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Abstract: Satellite remote sensing provides an effective technical means for the precise extraction
of information on aquacultural areas, which is of great significance in realizing the scientific super-
vision of the aquaculture industry. Existing optical remote sensing methods for the extraction of
aquacultural area information mostly focus on the use of image spatial features and research on
classification methods of single aquaculture patterns. Accordingly, the comprehensive utilization of
a combination of spectral information and deep learning automatic recognition technology in the
feature expression and discriminant extraction of aquaculture areas needs to be further explored. In
this study, using Sentinel-2 remote sensing images, a method for the accurate extraction of different
algae aquaculture zones combined with spectral information and deep learning technology was
proposed for the characteristics of small samples, multidimensions, and complex water components
in marine aquacultural areas. First, the feature expression ability of the aquaculture area target was
enhanced through the calculation of the normalized difference aquaculture water index (NDAWI).
Second, on this basis, the improved deep convolution generative adversarial network (DCGAN)
algorithm was used to amplify the samples and create the NDAWI dataset. Finally, three semantic
segmentation methods (UNet, DeepLabv3, and SegNet) were used to design models for classifying
the algal aquaculture zones based on the sample amplified time series dataset and comprehensively
compare the accuracy of the model classifications for achieving accurate extraction of different algal
aquaculture information within the seawater aquaculture zones. The results show that the improved
DCGAN amplification exhibited a better effect than the generative adversarial networks (GANs) and
DCGAN under the indexes of structural similarity (SSIM) and peak signal-to-noise ratio (PSNR).
The UNet classification model constructed on the basis of the improved DCGAN-amplified NDAWI
dataset achieved better classification results (Lvshunkou: OA = 94.56%, kappa = 0.905; Jinzhou:
OA = 94.68%, kappa = 0.913). The algorithmic model in this study provides a new method for the
fine classification of marine aquaculture area information under small sample conditions.

Keywords: Sentinel-2; normalized difference aquaculture water index (NDAWI); sample amplification;
semantic segmentation; classification of aquaculture seas

1. Introduction

Aquaculture is one of the fastest-growing animal food production sectors in the world,
accounting for more than half of the total amount of aquatic food consumed by humans
and providing great potential for global food security [1]. The extended expanse of China’s
sea area has led to remarkable advancements in aquaculture [2]. These accomplishments
have significantly contributed to ensuring the supply of high-quality proteins, lessening the
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intensity of the utilization of aquatic biological resources in natural waters and promoting
the growth of the fishery industry and the livelihood of fishermen. In recent years, the
resulting pollution around aquaculture waters, irrational aquacultural layouts, and exces-
sive density of offshore aquaculture cages have become increasingly serious [3,4] with the
expanding scale of marine aquaculture and the unregulated management of aquacultural
activities. Therefore, strengthening the environmental regulation of aquaculture is crucial
in promoting the green development of the aquacultural industry.

Traditional surveys of aquacultural areas are typically carried out by means of on-the-
spot investigations at sea. However, this approach is easily restricted by meteorological
conditions and other factors, time consuming, and labor intensive. At present, satellite
remote sensing technology has a number of advantages, such as low cost, wide monitor-
ing range, high efficiency, and repeated observations. This technology has demonstrated
its unique technical advantages in the fields of marine resources and environmental in-
vestigation [5–7]. Currently, researchers have made some progress in the inventory and
management of aquacultural areas using satellite remote sensing images [8–14]. These ex-
tractions of aquacultural area information have pioneered the application of remote sensing
technology in aquacultural areas. The high precision of the results obtained confirms the
feasibility of using remote sensing images to extract information from aquacultural areas.

Deep learning is an important field of machine learning research. In comparison to
traditional machine learning, deep learning is a method with multilayer representation
learning ability, where the data features are abstracted and extracted from lower to higher
levels through multiple sets of nonlinear modules [15]. This method has an excellent
learning ability, a wide application range, high accuracy of its results, and strong feature
construction ability, providing a new idea for remote sensing data processing [16]. Liu
et al. [17] utilized high-resolution remote sensing satellite Gaofen-2 (GF-2) images and
introduced the deep learning Richer convolutional feature network model to extract raft
aquacultural areas in Sanduao, Ningde city, Fujian Province, China. Zheng et al. [18]
used GF-2 data to propose an improved two-branch network model for remote sensing
information extraction of seawater cage culture areas. Sui et al. [19] proposed an automatic
extraction method for offshore cage and floating raft aquacultural zones based on semantic
segmentation to address the problem whereby a traditional target recognition algorithm
on high-resolution images exhibits a weak generalization ability and low recognition
rate in a weak signal environment. These studies show that deep learning can achieve
satisfactory results in dealing with different research scenarios and bring new development
opportunities for the processing, analysis, feature extraction, recognition, and classification
of such “big data” as massive high-resolution image data.

A sufficient number of training samples are a requirement for the training of models
based on neural networks. At the same time, the spatial distribution and diversity of sample
data guarantee the robustness and generalization ability of the network model [20–22].
However, the cost of sample data acquisition is high in the context of actual production
applications and big data, or the duplication of the acquired data is considerable, or the
probability of the occurrence of the required samples is small, resulting in a limited number
of useful sample data; that is, the problem of “big data, small samples” exists [23–25].
Consequently, the study of the sample amplification technique in the case of small samples
is necessary to effectively expand the training dataset through a reasonable method and has
practical application value. Sample amplification can roughly be divided into traditional
image-processing-based and deep-learning-based sample amplifications [26]. Traditional
sample amplification primarily refers to image processing methods, such as flipping, rotat-
ing, scaling, cropping, and shifting, for the existing data samples. Deep learning models,
represented by the current rapidly developing generative adversarial networks (GANs) [27],
have a wide range of potential applications in sample enhancement. This model trains the
network by discriminatively learning normal samples and generator-generated adversarial
samples during training in this adversarial training approach. Researchers have accom-
plished various outcomes in sample amplification. BigGAN has achieved a significant
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breakthrough in the GAN model for image generation. This network was proposed by re-
searchers at Google’s DeepMind department to generate images with realistic backgrounds
and textures [28]. Gao and Jiang [29] designed a new GAN that can be applied to data
enhancement tasks. The discriminator of the structure would discriminate the sample and
generated datasets while classifying the generated samples into categories. This result was
achieved by the classifiers learning the classification boundaries of the feature information.
Shaham et al. [30] introduced a model that can be used for generative training tasks us-
ing a single natural image (i.e., learning a generative model from a single natural image,
SinGAN). The SinGAN model learned to capture feature information inside the training
samples and output high-quality images with realistic visual effects through a generator
model. The generative results were applied to a variety of specific experimental tasks, and
excellent outcomes were obtained.

Dalian is an important seaweed aquacultural base in northern China. Abundant
marine resources, suitable climatic conditions, and advanced farming technology make the
seaweed aquacultural industry the characteristic and pillar industry of Dalian [31]. The
products of kelp and wakame not only better meet the domestic market demand in China
but are also exported to Japan, Korea, and other countries, contributing to the development
of the local marine economy. Currently, the governmental administration of Dalian has
taken measures to increase the scale of aquaculture, improve the quality of products, and
accelerate industrial upgrading in order to better promote the development of the seaweed
farming industry. Therefore, it is of great practical significance to carry out research on the
seaweed culture in Dalian.

A large number of studies focus on extracting and analyzing information from marine
areas dedicated to fish or shellfish aquaculture, but there are few studies focusing on
seaweed aquacultural areas [32–35]. Meanwhile, automatic computerized identification
methods for different types of aquacultural areas still need to be further developed. The
main objectives of this study included the following three points: (1) finely realize the
extraction of the spatial distribution of the different algal culture types in aquacultural
areas; (2) study the amplification method of remote sensing sample data in view of the
complex conditions of small samples in aquacultural zones; and (3) use deep learning
techniques for the automated classification of seaweed farms using semantic segmentation
models and evaluate the performance of different models. The results of this study are
helpful in promoting the high-quality development of aquaculture, the sustainable utiliza-
tion of marine resources, and the improvement and protection of the marine ecological
environment.

2. Materials
2.1. Study Area

Dalian (120◦58′–123◦31′E, 38◦43′–40◦10′N) is located at the southern tip of the Liaodong
Peninsula in China, bordering the Yellow Sea to the east and the Bohai Sea to the west
(Figure 1). Dalian is located in a warm temperate monsoon climate zone, with an average
annual temperature of 10.5 ◦C, an annual rainfall of 550–950 mm, and total sunshine hours
of 2500–2800 h. Dalian has a sea area of 30,100 km2 and a coastline of 2211 km, making it
the city with the longest coastline in China. The water quality is clean, with little pollution
and less floating mud. The salinity of Dalian coastal waters is relatively stable, and the
vertical difference and the difference in the distance from the coast are relatively small,
generally in the range of 30–32. The waters are rich in nutrient salts, stable in physical
and chemical environmental elements, and abundant in marine resources. This natural
advantage provides a good environment for mariculture organisms to reproduce and sur-
vive. Study area A was located in the Lvshunkou District of Dalian city, and study area
B was located in the Jinzhou District of Dalian city (as a validation area for the method’s
extension). These two study areas adopt the culture method of fixed floating valves, and
the culture types are mainly wakame and kelp of algal culture.
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Figure 1. Location of the study area: (a) Dalian; (b) study area A, Lvshunkou offshore aquaculture
area; (c) study area B, Jinzhou offshore aquaculture area.

2.2. Data

In order to classify the marine area used for offshore seaweed aquaculture, Sentinel-2
optical remote sensing images covering the study area during the growth cycle of kelp and
wakame were selected as the data source in this study (European Space Agency (ESA),
https://scihub.copernicus.eu/dhus/ (accessed on 8 June 2021)), mainly 10 Sentinel 2A/B
Level-1C images without cloud impact between 2017 and 2018 (Table 1).

Table 1. Sentinel-2A/B images data list.

Number
Lvshunkou Offshore Aquaculture Area Jinzhou Offshore Aquaculture Area
Satellite Sensor Date Obtained Satellite Sensor Date Obtained

1 Sentinel-2B 13 December 2017 Sentinel-2B 30 November 2017
2 Sentinel-2B 2 January 2018 Sentinel-2B 19 January 2018
3 Sentinel-2B 1 February 2018 Sentinel-2B 8 February 2018
4 Sentinel-2A 16 February 2018 Sentinel-2A 5 March 2018
5 Sentinel-2A 5 March 2018 Sentinel-2B 30 March 2018
6 Sentinel-2A 25 March 2018 Sentinel-2B 9 April 2018
7 Sentinel-2A 7 April 2018 Sentinel-2B 19 April 2018
8 Sentinel-2A 27 April 2018 Sentinel-2B 29 April 2018
9 Sentinel-2B 9 May 2018 Sentinel-2A 4 May 2018
10 Sentinel-2A 24 May 2018 Sentinel-2A 24 May 2018

The data collection was carried out from November 2016 to June 2018 using an ASD
Field Spec spectrometer in the coastal marine area in the south of Lvshunkou District,
Dalian. The spectral and coordinate measurements of 25 sampling points in the aquaculture
area were collected, including 9 sampling points for kelp and 16 sampling points for
wakame.

3. Methods
3.1. Research Route

This study was carried out according to the technical route shown in Figure 2. The main
workflow was as follows: to begin with, using the measured spectral data of the seaweed
aquaculture area and the Sentinel-2 remote sensing data as the data source, we constructed
the normalized difference aquaculture water index (NDAWI) by adopting the spectral

https://scihub.copernicus.eu/dhus/
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analysis method to analyze the spectral characteristics of the two different species grown
in the area and the surrounding seawater. Next, the NDAWI dataset was created based
on this spectral feature index, and the amplification of the NDAWI dataset was realized
by combining the improved deep convolution generative adversarial network (DCGAN)
algorithm. Finally, the precise classification of the different types of algal aquaculture in
the study area was realized on the basis of the amplified sample dataset by utilizing the
semantic segmentation model.
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3.2. Calculation of Spectral Characteristic Index

The spectral characteristic index used in this study was the normalized difference
aquaculture water index (NDAWI). The development of this spectral characteristic index
combines the reflectance spectral curves of different bands of remote sensing data and
the reflectance spectral curves of measured spectral data, taking into account the spectral
characteristic changes during the growth period of algae. It can better meet the requirements
of the fine classification of different types of aquacultural areas. For details, please refer
to the research results of Zhang et al. [36]. The NDAWI employs the blue, green, red, and
short-wave infrared bands. The blue and green bands have high reflectivity, and the red
and short-wave infrared bands have low reflectivity. The formula for the NDAWI is as
follows:

NDAWI =
(B2 + B3)− (B4 + B5)
(B2 + B3) + (B4 + B5)

(1)
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where B2 represents the blue band, B3 represents the green band, B4 represents the red
band, and B5 represents the short-wave infrared band.

3.3. Sample Amplification Based on Improved DCGAN
3.3.1. Improvement of DCGAN

• Improvement of the Loss Function

Although the DCGAN network improves the network performance, to a certain extent,
by introducing a convolutional neural network, the composition of the loss function is still
based on Jensen–Shannon divergence, which causes the DCGAN to still have the problem
of gradient disappearance during training [37]. Therefore, the Wasserstein distance was
introduced to replace the original loss function of the DCGAN so as to better play the role
of the discriminator to distinguish between true and false and improve the ability of the
generator to generate images. The definition of the Wasserstein distance [38] is shown in
Formula (2):

W
(

Pr, Pg
)
= inf

γ∼Π(Pr , Pg)

E(x,y)∼γ[||x− y||] (2)

where Pr and Pg represent the distribution of the real and the generated sample data,
respectively; Π

(
Pr, Pg

)
represents all possible joint distributions of Pr and Pg; x and y are

the samples from each possible joint distribution γ, and ||x− y|| is the distance of the
samples.

According to the Wasserstein distance, the loss function of the discriminant network
of the improved DCGAN is shown in Formula (3):

LD = −Ex∼Pr [D(x)] + E∼
x∼Pg

[
D
(∼

x
)]

+ λEx̂∼Px̂

[
(‖∇x̂D(x̂)‖2 − 1)2

]
(3)

where D(x) is the output of the real data through the discriminator; λ is the penalty
coefficient; x̂ is the interpolation between the real data and the generated data; and∇x̂D(x̂)
is the gradient for the interpolation by the discriminator output.

• Improvement of the Network Structure

Since the NDAWI dataset of the study area to be amplified consisted of 10 bands and
was affected by the size of the aquacultural area and the spatial resolution of Sentinel-
2, the design of the network parameters was implemented on the basis of the DCGAN
structure combined with the characteristics of the NDAWI algal aquaculture dataset in
order to extract deeper image features. Figure 3 shows the improved network structure
of the DCGAN generator. To start with, the input random variable obeying the uniform
distribution was transformed into a 4 × 4 × 512 image through the fully connected layer.
Then, it passed through 4 convolutional layers sequentially. For the first 3 convolutional
layers, the number of channels was halved, and the length and width were doubled for each
convolutional layer passed. For the 4th convolutional layer, only the number of channels
was changed without changing the image size. A final image of the size 32 × 32 × 10 was
generated. In addition, the transposed convolution kernel had a stride of 2, as well as a size
of 3 × 3. A batch normalization (BN) layer was added after each convolutional layer to
prevent the gradient from disappearing. Except for the last layer using the Tanh function,
the rest were activated using the ReLU function.

Figure 4 shows the network structure of the improved DCGAN discriminator. At
first, an image of 32 × 32 × 10 generated by the generator was input. Then, a feature map
of 4 × 4 × 512 was obtained by extracting features through 4 convolutional layers. In
the end, a probability value of an image true and false judgment was output through the
fully connected layer, and the parameters of the generator network and the discriminator
network were updated according to the judgment probability value. In addition, each
kernel had a size of 5× 5 and a stride of 2. The BN layer was added after each convolutional
layer in the discriminator network. Except for the last layer, which did not use the activation
function, the other layers used the LeakyReLU function.
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Figure 4. Structure diagram of the improved DCGAN discriminator network. The discriminator
network has a total of five layers, including four convolutional layers (first four cuboids) and one
fully linked layer (fifth cuboid). The input is an image of 32 × 32 × 10, and the output is a single
predictive value (probability that the image of the input discriminator is identically distributed with
the dataset image).

3.3.2. Amplification of NDAWI Dataset Based on Improved DCGAN

Because of the large extent of the study area, in situ field surveys cannot cover the
whole area. Thus, the NDAWI dataset was produced based on the limited observation data,
and 308 samples of 32 × 32 × 10 were created. Among them, since the number of original
training samples was not sufficient, data enhancement was needed, including the up and
down flip, left and right flip, clockwise 90◦ rotation, clockwise 180◦ rotation, and clockwise
270◦ rotation of the samples. After the enhancement, there were 1848 training samples in
the Lvshunkou offshore aquaculture area.

The quantitative evaluation of the sample amplification results was performed by
calculating the relevant statistics of the peak signal-to-noise ratio (PSNR) and structural
similarity (SSIM) indexes of the amplified sample images. The PSNR formula is as follows:

MSE =
∑M−1

i=0 ∑N−1
j=0 (I0(i, j)− I(i, j))2

M× N
(4)

PSNR = 10log

{
MAX f

2

MSE

}
(5)

The MSE is the mean square error of the corresponding pixels of the training sample
and the generated sample image, where I0(i, j) and I(i, j) are the pixel values at (i, j) in
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the training sample and the generated sample image, respectively; M× N represents the
number of pixels in the image; and MAX f represents the maximum value of the image
pixels.

The formula for the SSIM is as follows:

SSIM(a, b) =
(2uaub + C1)(2σab + C2)

(ua2 + ub
2 + C1)(σa2 + σb

2+C2)
(6)

For all pixels of image a and image b, the average value is represented by ua and ub,
and the variance is represented by σa

2 and σb
2, respectively. σab is the covariance of the

image a and image b pixels. The value range of the SSIM is [0, 1]. If two images are the
same, the SSIM value is 1; if they are completely different, the SSIM value is 0.

3.4. Construction of Classification Model for Offshore Seaweed Aquaculture Farms
3.4.1. Classification Model of Marine Seaweed Aquaculture Based on UNet

The structure of the UNet model [39] is shown in Figure 5. The left half of the
“U-shaped” structure was the encoder of the UNet network. It used a 5-layer repeated
convolution operation to extract features from the input image. Each layer first performed a
3 × 3 convolution on the feature map and used the ReLU function for processing, and then
the feature map was subjected to a 2 × 2 maximum pooling operation to narrow the feature
map. The right half of the “U-shaped” structure was divided into the decoder part, and
UNet performed five upsamplings to recover the size of the feature map. Each upsampling
first used a deconvolution to restore the resolution of the feature map, and the feature map
obtained in this part was spliced with the feature map extracted from the corresponding
depth in the encoding stage. Then, the spliced feature map was subjected to 2 times 3 × 3
convolution and activated by the ReLU function. This skip connection method allowed the
UNet network to take into account the deep feature information extracted in the encoding
stage and the low-level detail features in the decoding stage.
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3.4.2. Classification Model of Marine Seaweed Aquaculture Based on DeepLabv3

The main structure of the DeepLabv3 network consisted of three parts [40], as shown
in Figure 6. The first part was the basic network, which used ResNet to extract high-level
semantic features of images. These features had different scales and levels of semantic
information. The last block in the original ResNet contained a hole convolution with
rate = 2. The second part was the atrous spatial pyramid pooling (ASPP) structure, which
used dilated convolutions with different rates (6, 12, and 18) to convolve the output results
of the previous layer to obtain multiscale information. In addition, broader contextual
information was captured by adding a global average pooling layer. In the last part, the
features of each branch of the ASPP were combined into a single vector, and then a 1 × 1
convolution was used to convolve the output, and the feature map was restored to the
original image size by upsampling.
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spatial pyramid pooling (ASPP) module, and post-processing stage.

3.4.3. Classification Model of Marine Seaweed Aquaculture Based on SegNet

The SegNet model structure is shown in Figure 7, which includes the left encoding
part and the right decoding part [41]. The coding part had 13 convolutional layers and
5 pooling layers. The image was input into the network, and the corresponding feature
map information was obtained through 3 × 3 convolution, normalization, ReLU, and other
operations in the convolution layer. After convolution, the feature map was compressed
by the maximum pooling layer. With each pooling, the feature map become 1/2 of the
original, and a total of 5 poolings were performed. The resolution of the feature map
output by the encoding part was reduced to 1/32 of the input image. In the process of
feature extraction, the number of calculations was reduced, and the receptive field was
expanded. The decoding part had 13 convolutional layers, 5 upsampling layers, and the
last Softmax layer. The upsampling used the pooling layer index to return the eigenvalues
to the original position, the rest was filled with 0, and the dense feature map was obtained
after convolution. Upsampling enlarged the reduced feature map in a ratio of two times,
and the feature map after 5 deconvolution operations restored the original input size. The
last layer of the fifth layer was a 1 × 1 convolution layer to classify the image to obtain the
output result.
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3.5. Accuracy Assessment

Precision, kappa index, F1 score, recall, and overall accuracy (OA) were chosen to
quantitatively evaluate the recognition accuracy of the deep learning semantic segmentation
model for seaweed aquaculture area. The calculation formulas for each accuracy evaluation
index are as follows:

OA =
TP + TN

TN + TP + FN + FP
× 100% (7)

Kappa =
TP + TN

(TN + FP)× (TN + FN) + (FN + TP)× (FP + TP)
(8)

Recall =
TP

TP + FN
× 100% (9)

Precision =
TP

TP + FP
× 100% (10)

F1 = 2× Recall × Precision
Recall + Precision

(11)

where TP represents the number of pixels in the classification results of the composite
aquaculture area, TN represents the number of pixels in the true counterexample, FP
represents the number of pixels in the false counterexample, and FN represents the number
of pixels in the false counterexample.

4. Results
4.1. Amplification Comparison of the NDAWI Dataset Based on the Improved DCGAN

The training environment configuration’s information for this study was an AMD
Ryzen 7 4800H for the CPU and an NVIDIA RTX2060 for the GPU. The software platform
was Pytorch 1.12.1 + Python 3.8 + PyCharm 2021.3.2. The network training had 600 itera-
tions and 64 training batches. The network could complete the training of 64 samples each
time, and the learning rate was 0.0002. The NDAWI dataset of the Lvshunkou aquaculture
area was divided into three categories, namely, kelp aquaculture patches + aquaculture-free
sea area, wakame aquaculture patches + aquaculture-free sea area, and aquaculture-free
sea area. The three datasets were input into the improved DCGAN.

As shown in Figure 8a–c, the NDWAI datasets of the training and generation samples
show that the NDWAI time series curves of the different categories had approximately the
same shape. The NDWAI time series curves of the kelp training and generated samples
followed a similar trend of a letter “W” throughout the growth cycle, with a peak from
the beginning of February to the end of March. The time series curves of the NDWAI for



Remote Sens. 2023, 15, 4423 11 of 21

the training and generated samples of wakame resembled the letter “V” throughout the
growth cycle, with a trough in February. The time series curves of the NDWAI for the
training and generated samples in the culture-free waters showed a trend throughout the
growth cycle influenced by the culture in the study area, with high NDWAI values in the
early part of the cycle and flattening out in the later part of the cycle.
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Table 2 shows the SSIM and PSNR of the different dataset generation algorithms. The
results show that the improved DCGAN produced different datasets with the highest SSIM
with respect to the GAN and DCGAN and the lowest PSNR compared to the GAN and
DCGAN.

Table 2. Evaluation indicators for the three categories of data generated in the Lvshunkou offshore
aquaculture area.

Dataset Index GAN DCGAN Improved DCGAN

The kelp + aquaculture-free sea area dataset SSIM 53.82% 64.89% 78.96%
PSNR 51.78% 50.36% 49.75%

The wakame + aquaculture-free sea area dataset SSIM 55.54% 66.56% 79.28%
PSNR 52.96% 51.59% 50.51%

The aquaculture-free sea area dataset SSIM 69.66% 77.84% 82.11%
PSNR 63.12% 57.69% 48.96%

4.2. Selection and Analysis of the Before-and-After DCGAN Aquaculture Sea Classification Models

The NDAWI dataset from before and after the improved DCGAN amplification was
used for the DCGAN, both before and after the aquaculture sea area classification model
selection experiments. Based on the UNet, DeepLabv3, and SegNet semantic segmentation
models used to classify the offshore aquaculture area of Lvshunkou, we investigated the
sample amplification effect of the improved DCGAN and the selection of the semantic
segmentation models. The size of the Lvshunkou offshore aquaculture area was 2400 × 900,
and the size of each image element was 10 m × 10 m.

The NDAWI dataset of the Lvshunkou offshore aquaculture area included 1848 sam-
ples before augmentation and 3648 samples after amplification, and both datasets were
constructed according to a ratio of 3:2 for the test samples, as well as the training sam-
ples (Figure 9). The training samples were input into the UNet, DeepLabv3, and SegNet
seaweed aquaculture classification models, and their accuracies were evaluated.
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Figure 9. (a) Sample images of part of the Lvshunkou offshore aquaculture area and (b) their
corresponding labels.

In the Lvshunkou aquaculture area, the highest classification accuracy for the UNet
model before and after the NDAWI dataset amplification was achieved (Table 3). The OA,
kappa, and precision of the UNet model before and after the NDAWI dataset amplifica-
tion were improved by 3.84%, 0.022, and 4.17%, respectively. The results show that the
improved DCGAN was effective in amplifying the NDAWI classification dataset in the
aquaculture area of Lvshunkou, which was reflected in the classification results of the
different aquaculture sea area models. In addition, based on the amplified NDAWI dataset,
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the best classification results were obtained for the aquaculture sea area by using the UNet
model.

Table 3. Classification accuracy of each model before and after amplification of the NDAWI classifica-
tion dataset (Lvshunkou offshore aquaculture area).

Model

Before Amplification After Amplification

OA (%) Kappa Recall
(%)

Precision
(%) F1 OA (%) Kappa Recall

(%)
Precision

(%) F1

UNet 90.72 0.883 89.91 89.58 0.8974 94.56 0.905 93.69 93.75 0.9372
DeepLabv3 89.23 0.875 89.54 89.81 0.8967 92.12 0.894 91.13 90.96 0.9104

SegNet 89.56 0.879 89.62 89.25 0.8943 93.48 0.899 93.48 93.55 0.9351

4.3. Classification of Aquaculture Farms Based on UNet Model

A deep learning model extracts the features of different marine aquaculture areas
in an image by learning the samples and labels of different types of aquaculture sea
areas. Accordingly, the quantity and quality of the samples and labels directly affect the
training effect of the model and the recognition table selection. Based on the manually
tagged classification labels, the samples were amplified using the improved DCGAN. The
amplified NDAWI dataset was then used to classify the Lvshunkou aquaculture areas.
Finally, a comparative experiment was conducted with the NDAWI dataset that had not
been amplified using the improved DCGAN to analyze the classification effect of the
seaweed aquaculture area dataset before and after the amplification of the UNet model-
based dataset.

Figure 10a–c show the results of the classification of the seaweed farms of each model
in the offshore aquaculture area of Lvshunkou. In terms of local details, the classification
results of the UNet model were better than those of the other models. In the classification
results of the DeepLabv3 model, there was a misclassification of some kelp aquaculture
areas into wakame culture areas. In the classification result map of the SegNet model, there
was the misclassification of part of the kelp aquaculture area into free marine area.

The results show that the NDAWI dataset with the improved DCGAN amplifica-
tion (Figure 11e) was better classified than the NDAWI dataset without amplification
(Figure 11a), which was primarily demonstrated by fewer cases of incorrectly identifying
the cultured seawaters as culture-free seawaters, substantially improved misclassification,
and a significant reduction in broken spots. From the detailed comparison figures, the
UNet model constructed based on the unamplified NDAWI dataset misidentified some
kelp-farmed sea areas as culture-free sea areas (Figure 11b,f). The UNet model misiden-
tified some kelp-farmed sea areas as wakame-farmed sea areas (Figure 11c,g). The UNet
model misidentified the kelp-farmed and wakame-farmed sea areas as culture-free sea
areas (Figure 11d,h).
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5. Discussion
5.1. Demonstration of the Model’s Application

In order to verify the generalization of the model, the Jinzhou offshore aquaculture
area (study area B, Figure 1), which is farther away from the Lvshunkou offshore aqua-
culture area, was selected for this study. Since the water color conditions in the two
zones are different, it was necessary to train the Lvshunkou aquaculture area separately
from the Jinzhou aquaculture area. In the Jinzhou aquaculture area, 568 images of the
32 × 32 × 10 NDAWI sample set were created. Next, the amplification and analysis of the
NDAWI dataset were completed on the basis of the improved DCGAN. The processing
was consistent with the Lvshunkou aquaculture area.

Table 4 illustrates the SSIM and PSNR of the different dataset generation algorithms.
The results show that the improved DCGAN produced the highest SSIM for the different
datasets with respect to the GAN and DCGAN and the lowest PSNR compared to the GAN
and DCGAN.

Table 4. Evaluation indicators for the three categories of data generated in the Jinzhou offshore
aquaculture area.

Dataset Index GAN DCGAN Improved DCGAN

The kelp + aquaculture-free sea area dataset SSIM 55.57% 65.58% 79.14%
PSNR 52.56% 49.26% 50.69%

The wakame + aquaculture-free sea area dataset SSIM 56.23% 67.31% 80.02%
PSNR 54.25% 50.65% 49.23%

The aquaculture-free sea area dataset SSIM 70.23% 78.63% 83.5%
PSNR 63.55% 58.85% 53.95%

The NDAWI dataset of the Jinzhou aquaculture area included 568 samples before am-
plification and a total of 6408 samples after amplification. Both the before and after datasets
were constructed in a 3:2 ratio for the test samples, as well as the training samples. The
training samples were input into the UNet, DeepLabv3, and SegNet seaweed aquaculture
classification models, and the accuracy was evaluated.

From Table 5, it can be seen that for the Jinzhou aquaculture area, the UNet model had
the highest classification accuracy before and after the amplification of the NDAWI dataset.
The OA, Kappa, and Precision of the UNet model before and after the amplification of the
NDAWI dataset were improved by 4.43%, 0.032, and 4, respectively. The results showed
that the improved DCGAN had the best classification effect for the Jinzhou aquaculture
area based on the amplified NDAWI dataset. Moreover, based on the amplified NDAWI
dataset, the UNet model was the most effective in classifying the aquaculture sea area using
the UNet model.

Table 5. Classification accuracy of each model before and after amplification of the NDAWI classifica-
tion dataset (Jinzhou offshore aquaculture area).

Model

Before Amplification After Amplification

OA (%) Kappa Recall
(%)

Precision
(%) F1 OA (%) Kappa Recall

(%)
Precision

(%) F1

UNet 90.25 0.881 90.34 90.89 0.9065 94.68 0.913 94.68 94.89 0.9478
DeepLabv3 89.12 0.863 90.21 89.51 0.8985 92.31 0.901 92.31 91.25 0.9178

SegNet 89.95 0.877 90.13 89.65 0.8989 93.56 0.909 93.56 92.45 0.9302

The amplified NDAWI dataset was used to classify the Jinzhou offshore aquacul-
ture area, and a comparative experiment was conducted with the unamplified NDAWI
dataset to analyze the classification effect before and after the amplification of the seaweed
aquaculture area dataset based on the UNet model.
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Figure 12a–c present the results of the classification of each modeled aquaculture sea
area in the Jinzhou aquaculture zone. From the observation of local details, the UNet
model had better classification results. In the classification results of the DeepLabv3 model,
there existed the misclassification of part of the aquaculture-free area into the wakame
aquaculture area. In the classification result map of the SegNet model, there was the
misclassification of part of the kelp aquaculture area into free marine area.
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Figure 12. The classification results of the (a) UNet, (b) DeepLabv3, and (c) SegNet models based
on the amplified NDAWI dataset in the Jinzhou offshore aquaculture area (large) and a detailed
comparison(s) (small).

The classification results (Figure 13a,e) of the NDAWI dataset amplified by the im-
proved DCGAN indicated the more accurate identification of the boundaries between the
cultured and the uncultured marine areas, with fewer overall fragmentation patches. From
the detailed comparison diagram, the UNet model constructed based on the unamplified
NDAWI dataset incorrectly identified the aquaculture-free sea area as kelp aquaculture sea
area (Figure 13b,f). The UNet model was unable to accurately distinguish the boundary
between the kelp aquaculture sea area and the aquaculture-free sea area and mistakenly
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identified the kelp aquaculture sea area as the aquaculture-free sea area (Figure 13c,g). The
UNet model misidentified the aquaculture-free sea area as the wakame aquaculture sea
area (Figure 13d,h).
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In summary, based on the improved DCGAN amplified seaweed aquaculture area
dataset, the utilization of the UNet model displayed a high-level of improvement in
the recognition effect of every type of aquaculture sea area, as well as the boundary
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identification of aquaculture sea area and aquaculture-free sea area. The method in this
study has good applicability.

5.2. Limitations and Prospects

The remote sensing images used in this study belonged to the Sentinel-2 mission. The
next step is to use multiresolution images provided by multisource satellites (GF-2, ZY-3)
to classify or detect aquaculture areas. We can try to use radar images to detect macroalgae
growing beneath the water’s surface, and we can also use drones to be maneuverable and
flexible in acquiring information to fill in the missing time periods of satellite imagery.
With the increase in sample types, the problem of an imbalance among aquaculture area,
aquaculture type, and seawater samples has also been alleviated.

At present, this study used UNet, DeepLabv3, and SegNet semantic segmentation
models to compare the effects after classification and screened the UNet model as the
optimal model. Future work should use a variety of deep learning methods for remote
sensing classification of the sea for aquaculture and make innovations based on existing
methods. Moreover, the training and learning framework, the accuracy of the target
identification and detection, and the generalization ability of the model in areas with
richer types of mariculture and larger research scope should be improved. Furthermore,
mariculture information with high precision and stability needs to be obtained.

The work of this study focused on the accurate extraction of information from different
algae mariculture areas. In the future, it is necessary to further study the spatial and
temporal dynamic distribution and change information of mariculture with a larger research
scope and a longer time interval, as well as to analyze the driving factors of the changes.
Moreover, the spatial and temporal differentiation of the seaweed culture patterns should
be scientifically and quantitatively summarized, which will be conducive to promoting the
green and healthy development of the mariculture industry. Meanwhile, the discussion of
the distribution pattern of algae culture will also help in accurately grasping the current
situation of the use of sea resources and in protecting the marine ecological environment.
This work can provide support for government departments to use the sea accurately, use
the sea scientifically, and supervise efficiently.

6. Conclusions

The insufficient number of images from satellite remote sensing collections that coin-
cide with on-site observations of marine aquaculture areas, as well as the characteristics
of manual markup, such as high cost and low efficiency, result in too few data samples,
which limits the generalization ability of trained classification or detection models. In
this study, combined with deep learning technology, we used the improved DCGAN to
expand the samples of seaweed aquaculture images in order to improve the generalization
ability of classification models and solve the current problem of too few samples of remote
sensing images. The DCGAN loss function and generator network structure were improved
according to the Wasserstein distance, thereby enhancing the image generation quality of
DCGAN, stabilizing the training of the generative adversarial network and minimizing
pattern collapse.

Image classification and recognition is basic research content in the field of remote
sensing. With the development of machine learning, deep learning has been increasingly
widely applied in the field of image classification with the characteristics of intelligence
and efficiency. Aiming at accurately extracting the spatial distribution of aquaculture areas,
this study designed a classification model applicable to offshore seaweed farms based
on the NDAWI amplified dataset of the improved DCGAN using the UNet, DeepLabv3,
and SegNet semantic segmentation models. On the basis of the classification effects of
the three models, the optimal classification model for aquaculture sea areas was selected.
The UNet classification model based on the improved DCGAN amplified NDAWI dataset
achieved excellent performance. This study combines deep learning technology and actual
production requirements to realize the precise extraction of different types of aquaculture
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areas in marine aquaculture areas, which is a useful exploration and application for the
scientific management of marine aquaculture.
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