:

1. We fashion a novel five-layer FE-HybridSN of hyperspectral images for mining spatial
context and spectral features;

2. We apply the focal loss as the loss function to alleviate the class-imbalanced problem
in the HSI classification task;

3. We explore feature learning and classification of hyperspectral images using system-
atic experiments, and inspire new deep learning ideas for hyperspectral applications.

The paper is structured as follows. Section 2 outlines the challenges and presents our
proposed approach to address them. In Section 3, we provide a detailed description of
the experimental background and present the fundamental experimental configurations.
Additionally, we compare our method with other state-of-the-art approaches. Building
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upon the results presented in Section 3, Section 4 offers a comprehensive discussion to
provide insights and interpretations. Finally, in Section 5, we summarize the findings of the
paper and propose promising research directions for future exploration.

2. Methodology

We present a novel joint network called FE-HybridSN, which combines a hybrid
3D–2D CNN architecture with the focal loss to achieve hyperspectral image classification.
The proposed approach is designed to capitalize on spectral–spatial feature maps and
extract more abstract representations from hierarchical space, as depicted in Figure 1. By
leveraging the hybrid 3D–2D CNN model, we aim to effectively mine valuable information
from the hyperspectral data. Additionally, we utilize the focal loss to mitigate any adverse
effects on hyperspectral image classification, as illustrated in Figure 1. The focal loss
helps in handling challenging samples, thereby enhancing the overall performance of the
classification process.

Figure 1. Overview of the proposed feature extractor FE-HybridSN and entire framework FEHN-FL.
Note that batch normalization (BN) and rectified linear unit (ReLU), following every convolutional
operation, are omitted in the figure.

2.1. Proposed Model

Assume the spatial–spectral hyperspectral data cube is denoted by Iorigin ∈ RH×W×B,
where H, W, and B represent the height, width, and the number of spectral bands in the hy-
perspectral image (HSI), respectively. Each pixel in Iorigin is associated with a one-hot label
vector Y = {y1, y2, ..., yC} ∈ R1×1×C, where C signifies the number of land cover classes.
However, a real-world challenge arises from the fact that high-dimensional hyperspectral
pixels may exhibit mixtures of multiple land cover classes, leading to substantial spectral
intravariability and significant interclass similarity.

To address this issue, we employ principal component analysis (PCA) to preprocess
the original HSI data Iorigin and eliminate redundant spectral information. PCA reduces
the original B spectral bands to K bands while preserving the spatial dimensions, thus
retaining the spatial information even after the PCA process. Consequently, we represent
the processed spatial–spectral hyperspectral data cube as IPCA ∈ RH×W×K. Here, H and W
still represent the height and width of the spectral bands, and K indicates the number of
retained spectral bands after PCA processing.

During the data preprocessing stage, besides reducing the dimensionality of the hyper-
spectral data using PCA, it is also necessary to segment the image into small, overlapping
3D blocks. The primary purpose of this is to apply our deep learning method on each
smaller 3D block. Each adjacent 3D block originates from the PCA-reduced hyperspectral
data cube, and they are uniquely identified by the central spatial coordinates. We denote
each 3D block as Iblock ∈ Rs×s×K, where s represents the size of each spatial window and K
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denotes the depth of spectral bands in each block. Notably, K also corresponds to the num-
ber of bands retained after PCA dimensionality reduction. Ultimately, the PCA-reduced
hyperspectral data cube generates (H − s + 1)× (W − s + 1) 3D blocks. Specifically, for
any given hyperspectral 3D block with central spatial coordinates (α, β), the corresponding
spatial window will cover the width range [α− (s− 1)/2, α + (s− 1)/2] and the height
range [β− (s− 1)/2, β + (s− 1)/2].

We propose a framework named FEHN-FL with hierarchical convolutional structure
for HSI classification. CNN parameters are trained using supervised methods [46] with
gradient descent optimization. Conventional 2D CNNs compute 2D discriminative fea-
ture maps by applying convolutions solely over spatial dimensions, but they lack the
ability to identify and handle spectral information. In contrast, a single 3D-CNN can
slide the convolutional kernel along all three dimensions (height, width, and spectral) and
interact with both spatial and spectral dimensions. This capability allows the 3D-CNN
to comprehensively capture spatial and spectral information from the high-dimensional
hyperspectral data. FE-HybridSN, the backbone of the FEHN-FL, hierarchically combines
three 3D convolutions (refer to Equation (2)), two 2D convolutions (refer to Equation (1)),
and three fully connected layers, achieving a balanced integration of spectral and spatial
information for more effective HSI classification.

In 2D-CNN, the output results are generated through the process of convolution,
where the input image is convolved with 2D filters such that the size is predesigned, also
known as convolutional kernels. This operation involves element-wise multiplication
between the filter’s weights and the pixels in the input image, followed by summation to
obtain the new output pixel value. The convolutional process slides the filter across the
entire input image, computing the output pixel value at each position. By utilizing distinct
filters at different layers, 2D-CNN can effectively learn various features present in the image.
These learned features are then combined to form higher-level representations, enabling the
model to perform image classification and feature extraction tasks. The resulting features
from the convolution are passed through an activation function, introducing nonlinearity to
the model. In 2D convolution, the activation value of the jth feature map at spatial position
(x, y) in the ith layer is represented as v(x,y)

(i,j) and can be expressed by the following equation:

v(x,y)
(i,j) = ψ

(
bi,j +

dl−1

∑
τ=1

γ

∑
ρ=−γ

δ

∑
σ=−δ

wσ,ρ
i,j,τ × vx+σ,y+ρ

i−1,τ

)
(1)

where ψ is the nonlinear activation function, bi,j is the bias parameter for the jth feature
map of the ith layer, and dτ indicates the number of feature maps in the τth layer. The
size of the predesigned convolutional kernel is (2γ + 1)× (2δ + 1). wi,j corresponds to the
weight parameter for the jth feature map of the ith layer.

According to the definition of three dimensional convolution [47], we perform con-
volutional operations by applying 3D convolutional kernels to the hyperspectral images.
In the FEHN-FL, the feature maps in the convolutional layer are generated by applying
3D convolutional kernels on discrete or consecutive spectral bands of the input layer, thus
capturing spectral information. In 3D convolution, the activation value v(x,y,z)

(i,j) of the jth
feature map at spatial position (x, y, z) in the ith layer is expressed as follows:

v(x,y,z)
(i,j) = ψ

(
bi,j +

dl−1

∑
τ=1

η

∑
λ=−η

γ

∑
ρ=−γ

δ

∑
σ=−δ

wσ,ρ,λ
i,j,τ × vx+σ,y+ρ,z+λ

i−1,τ

)
(2)

where 2η + 1 is the depth of kernel along the spectral dimension and other parameters are
the same as in Equation (1).

In the FE-HybridSN, we design different 3D convolution kernels. We denote the
structure of the 3D kernel as L@Ku

1 × Ku
2 × Ku

3 , where u and L, respectively, represent
the layer index of current kernels and the number of output channels for the current
convolution layer. Moreover, we denote the structure of the 2D kernel as L@Kd

1 × Kd
2 ,
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where d represents the layer index of current kernels, and L is same as the 3D kernel. One
of our designed kernel sequence is (8@3× 3× 7, 16@3× 3× 5, 32@3× 3× 3, 128@3× 3,
256@3× 3). Here, 8@3× 3× 7 means that the first 3D kernel size is 3× 3× 7 and the
number of output channel is eight when a single channel from P is the first input. The
explanation of subsequent kernel parameters is the same as 8@3× 3× 7. The proposed
model is comprehensively summarized in Table 1, presenting the layer index, output map
dimensions, and the corresponding number of parameters.

Table 1. Lay-wise summary of the proposed FE-hybrid architecture with spatial size 15× 15.

Layer-Index Output Shape # Parameter

Input-0 (1, 15, 15, 15) -
Conv3d-1 (8, 9, 13, 13) 512

BatchNorm3d-2 (8, 9, 13, 13) 16
ReLU-3 (8, 9, 13, 13) 0

Conv3d-4 (16, 5, 11, 11) 5776
BatchNorm3d-5 (16, 5, 11, 11) 32

ReLU-6 (16, 5, 11, 11) 0
Conv3d-7 (32, 3, 9, 9) 13,856

BatchNorm3d-8 (32, 3, 9, 9) 64
ReLU-9 (16, 5, 11, 11) 0

Conv2d-10 (128, 7, 7) 110,720
BatchNorm2d-11 (128, 7, 7) 256

ReLU-12 (128, 7, 7) 0
Conv2d-13 (256, 5, 5) 295,168

BatchNorm2d-14 (256, 5, 5) 512
ReLU-15 (256, 5, 5) 0
Linear-16 (256) 1,638,656

Dropout-17 (256) 0
Linear-18 (128) 32,896

Dropout-19 (128) 0
Linear-20 (16) 2064

Total parameters: 2,100,528
Trainable parameters:

2,100,528
Nontrainable parameters: 0

The parameters are based on the Indian Pines (IP) dataset.

In the proposed method, the batch normalization (BN) layers are introduced as the
important elements since they make the distribution of input data in every layer of the
network relatively stable and accelerate the training speed of the entire framework. The
formula of BN is as follows:

N(x) =
x− x̄√

D(x) + ε
· γ + β (3)

where x̄ is the average of the summation, D(x) is the variance, γ and β are learnable
parameter vectors, and ε is a parameter for numerical stability. In addition, the nonlinear
layer aims at adding some nonlinear features to the network. Then, it is notable that the
rectified linear unit (ReLU) [48] is selected into each 3D/2D convolutional layer.

2.2. Focal Loss

The class-imbalanced problem commonly occurs in tasks with a long-tailed data distri-
bution, where a few classes dominate the data, while most classes have very few samples.
In traditional classification and visual recognition tasks, the training distribution can be
balanced through manual intervention using resampling strategies. This strategy ensures
that the number of samples from different classes does not significantly differ. However, as
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the number of categories increases, maintaining a balance between all categories becomes
increasingly challenging, resulting in an exponential growth in the collection of samples.

In the case of HSI classification, neither using resampling strategies nor not using
them are feasible or rational solutions. Hence, we employ the focal loss as the loss function.
Compared to traditional loss functions like multiclass hinge loss and cross-entropy loss,
the focal loss provides better performance and tackles the class imbalance issue effectively.

2.2.1. Balanced Cross Entropy

Introducing weighted factors α and 1− α for positive and negative classes, respectively,
is a common approach to address class imbalance issues. In practice, α is often initialized
as the inverse class frequency, which is the reciprocal of the ratio of positive class samples
to negative class samples. The purpose is to assign larger weights to the classes with fewer
samples during the training phase, aiming to balance the class distribution. We denote the
α-balanced cross entropy (CE) loss as

CE(p, y) = CE(pt) = −αt log(pt). (4)

where pt is expressed as follows:

pt =

{
p, y = 1
1− p, y = 0

(5)

Here, the definition of αt is analogous to how we defined pt, and y ∈ {0, 1} indicates
negative and positive class, respectively.

2.2.2. Focal Loss Definition

Easily classified negatives comprise the majority of the loss and dominate the gra-
dient [49]. While α balances the importance of positive/negative examples, it does not
differentiate between easy and hard examples. The focal loss reconstructs the balanced
cross-entropy loss to down-weight easy examples and thus focuses training on hard nega-
tives. The focal loss is defined as follows:

FL(pt) = −(1− pt)
γ log(pt). (6)

Formally, we use an α-balanced variant of the focal loss as the loss function:

FL(pt) = −αt(1− pt)
γ log(pt). (7)

3. Experiments
3.1. Description of Experiment Datasets

Extensive experiments on three benchmark datasets of HSIs, including Indian Pines
(IP) [50], University of Pavia (UP) [51], and Salinas Valley (SV) [52], were conducted to
assess the classification performance of the proposed framework. Table 2 provides a concise
overview of the hyperspectral image (HSI) datasets that were considered in the study. It
includes information such as the number of samples available per class in each dataset and
the corresponding ground truth (GT) provided.

3.2. Experimental Configuration

The proposed framework (FEHN-FL) was compared to other methods available in
the literature. Concretely, we compared the backbone FE-HybridSN used for feature
extraction with the following methods: (1) 2D-CNN [53]; (2) 3D-CNN [54]; (3) M3D-
CNN [55]; (4) 3D2D-HybridSN [31]. In addition, we introduced other loss functions as
experimental comparison objects, including cross-entropy (CE) loss and multiclass hinge
(MCH) loss in support vector machine (SVM), to evaluate the performance of the focal loss.
For each method, we carefully fine-tuned and fixed all hyperparameters to their optimal
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values before conducting the experiments. This ensured that we obtained the best possible
performance from each approach to facilitate a fair comparison of the results. The details
are shown in Table 3.

Table 2. The total number of samples and the sample quantity for each land cover.

Indian Pines University Of Pavia Salinas
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0

100

200

300

400
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Color Land-Cover type Samples Color Land-Cover type Samples Color Land-Cover type Samples

Background 10,776 Background 164,624 Background 56,975

Alfalfa 46 Asphalt 6631 Brocoli-green-weeds-1 2009

Corn-notill 1428 Meadows 18,649 Brocoli-green-weeds-2 3726

Corn-min 830 Gravel 2099 Fallow 1976

Corn 237 Trees 3064 Fallow-rough-plow 1394

Pasture 483 Painted metal sheets 1345 Fallow-smooth 2678

Trees 730 Bare Soil 5029 Stubble 3959

Pasture-mowed 28 Bitumen 1330 Celery 3579

Hay-windrowed 478 Self-Blocking Bricks 3682 Grapes-untrained 11,271

Oats 20 Shadows 947 Soil-vineyard-develop 6203

Soybean-notill 972 Corn-senesced-green-weeds 3278

Soybean-min 2455 Lettuce-romaine-4wk 1068

Soybean-clean 593 Lettuce-romaine-5wk 1927

Wheat 205 Lettuce-romaine-6wk 916

Woods 1265 Lettuce-romaine-7wk 1070

Bldgs-Grass-Trees-Drives 386 Vinyard-untrained 7268

Stone-Steel towers 93 Vinyard-vertical-trellis 1807

Total samples 21,025 Total samples 207,400 Total samples 111,104

Table 3. Training hyperparameter settings in the FEHN-FL.

IP UP SV

Epochs 150

Optimizer Adam [56]

Batch size 53 128 128

Learning rate (LR) 1 × 10−3

αt and γ 1 and 1 × 10−6
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Before original data were used the input of framework FEHN-FL, PCA was applied
over the hyperspectral data so as to reduce the dimension of the original hyperspectral
image and extract principal components. In our experiments, all principal components
were set as fifteen. According to the experimental design, the datasets IP, UP, and SV were
randomly divided into two parts in proportion: 5%, 10%, and 15% of IP, UP, or SV labeled
samples were the training samples, and the remainder were testing datasets. Considering
different schemes about backbone and loss function, as well as the aforementioned datasets,
we implemented sets of experiments to validate the performance of the FE-HybridSN
based on CE loss (Experiment 1). Then, to test the effects rooted from different patch sizes,
we correspondingly designed four different spatial sizes for input data (Experiment 2).
Furthermore, we considered different training data percentages (Experiment 3) aimed at
comparing the FEHN-FL to other state-of-the-art methods. Finally, we compared the focal
loss with other loss functions and studied its convergence speed.

1. In the first experiment, the FE-HybridSN was compared with 2D-CNN [53], 3D-
CNN [54], M3D-CNN [55], and 3D2D-HybridSN [31] classification methods using
a training set accounting for 15% of the whole labeled dataset over IP, UP, and SV
datasets. Additionally, we set the input spatial size to be 15×N×N (N could be 11, 15,
19, or 23) for the 2D-CNN [53], 3D-CNN [54], M3D-CNN [55], 3D2D-HybridSN [31],
and FE-HybridSN, with N being the spatial size (i.e., patch size).

2. In the second experiment, the FEHN-FL was compared with the four aforementioned
methods. We designed four different patch sizes, i.e., 11× 11, 15× 15, 19× 19, and
23× 23. Here, we considered 10% of available labeled data for the IP, UP, and SV
datasets.

3. In the third experiment, we compared the proposed framework (FEHN-FL) with all
the aforementioned methods [31,53–55]. The configurations of patch size were the
same as the second experiment. We still focused on the performance just using our
backbone (FE-HybridSN) with CE loss.

4. In the final experiment, we compared the convergence speed of different loss functions,
including cross-entropy (CE) loss, multiclass hinge (MCH) loss, and focal loss, using
training samples of the same scale on the Indian Pines (IP), University of Pavia (UP),
and Salinas Valley (SV) datasets.

In our experimental evaluation, we measured the performance using three metrics: OA,
AA, and kappa. OA represents the ratio of correctly predicted samples to the total testing
samples, providing an overall accuracy measure. AA computes the average classification
accuracy across different classes, giving insight into the performance of individual classes.
Kappa serves as a statistical measure, indicating the agreement between the ground truth
map and the classification map. The experiments were conducted on a hardware setup
comprising an Intel Core processor (2.30 GHz), 16 GB of memory, and an NVIDIA GeForce
GTX 1050Ti graphics processing unit with 8 GB RAM. To implement the HSI classification
methods, we utilized Python in the Pytorch platform; specifically, Pytorch 1.12.0, CUDA
11.7, cuDNN 8.0, and Python 3.8 were the specific research environments used.

3.3. Experimental Results
3.3.1. Experiment 1

Table 4 presents the classification results with 15% training samples for the IP dataset.
Specifically, the first column of Table 4 indicates other methods compared with the FE-
HybridSN. The next four columns show the results of the OA, AA, and kappa coefficient,
which were derived from using different spatial sizes: 11× 11, 15× 15, 19× 19, and 23× 23.
In addition, Table 5 presents the classification results with 5% training samples for the UP
dataset. The explanation for every item in Table 5 is the same as Table 4. Significantly, the
last row contains the accuracies of the proposed backbone (i.e., FE-HybridSN).
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Table 4. Classification accuracies (%) by different methods for IP dataset with 15% labeled train-
ing samples and various spatial sizes. Note that the bold represents the best performance with
corresponding experimental configuration for different methods.

Methods
11 × 11 15 × 15 19 × 19 23 × 23

OA AA Kappa OA AA Kappa OA AA Kappa OA AA Kappa

2D-CNN [53] 88.38 84.82 86.7 98.28 98.25 98.03 93.42 90.34 92.48 95.98 95.85 95.41
3D-CNN [54] 96.75 96.18 96.29 98.82 98.96 98.65 98.55 98.25 98.35 98.24 98.42 98.00

3D2D-HybridSN [31] 97.23 97.01 96.84 98.55 98.56 98.39 98.60 98.52 98.40 98.21 98.41 98.30
M3D-CNN [55] 96.90 95.29 96.46 98.07 96.63 97.80 98.30 97.97 98.06 98.35 95.54 98.12
FE-HybridSN 97.41 97.85 97.04 98.85 99.02 98.71 98.65 98.56 98.46 98.77 99.11 98.60

Table 5. Classification accuracies (%) by different methods for UP dataset with 5% labeled train-
ing samples and various spatial sizes. Note that the bold represents the best performance with
corresponding experimental configuration for different methods.

Methods
11 × 11 15 × 15 19 × 19 23 × 23

OA AA Kappa OA AA Kappa OA AA Kappa OA AA Kappa

2D-CNN [53] 95.71 93.75 94.32 99.15 98.79 98.87 98.36 97.23 97.83 95.80 94.08 94.45
3D-CNN [54] 98.99 98.43 98.66 99.53 99.28 99.38 99.53 99.19 99.38 99.49 98.90 99.32

3D2D-HybridSN [31] 99.40 99.02 99.20 99.38 99.20 99.17 99.59 99.37 99.46 99.70 99.37 99.60
M3D-CNN [55] 99.08 98.17 98.78 99.51 99.15 99.46 99.57 99.18 99.44 99.65 99.13 99.54
FE-HybridSN 99.47 99.13 99.30 99.61 99.40 99.48 99.73 99.50 99.64 99.73 99.37 99.64

Furthermore, as shown in Figure 2, we conducted two sets of experiments on the
SV dataset based on spatial size. Two abscissae and two ordinates, respectively, indicate
the names of different methods and classification accuracies (in percentages). Under the
condition using established methods, we compared the classification performance using
two different spatial sizes (11× 11 and 23× 23) and 10% training samples. The left one
represents the classification result using the spatial size 11× 11. Correspondingly, the right
one represents the classification result using the spatial size 23× 23.

3.3.2. Experiment 2

In the second experiment, we considered 5%, 10%, and 15% of the labeled data over
the SV and UP datasets as training samples, and compared the classification performance of
the proposed method with those of 2D-CNN [53], 3D-CNN [54], and 3D2D-HybridSN [31].
Table 6 shows the classification accuracies with 5%, 10%, and 15% labeled training samples
and 11× 11 spatial size by the abovementioned scheme.

3.3.3. Experiment 3

In order to comprehensively consider the performance of feature extractors and loss
functions for hyperspectral image classification, we compared the proposed framework
(FEHN-FL) with other methods. Concretely, spatial size 23× 23 and three different training
ratios (5%, 10%, and 15%) were considered for the SV and UP datasets. Table 7 presents the
classification results according to the aforementioned experimental scheme.

3.3.4. Experiment 4

In Table 8, we propose the trainable parameter scales of various backbones. Table 9
demonstrates that when utilizing 10% labeled samples for training and setting the spatial
size to 23× 23, our proposed framework with the feature extractor FE-HybridSN achieves
the minimum training time overhead.
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Table 6. Classification accuracies (%) by different methods over SV and UP datasets with 11× 11
spatial size and different training ratios. Note that the bold represents the best performance with
corresponding experimental configuration for different methods.

Training Ratio Methods
SV UP

OA AA Kappa OA AA Kappa

15%

2D-CNN [53] 98.91 99.42 98.78 98.43 97.48 97.91
3D-CNN [54] 99.90 99.88 99.89 99.69 99.44 99.59

3D2D-HybridSN [31] 99.90 99.88 99.89 99.32 99.09 99.09
FE-HybridSN 99.91 99.89 99.90 99.73 99.66 99.64

10%

2D-CNN [53] 98.79 99.39 98.65 97.21 96.42 96.30
3D-CNN [54] 99.77 99.87 99.74 99.34 99.06 99.12

3D2D-HybridSN [31] 99.82 99.85 99.80 99.71 99.60 99.62
FE-HybridSN 99.85 99.92 99.83 99.84 99.77 99.79

5%

2D-CNN [53] 98.21 99.02 98.01 96.05 95.05 94.77
3D-CNN [54] 98.92 99.18 98.80 99.03 98.48 98.71

3D2D-HybridSN [31] 98.48 98.46 98.31 99.21 98.97 98.95
FE-HybridSN 98.92 99.22 99.45 99.45 99.17 99.27

Table 7. Classification accuracies (%) by different methods combined with CE, MCH, and focal loss
over SV and UP datasets with 23× 23 spatial size and different training ratios. Note that the bold rep-
resents the best performance with corresponding experimental configuration for different methods.

Training Ratio Methods
SV UP

OA AA Kappa OA AA Kappa

15%

2D-CNN [53] + CE 99.95 99.89 99.94 99.09 98.71 98.80
3D-CNN [54] + CE 99.99 99.99 99.99 99.91 99.84 99.88

3D2D-HybridSN [31] + CE 99.99 99.99 99.99 99.95 99.91 99.94
M3D-CNN [55] + CE 99.99 99.99 99.99 99.87 99.79 99.82
FE-HybridSN + CE 99.97 99.95 99.98 99.93 99.91 99.91

FE-HybridSN + MCH 99.96 99.93 99.96 99.24 99.01 98.99
Proposed 99.99 99.99 99.99 99.95 99.95 99.94

10%

2D-CNN [53] + CE 99.89 99.89 99.88 98.14 97.12 97.54
3D-CNN [54] + CE 99.94 99.94 99.94 99.74 99.21 99.65

3D2D-HybridSN [31] + CE 99.94 99.93 99.93 99.89 99.77 99.84
M3D-CNN [55] + CE 99.93 99.90 99.92 99.83 99.54 99.77
FE-HybridSN + CE 99.96 99.94 99.93 99.89 99.79 99.83

FE-HybridSN + MCH 99.85 99.94 99.84 99.72 99.53 99.64
Proposed 99.96 99.95 99.96 99.89 99.79 99.85

5%

2D-CNN [53] + CE 98.86 99.17 98.85 95.80 94.08 94.45
3D-CNN [54] + CE 99.68 99.81 99.75 99.49 98.90 99.32

3D2D-HybridSN [31] + CE 99.64 99.79 99.60 99.70 99.37 99.60
M3D-CNN [55] + CE 99.60 99.03 99.47 99.65 99.13 99.54
FE-HybridSN + CE 99.34 99.67 99.27 99.73 99.37 99.64

FE-HybridSN + MCH 99.55 99.75 99.50 99.36 98.61 99.15
Proposed 99.75 99.88 99.79 99.75 99.43 99.65

Table 8. Trainable parameter scales for different backbone networks.

2D-CNN [53] 3D-CNN [54] M3D-CNN [55] 3D2D-HybridSN [31] Proposed
Params 0.19 M 0.51 M 0.99 M 1.79 M 2.19 M
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Table 9. The average training time using 10% labeled training samples with 23× 23 spatial size over
IP, UP, and SV datasets. Note that the minimum average training time is highlighted in bold.

Focal Loss (min) CE Loss (min) MCH (min)
IP 4.12 4.13 4.22
UP 14.93 15.35 15.01
SV 18.82 21.77 19.08

2D-CNN 3D-CNN 3D2D-HybridSN Proposed
Method(s)

97.0

97.5

98.0

98.5

99.0

99.5

100.0

Ac
cu

ra
cy

OA
AA
Kappa

2D-CNN 3D-CNN 3D2D-HybridSN Proposed
Method(s)

97.0

97.5

98.0

98.5

99.0

99.5

100.0

Ac
cu

ra
cy

OA
AA
Kappa

Figure 2. Classification accuracies (%) by different methods with 10% training samples and different
spatial sizes over SV dataset (the left one is 11× 11, another one is 23× 23).

4. Discussion

After analyzing the results of Experiment 1 (refer to Section 3.3.1), several key ob-
servations can be made. Firstly, the FE-HybridSN, combined with cross-entropy loss,
demonstrates high classification accuracy. When training with 15% and 5% labeled samples
using different spatial sizes on the corresponding IP and UP datasets, our method out-
performs other state-of-the-art techniques in terms of classification accuracy. Specifically,
utilizing the CE loss as the terminal loss function and following the basic experimental con-
figurations, the FE-HybridSN consistently achieves superior pixel-level classification results
compared to 2D-CNN [53], 3D-CNN [54], 3D2D-HybridSN [31], and M3D-CNN [55].

In addition, Tables 4 and 5 highlight the significant impact of spatial size on HSI
classification accuracy. Notably, the classification accuracies obtained using 19× 19 and
23× 23 patch sizes are consistently lower than those achieved with a 15× 15 patch size
across all methods in Table 4. Similarly, Table 5 illustrates that increasing the patch size
leads to improved classification accuracy for the FE-HybridSN framework utilizing cross-
entropy loss on the UP dataset. This finding emphasizes the crucial role of spatial size in
HSI classification and its ability to adjust the decision boundary. Specifically, a smaller
spatial size leads to a greater loss of information, resulting in lower classification accu-
racy, as evidenced by the experimental results. Furthermore, Figure 2 provides a visual
representation of the relationship between spatial size and classification accuracy, further
supporting these conclusions.

Based on the results in Table 6 of Experiment 2 (refer to Section 3.3.2), it is evident that
our proposed feature extractor, FE-HybridSN, achieves significantly better classification
accuracy on both the SV and UP datasets. On one hand, when using training samples with
different proportions of labeled data, it is evident that as the number of training samples
decreases, the classification accuracy of hyperspectral images also decreases. With the small
scale of the training set, the risk of overfitting increases. In other words, when training is
completed, the resulting classification decision boundaries may lack robust generalization
ability, particularly when facing new samples such as test samples. On the other hand,
with the same training ratio, the OA of the SV dataset is noticeably higher compared to



Remote Sens. 2023, 15, 4439 13 of 18

the classification accuracy of the UP dataset. This is primarily due to the fact that the SV
dataset has a significantly larger training scale than the UP dataset.

In Experiment 3 (refer to Section 3.3.3), we considered the use of the focal loss as
the terminal loss function. As depicted in Table 7, it contains a wealth of classification
accuracy results for both the SV and UP datasets, making it highly valuable for analyzing
the performance of various hyperspectral classification methods. Firstly, when consid-
ering the overall classification results, the SV dataset consistently outperforms the UP
dataset for the same classification methods. This disparity can primarily be attributed to
the larger scale of labeled training samples available in the SV dataset, which facilitates
the construction of a more effective feature space. Similarly, when comparing different
training ratios within the same dataset, the same trend persists. Secondly, it is evident
that the 2D-CNN method, which solely focuses on spatial features and disregards spec-
tral information, exhibits lower classification accuracy compared to other methods. This
observation underscores the essentiality of leveraging spectral–spatial features for robust
hyperspectral classification. Lastly, when comparing our proposed FEHN-FL framework
with other methods, we consistently achieve superior classification accuracy on both the
UP and SV datasets, irrespective of the training ratio employed. This demonstrates the
efficacy of the focal loss in addressing class imbalance issues within hyperspectral images
and refining decision boundaries during classification. Furthermore, it is noteworthy that
even without considering the focal loss as the final loss function, we are still able to attain
commendable classification accuracy. For instance, when utilizing the FE-HybridSN+CE
framework on the SV dataset with 15% training samples, we observe exceptional accuracy
levels of OA (99.97%), AA (99.95%), and kappa (99.98%). To summarize Experiment 3, we
provide a set of classification performance charts in Figures 3–5, showcasing the results
obtained on three distinct experimental datasets. Despite the findings from Figure 5, where
our proposed method did not show an improvement in classification accuracy on the SV
dataset, this result was expected. The SV dataset inherently has friendly sample feature
discrimination and an ample number of labeled samples.

(a) GT (b) 2D-CNN (92.36%) (c) 3D-CNN (98.26%)

(d) HybridSN (98.37%) (e) M3D-CNN
(97.78%)

(f) FE-HybridSN
(99.08%)

Figure 3. Classification maps for the IP dataset with 15% labeled training samples and 19 × 19
spatial window. (a) Ground truth. (b) 2D-CNN [53]. (c) 3D-CNN [54]. (d) 3D2D-HybridSN [31].
(e) M3D-CNN [55]. (f) Proposed. In the subfigure (b–f), the right brackets encompass the overall
classification accuracies, and the best classfication result is highlighted in bold.

In the final experiment, we provided the learnable parameter sizes of the methods
involved, which are closely related to time complexity. As shown in Tables 8 and 9, although
our method’s learned parameter size increased to some extent compared to other methods,
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it can be observed that its training phase convergence speed is similar to, or even faster
than, other methods.

(a) GT (b) 2D-CNN (98.28%) (c) 3D-CNN (99.81%)

(d) HybridSN (99.86%) (e) M3D-CNN (99.80%) (f) FE-HybridSN
(99.94%)

Figure 4. Classification maps for the UP dataset with 10% labeled training samples and 19× 19
spatial window. (a) Ground truth. (b) 2D-CNN [53]. (c) 3D-CNN [54]. (d) 3D2D-HybridSN [31].
(e) M3D-CNN [55]. (f) Proposed. In the subfigure (b–f), the right brackets encompass the overall
classification accuracies, and the best classification result is highlighted in bold.

(a) GT (b) 2D-CNN
(99.57%)

(c) 3D-CNN
(99.85%)

Figure 5. Cont.
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(d) HybridSN
(99.42%)

(e) M3D-CNN
(99.43%)

(f) FE-HybridSN
(99.75%)

Figure 5. Classification maps for the SV dataset with 5% labeled training samples and 19× 19 spatial
window. (a) Ground truth. (b) 2D-CNN [53]. (c) 3D-CNN [54]. (d) 3D2D-HybridSN [31]. (e) M3D-
CNN [55]. (f) Proposed. In the subfigure (b–f), the right brackets encompass the overall classification
accuracies, and the best classification result is highlighted in bold.

5. Conclusions

The paper proposes a novel hierarchical deep neural network based on CNN for
efficient extraction of spectral–spatial features from high-dimensional hyperspectral images.
In the proposed framework, the hierarchical convolutional structure effectively reduces
computational complexity while effectively capturing both channel and spatial texture
information in the hyperspectral data. Specifically, the feature extractor FE-HybridSN
consists of a three-layer 3D-CNN component dedicated to extracting spectral information
across different channels, complemented by a two-layer 2D-CNN component focusing
on spatial information within each channel. Compared with the state-of-the-art methods,
FE-HybridSN demonstrates competitive classification performance on widely used datasets
such as IP, UP, and SV. Furthermore, we introduce the focal loss as the loss function, which
effectively mitigates the problem of biased classification decision boundaries caused by
long-tailed distributions.

In conclusion, our research contributes to the field of hyperspectral image analysis by
proposing a comprehensive framework that combines feature extraction, dimensionality
reduction, and classification techniques. The experimental results demonstrate the poten-
tial of these techniques in enhancing the accuracy and efficiency of hyperspectral image
classification. Although our method provides efficient performance in HSI classification,
there are still several unresolved challenges that may pose future limitations. Our ongoing
research will focus on the following directions to address these challenges and further
improve our approach:

1. Enhancing the model design to enable adaptive adjustment of decision boundaries
based on different hyperspectral datasets. This will allow our method to better accom-
modate the unique characteristics and variations present in different datasets.

2. Exploring and integrating advanced data augmentation techniques to tackle the issue
of limited sample sizes. By generating synthetic data and applying transformational
operations, we can effectively expand the training dataset and improve the model’s
generalization capability.

3. Investigating alternative strategies to mitigate or alleviate the impact of spatial size
during the convolutional process. This includes exploring methods such as multiscale
feature extraction and attention mechanisms to capture both local and global spatial
information more effectively.
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By addressing these areas, we aim to overcome the current limitations and further
enhance the robustness, adaptability, and overall performance of our approach in hyper-
spectral image classification.
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